北航研究生课程《矩阵理论》期末考试题2
- 格式:pdf
- 大小:1002.79 KB
- 文档页数:4
武汉大学数学与统计学院2005-2006学年工科硕士研究生学位课程期末考试《矩阵论》 试题 (A 卷,150分钟)专业 电气工程 班号 姓名 学号注:所有的答题内容必须写在答题纸上,凡写在其它地方的一律无效;交卷时将试卷连同答题纸、草稿纸一并上交。
一、 是非题(满分12“√”,否则打“×”)(√A 是n m ⨯的实矩阵,x 为n 维向量,则⇔=0Ax A T 0=Ax ;()()212200*0*000T T T m j mjm ji A Ax x A Ax Ax a a a Y Ax ⨯=∴==⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⇔=⇔==∑∑Tij m n j=1j=1令Y=(y ),则Y Y=0,即 ( × ) 2.设n 阶方阵A 满足E A =2,则A 的特征值只能是1;也可能是-1,如令1001A ⎛⎫= ⎪-⎝⎭证明:21111111A E A AAx x A Ax A x x A x Ax Ax x λλλλλλλλ----=⇒==⇒=⇒==⇒=⇒=⇒=±(√ ) 3.欧氏空间n R 上的任意两种向量范数都是等价的; 在线性空间中所任意两种范数等价而欧氏空间是一种特殊的线性空间(√ ) 4.设A 为n m ⨯矩阵,B 为n 阶可逆方阵,则---=A B AB 1)(.()()()111()AB B A AB ABB A AB AA AB ABAB B A--------===∴=二、 填空题(本题满分12分,每空3分).设有三个四维向量T T T Z Y X )3,1,1,2(,)1,1,1,1(,)1,1,1,1(=--=-=.则它们的2-范数分别为=2X2 ; =2Y2 ;2Z 且与Z Y X ,,都正交的所有向量为 (4013)k -. 即求1234111101111021130x x x x ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的解。
研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。
1、非齐次微分方程组()()⎪⎩⎪⎨⎧=+=T x t F AX dt dx1,0)0(的解:其中⎪⎪⎭⎫⎝⎛-=3553A ()⎪⎪⎭⎫ ⎝⎛=-0t e t F2、设nn CA ⨯∈,则对任何矩阵范数∙,都有A A ≤)(ρ。
3、设⎪⎪⎪⎭⎫ ⎝⎛=010100012A ,求Ate 。
4、设nn CA ⨯∈,且1)(<A ρ,求级数∑∞=0m mA的和。
5、求矩阵⎪⎪⎪⎭⎫⎝⎛---=502613803A 的约当标准形。
6、求⎪⎪⎪⎭⎫ ⎝⎛----=031251233A 的最小多项式)(λm 。
7、讨论kk kk⎥⎦⎤⎢⎣⎡--∑∞=128160的敛散性。
8、线性变换的秩与零度的定义,秩与零度之间的关系 9、已知m nm R b R A ∈∈⨯,,对于矛盾线性方程组b Ax =,使得22)(b Ax x f -=为最小的向量)0(x 称为最小二乘解,试导出最小二乘解所满足的方程组。
1.设实数域上的多项式空间3[]P t 中的多项式230123()f t a a t a t a t =+++在线性变换T 下的像为2301122330()()()()()Tf t a a a a t a a t a a t =-+-+-+-,求线性变换T 的值域和核空间的基与维数。
2.设⎪⎪⎪⎭⎫⎝⎛=032100010A ,⎪⎪⎭⎫ ⎝⎛-=2010A ,求A e 。
3.求矩阵1141⎛⎫= ⎪⎝⎭A 的谱分解。
4.求微分方程组112212313214221tdx x x dt dx x x dt dx x x e dt ⎧=-++⎪⎪⎪=-++⎨⎪⎪=++-⎪⎩和1132123313383625dx x x dt dxx x x dt dx x x dt ⎧=+⎪⎪⎪=-+⎨⎪⎪=--⎪⎩满足初始条件123(0)1,(0)1,(0)1x x x ===-的解。
5.证明矩阵nn CA ⨯∈的幂序列}{)(m A 收敛于0的充分必要条件是()1A ρ<。
