地震属性参数在地震相识别中的应用
- 格式:pdf
- 大小:446.82 KB
- 文档页数:2
地震属性及其提取方法地震属性及其提取方法1绪论1.1 选题的必要性及重要性地震属性分析技术作为油气藏勘探的核心技术之一,其作用主要为:岩性及岩相、储层参数和油气的预测。
地震数据体中含有丰富的地下地质信息,不同的地震属性组合可能与某些地质参数具有很大的相关性,因此利用地震属性参数可以有效地进行储层预测。
常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
在层序界而内追踪闭合基础上,将地震属性分析技术、储集层反演技术、相干体切片技术等许多新技术综合应用于分析论证,可以预测有利的区带,进行油气藏勘探。
1.2 重要研究内容地震属性包括剖面属性、层位属性及体属性,目前层属性最为常用和具有实际意义。
剖面属性提取就是在地震剖面沿目的层拾取各种地震信息,主要通过特殊处理来完成;层位属性就是沿目的层的层面并根据界面开一定长度的时窗提取各种地震信息。
提取的方式有:瞬时提取、单道时窗提取和多道时窗提;体属性提取方法与层位属性相同,只是用时间切片代替层位。
地震属性提取选择合理的时窗很重要,时窗过大,包含了不必要的信息;时窗过小,会丢失有效成分。
时窗选取应该遵循以下原则:(1) 当目的层厚度较大时,准确追出顶底界面,并以顶底界面限定时窗,提取层间各种属性,也可以内插层位进行属性提取;(2) 当目的层为薄层时,应该以目的层顶界面为时窗上限,时窗长度尽可能的小,因为目的层各种地质信息基本集中反映在目的层顶界面的地震响应中。
1.3地震属性分析的难点问题(1)地震属性分析的间接性。
地震数据中所含的储层信息往往是十分间接的,至今无法建立明确的物理或数学模型,这种关系通常是定性的、模糊的、不唯一的,1绪论带有一定的经验性,因此我们无法用某种确定性的方法从地震数据中进行分析。
(2)地震属性相关性的错综复杂。
各种地震属性之间的相关性错综复杂,主次关系变化不定,数量关系难于提取,因此应用常规的分析方法做出定量的分析也比较困难。
地震波形状描述技术及其在地震相分析中的应用姚爽;阎建国;李雪峰;赵洲;朱强;程谦【期刊名称】《物探化探计算技术》【年(卷),期】2011(33)1【摘要】地震波的波形变化及其分布规律,是重要的地震参数之一.对地震波形中包含的地质信息加以分析和应用,将有利于提高储层预测,油藏描述精度和钻探成功率.以波形的形状进行分类,并进行地震相和沉积相分析,是目前应用较为广泛的一类地震属性分析的方法技术.在这类技术中,其核心是波形的形状描述和刻画技术.这里以Stratimagic软件为例,通过对构成地震波形状的主要参数(振幅、相位、频率)对其波形状变化影响的细致分析和比较,总结出了可以利用地震波的形状变化规律及形状描述方法,探讨了依据该波形形状分类在地震相分析中的效果和意义.【总页数】6页(P24-29)【作者】姚爽;阎建国;李雪峰;赵洲;朱强;程谦【作者单位】成都理工大学,信息工程学院,四川,成都,610059;成都理工大学,信息工程学院,四川,成都,610059;成都理工大学,地球探测与信息技术教育部重点实验室,四川,成都,610059;成都理工大学,信息工程学院,四川,成都,610059;成都理工大学,信息工程学院,四川,成都,610059;成都理工大学,信息工程学院,四川,成都,610059;成都理工大学,信息工程学院,四川,成都,610059【正文语种】中文【中图分类】P631.4【相关文献】1.地震相分析技术在煤田地震勘探中的应用 [J], 高阳;王春贤;冯西会;汶小刚;聂爱兰;王军2.Stratimagic地震相分析技术在川中GSM油气勘探中的应用 [J], 唐大海;谢继容3.地震波形分类技术在地震相分析中的应用——以清溪场地区为例 [J], 李雷涛;肖秋红4.地震波形分类技术在地震相分析中的应用——以大港GJP地区的地震相分析为例 [J], 杨彬;林承焰5.地震相分析技术在煤田地震勘探中的应用 [J], 薛继龙;张睿因版权原因,仅展示原文概要,查看原文内容请购买。
名词解释:1.褶积模型:地震记录的褶积模型是当今地震勘探中三大环节的主要理论基础之一,其应用十分广泛,主要表现在三大方面:正演、反演和子波处理。
层状介质的一次反射波通常用线性褶积模型表示 ,即:式中:w(t)为系统子波;r(t)为反射系数函数,符号“*”表示褶积运算。
2.分辨率:分辨能力是指区分两个靠近物体的能力。
度量分辨能力强弱的两种表示:一是距离表示,分辨的垂向距离或横向范围越小,则分辨能力越强;二是时间表示,在地震时间剖面上,相邻地层时间间隔 dt 越小,则分辨能力越强。
时间间隔 dt 的倒数为分辨率。
垂向分辨率是指沿地层垂直方向所能分辨的最薄地层厚度。
横向分辨率是指横向上所能分辨的最小地质体宽度。
3.薄层解释原理:Dt<T/4 或 Dh 在 l/8 与 l/4 之间,合成波形的振幅与 Dt 近似成正比,可用合成波形的振幅信息来估算薄层厚度,这一工作称之为薄层解释原理。
4.时间振幅解释图版:我们把层间旅行时差Δ t 与实际地层的时间厚度Δ T 的关系曲线以及薄层顶底反射的合成波形的相对振幅Δ A 与实际地层的时间厚度Δ T 的关系曲线统称为时间-振幅解释图版。
5.协调厚度:在相对振幅ΔA 与实际地层时间厚度ΔT 的关系曲线上,ΔA 最大值所对应的地层厚度称为调谐厚度。
协调脉冲。
6.波长延拓:用数学的方法把波场从一个高度换算到另一个高度,习惯上称之为波场延拓。
7.同相轴:各接收点属于同一相位振动的连线。
8.波的对比:根据反射波的一些特征来识别和追踪同一反射界面反射波的工作,方法:相位对比、波组或波系对比、沿测网的闭合圈对比、研究异常波、剖面间的对比。
9.剖面闭合:相交测线的交点处同一反射波的 t0 时间应相等,是检验波的对比追踪是否正确的重要方法。
10.广义标定:是指利用测井、钻井资料所揭示的地质含义 (岩性、层厚、含流体性质等) 和地震属性参数(如振幅、波形、频谱、速度等)之间的对比关系,判别或预测远离或缺少井控制区域内地震反射信息 (如同相轴、地震相、各种属性参数等)的地质含义。
9 地震相分析技术绪论地震数据中包括着十分丰硕的信息,能够从中提取一系列地震属性,这些属性可用来测定地震数据的几何学、动力学、运动学或统计学特点,有助于揭露隐含的地下异样。
最近几年来,人们从地震数据中提取了愈来愈多的信息来进行常规的地震属性预测。
基于属性参数的地震相分析技术,不但可用于大尺度的沉积相研究,更适合于小尺度的沉积亚相、微相研究和储集层预测。