2011学年 (A)学号姓名成绩考试科目:《矩阵理论》(A)考试日期:2011年 1 月10 日注意事项:1、考试7个题目共7页2、考试时间120分钟题目:一(本题35分)二(本题18分)三(本题14分)四(本题08分)五(本题07分)六(本题09分)七(本题09分)(注: I表示单位矩阵;HA表示H转置;det(A)代表行列式)姓名: 学号: A 一. 填空(35分) ( 任意选择填写其中35个空即可 ) (1)1113A ⎛⎫=⎪-⎝⎭,则2(2)A I -= ,A 的Jordan 形A J =(2)若3阶阵2≠A I ,且2440-+=A A I ,则Jordan 形A J = (3) I 是单位矩阵,则范数1||I||||I||∞== ;cos 0n n ⨯= (4)Hermite 阵的特征根全为 , 斜(反)Hermite 阵的特征根必为纯虚数或(5)秩 ()()()r A B r A r B ⊗-= ; ()A B A B +++⊗-⊗= ;;()TTTA B A B⊗-⊗=;()H H H A B A B ⊗-⊗=(6) 若2320++=A A I ,则A 一定相似于 (7)d dttAe= ,d d ttAe -= ,d sin (A t)d t=(8)2()A A += ;00AB +⎛⎫=⎪⎝⎭ ; (, 0)0A A ++⎛⎫- ⎪⎝⎭= (9)设A 的各列互相正交且模长为1,则 H A A +-= (10)(),ij A a =则 22,,()()H Hij ij i ji jA A a A Aa -=-=∑∑tr ||tr ||(11) 若 ()0HA A =tr 则A =(12) (正规阵无偏性)若A 是上三角形正规阵,则A 一定是 (13) 若0n n n n B D C ⨯⨯⎛⎫⎪⎝⎭为正规阵, 则D = (14)021, ,103aA B b ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭则A B ⊗的特征根为(15)0.20.30.210.50.20.310.30.40.21A x ⎛⎫⎡⎤⎪⎢⎥==⎪⎢⎥ ⎪⎢⎥⎝⎭⎣⎦, , 则谱半径(最大特征根)()A ρ范围是 ;且A x ∞= ;||A ||∞=(16)01,10A -⎛⎫=⎪⎝⎭则 ()=A H Ae e(17)111⎛⎫⎪⎝⎭1A =11A x ⎛⎫= ⎪⎝⎭则的极小二数解是 ; +A = ..(18)设矩阵A 中各列都可用B 的列线性表示,则有矩阵P 使A = (19)n阶阵A 的谱半径()A ρ与矩阵范数||||A 的关系是 . (20)A 是方阵(k 是自然数),则矩阵范数||||,||||kkA A 的关系为 且()()]k k A A ρρ-= [(21)⎛⎫ ⎪=⎪ ⎪⎝⎭1 12A 1 12 2 2 4的满秩分解为(22)如果A C , B D 有意义,则()()()()A B C D AC BD ⊗⊗-⊗=(23)ABC 有意义,则有拉直公式:()TABC A C B -⊗=(24)已知方阵A ,B , 则A X X B C -=有唯一解⇔⇔A 和B 没有公共二.(18分)计算下列各题 1.设1123121211212A i ⎛⎫ ⎪ ⎪ ⎪⎝⎭=,100x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=, (1)求行范数||||A ∞,向量范数||||Ax ∞.(2)画出A 的盖尔园 ,判断A 是否可逆2. (1)0.50 ,10.4A ⎛⎫=⎪⎝⎭设判定收敛性并计算:0()kk I A A ∞=-∑(2)I 为单位矩阵,用Taylor 公式验证tIte e I=且0n neI ⨯=三.(14分)1已知52525252222132t ttttAttt t e e ee e e e e e ⎛⎫+-= ⎪-+⎝⎭用导数求矩阵A (4分)2.若已知sin()()At B t =, 如何用导数公式求A (写一个公式)(3分)3.设,A ⎛⎫⎪= ⎪ ⎪⎝⎭210020002(1)求A 极小式; (2) 计算cos(2)A π (7分)四.(8分)已知矩阵A 的最小式为2(2)(1)λλ--),可知有以下公式(广谱公式) :12()(1)(2)(2)f A f P f P f P'=++,()f x 为任意解析式.用选取()f x 的方法求出11,,P P P 的表达式, 并求cos(2)A π五.(7分) 设11111(1,1,1,1)22211B⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭T, D, b,45BA⨯⎛⎫= ⎪⎝⎭D.求A+与A x=b的极小范数解或最佳极小二乘解六.(9分)求100120A⎛⎫⎪⎪⎪⎝⎭=的正奇异值与简化奇异值分解,写出A+的简化奇异分解七. 1设3214A ⎛⎫= ⎪⎝⎭,求tAe 的谱分解与谱半径()A ρ (5分)2设110011001A ⎛⎫⎪= ⎪ ⎪⎝⎭,求一个矩阵B (具有正的特征根),使10BA = (5分)附加题:简证下题(任选1题) (3分) (1)m nA ⨯∈ 证明 ()()HA A ⊥R N ; (2)A n n ⨯∈n nC可逆, 则1||||||||1A A -∞∞≥。