在进行地层岩性说明进程中,普遍采纳的波阻抗反演和地震属性技术的确起到了不小的作用,但随着煤矿开发对地层岩性的要求不断增加,这两种技术已经在某些程度上知足不了实际生产的需要,关于地震属性分析方式来讲,也已经意识到其本身要紧存在以下两方面缺点:(1) 所提取的属性不断增加,可是能够提供给用户进行处置说明的属性不多。
(2) 缺少适合的方式对多种属性进行说明,其地质意义不明确。
能够说,传统的地震属性丢失了两个大体信息,即地震信号的整体转变和这种转变的散布规律。
因此,很难给出井位处的地震信号转变的靠得住评估,也就很难进行靠得住的信息外推。
在钻井资料比较少、横向转变较快的情形下多解性较强,很难准确性预测。
波阻抗反演和地震属性技术均无法评判地震信号的整体转变程度。
可是,任何与地震波传播有关的物理参数转变都反映在地震道波形的转变中,能够利用样点值随时刻的转变来刻画和衡量地震道波形转变。
于是,基于波形的地震相分析技术便应运而生。
一样而言,地震相分析技术忠实于地震信息本身,弥补了井约束反演的缺点。
相较较而言,基于波形的地震相分析技术较基于属性的地震相分析技术有独特的优势。
基于属性的地震相分析技术利用某些对地质情形灵敏的属性划分出与沉积相对应的地震相,但前提是这些属性存在,且确实灵敏,而寻觅这些灵敏属性或属性组合往往比较困难和耗时;另外属性不能反映地震信号的整体转变,没有一个单一属性或几个属性的组合能够描述整个地震信号的非均匀性。
基于波形的地震相分析技术综合利用了地震波的频率、相位、速度、能量等各类信息,是基于地震信号整体不同的分类,克服了上述缺点,具有独特解决问题的能力。
1.均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值再开平方。
由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。
适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
√2.平均绝对值振幅(Average Absolute Amplitude)平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。
适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
3.最大波峰振幅(Maximum Peak Amplitude)最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。
PAL画一个使这三个采样点适合曲线并且沿这一曲线确定出最大值。
最大波峰振幅= 125最大波峰振幅是分析时窗内的最大正振幅,最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。
适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
4.平均波峰振幅 (Average Peak Amplitude)平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。
适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
5.最大波谷振幅 (Maximum Trough Amplitude)最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。
PAL 画一个适合这三个采样点的曲线并且沿着这一曲线确定出最大值。
1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN (缩写)定义:在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。
属性特征:提供声阻抗差的信息。
横向变化常与岩性及油气聚集有关。
值总是正的。
2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写)定义:在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。
可对相位反转成图,有可能指示含气与否。
属性特征:描述了复相位图中实部和虚部之间的角度。
它的值总在±180°之间。
瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写)定义:在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。
值域为(-fw, + fw)。
然而,大多数瞬时相位都为正。
可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写)定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移在解释中的应用:用于复数道分析的品质控制属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写)定义:在振幅包络峰值处实地震道的极性在解释中的应用:用于振幅异常的品质分析属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同6、属性名称:响应相位(Response Phase)RESPPHAS(缩写)定义:在振幅包络峰值处的瞬时相位值在解释中的应用:地震地层层序的识别、检测。
地震属性含义及其应用一、 瞬时属性 19假定复数道表示为:)t (iy )t (x )t (u +=,则1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90º时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。
3. 瞬时相位IPhase ( Instantaneous Phase)))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是[-180o ,180o ]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase )是瞬时相位导出的属性。
其计算式为))t ((Cos γ常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率 IFreq (Inst. Frequeney)定义为瞬时相位对时间的函数 dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。