2017-2018 学年第一学期期末试卷学号姓名任课教师成绩考试日期:2018年 1 月23日考试科目:《矩阵理论》(B)注意事项:1、考试8个题目共9页2、考试时间120分钟题目:一、(本题 21 分)二、(本题 10 分)三、(本题 10 分)四、(本题 10 分)五、(本题 15 分)六、(本题 12 分)七、(本题 12 分)八、(本题 10 分)1. (21分)填空(1)A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1111111111111111, A 的满秩分解为( ).(2)设A =⎪⎪⎪⎭⎫ ⎝⎛i i 20021,则A + = ( ).(3)设A = ⎪⎪⎪⎭⎫ ⎝⎛--011021010, 则 A 的Jordan 标准型J = ( ).(4)设q m q p n m C D C B C A ⨯⨯⨯∈∈∈,,, 则矩阵方程D AXB =相容的充要条件是( ).(5)已知A = ⎪⎪⎪⎭⎫ ⎝⎛432321210, 则 ||A||1 = ( ), ||A||∞= ( ), ||A||F = ( ).(6)设A =⎪⎪⎪⎭⎫ ⎝⎛200120012, k 为正整数,则A k =( ).(7)设三阶矩阵A 的特征值为-1,0,1. 则矩阵A e sin 的行列式是( ).2.(10分)设 T 是线性空间3R 上的线性变换,它在3R 中基321,,ααα下的矩阵表示是 ⎪⎪⎪⎭⎫ ⎝⎛-=512301321A . (1)求T 在基321321211,,αααβααβαβ++=+==下的矩阵表示. (2)求T 在基321,,ααα下的核与值域.3.(10分) 设A = ⎪⎪⎭⎫ ⎝⎛2.06.06.02.0, 求证矩阵幂级数∑∞=12k kA k 收敛并求和.4.(10分) 设 A = ⎪⎪⎭⎝-110, 求A 的奇异值分解.5.(15分)已知A = ⎪⎪⎪⎭⎝--5334y x的二重特征值2=λ有两个线性无关的特征向量. (1)求y x ,.(2)求可逆矩阵P ,使AP P 1-为对角矩阵.(3)求A 的谱分解表达式.6.(12分)已知A = ⎪⎪⎪⎭⎫ ⎝⎛-----354113211101,b =⎪⎪⎪⎭⎫⎝⎛-333.(1)用满秩分解求+A . (2)判断方程组Ax = b 是否有解. (3)求Ax = b 的极小范数解或极小最小二乘解.7.(12分) (1) 设n n R A ⨯∈. 证明A 为实对称矩阵当且仅当A 的特征值n λλ,,1Λ为实数,且存在正交矩阵n n R Q ⨯∈,使得},,{1n T diag AQ Q λλΛ=.(2) 设k n n m C B C A ⨯⨯∈∈,, R(A)与R(AB) 分别表示A 与AB 的值域. 证明: R(A)=R(AB)的充分必要条件是存在矩阵,n k C D ⨯∈使得ABD=A.8.(10分)设A = ⎪⎪⎪⎭⎫ ⎝⎛----222132021,求e At ..。
矩阵论试题(2011级硕士试题)一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 00sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
姓名:学号:
1.(42分)填空
(1)设是R4的⼀一
组基,则在上述基下的坐标是___________________. ()
(2)在三次多项式空间中,由多项式组
张成的⼦子空间维数是___2___.(3)设矩阵,当参数a满⾜足_______()时,矩阵A与B相似.
(4)A=,则A的全部盖尔圆为_______________________________,且A是⼀一个________(可逆或者不不可逆)矩阵.
(5)设,则矩阵A的正奇异值有______个,_____(是或否)存在矩阵B使得BA=I n.
(6)矩阵幂级数=__________________。
(7)设,则A的Jordan标准形J=。
(8)设,则A+=________________。
(9)若=__4__,的迹=__2sin1__.
(10)设,则||A||1=_6___,||A||F=____. 2.(15分)设A=,求A的奇异值分解.
解:,则
,
对,求得
对,求得
分别单位化为;令
⽽而,补充基为
令所以
3.(10分)设并且A是正交矩阵,证明A的每个特征值的模等于1.课本P51推论2
证明:设,共轭转置得所以
即
4.(18分)已知A=,b=.(1)求A的满秩分解,并⽤用满
秩分解求.(2)判断⽅方程组Ax=b是否有解.(3)求Ax=b的极⼩小范数解或极⼩小最⼩小⼆二乘解.
解:(1)
(2)
(3)
(4)
5.(15分)设,求.
解:,因为所以最⼩小多项式为,设.有:。