高中招生考试数学冲刺试题(1)及答案
- 格式:doc
- 大小:245.60 KB
- 文档页数:10
2024年第一次广东省普通高中学业水平合格性考试数学冲刺卷(一)答案解析一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,0,1,2A =-,{}21B x x =-≤≤∣,则A B = ()A.{}2- B.{}1 C.{}2,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】解:因为{}2,0,1,2A =-,{}21B xx =-≤≤∣,所以A B = {}2,0,1-故选:C2.已知角α的终边过点()1,2P -,则tan α等于()A.2 B.2- C.12-D.12【答案】B 【解析】【分析】由正切函数的定义计算.【详解】由题意2tan 21α==--.故选:B .3.下列函数中是减函数且值域为R 的是()A.1()f x x= B.1()f x x x=-C.()ln f x x= D.3()f x x=-【答案】D 【解析】【分析】由幂函数及对数函数的图象与性质即可求解.【详解】解:对A :函数()f x 的值域为()(),00,-∞⋃+∞,故选项A 错误;对B :函数()f x 为(),0∞-和()0,∞+上的增函数,故选项B 错误;对C :函数()ln ,0()ln ln ,0x x f x x x x >⎧==⎨-<⎩,所以()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,故选项C 错误;对D :由幂函数的性质知()f x 为减函数且值域为R ,故选项D 正确;故选:D.4.不等式22150x x -++≤的解集为()A .532x x ⎧⎫-≤≤⎨⎬⎩⎭B.52x x ⎧≤-⎨⎩或}3x ≥C.532x x ⎧⎫-≤≤⎨⎬⎩⎭D.{3x x ≤-或52x ⎫≥⎬⎭【答案】B 【解析】【分析】将式子变形再因式分解,即可求出不等式的解集;【详解】解:依题意可得22150x x --≥,故()()2530x x +-≥,解得52x ≤-或3x ≥,所以不等式的解集为52x x ⎧≤-⎨⎩或}3x ≥故选:B .5.化简:AB OC OB +-=()A.BAB.CAC.CBD.AC【答案】D 【解析】【分析】根据向量的线性运算法则,准确运算,即可求解.【详解】根据向量的线性运算法则,可得()AB OC OB AB OC OB AB BC AC +-=+-=+=.故选:D.6.方程()234xf x x =+-的零点所在的区间为()A.()1,0- B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫⎪⎝⎭【答案】C 【解析】【分析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,15022f ⎛⎫=<⎪⎝⎭,()110f =>,由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:C.7.已知扇形的半径为1,圆心角为60 ,则这个扇形的弧长为()A.π6B.π3C.2π3D.60【答案】B 【解析】【分析】根据扇形的弧长公式计算即可.【详解】易知π603=,由扇形弧长公式可得ππ133l =⨯=.故选:B8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件【答案】B 【解析】【分析】根据题意,分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.【详解】根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,则两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,则两者不是对立事件,则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;故选:B .【点睛】本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立,属于基础题.9.要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象A.向左平移12π个单位B.向右平移12π个单位C.向左平移3π个单位D .向右平移3π个单位【答案】B 【解析】【详解】因为函数sin 4sin[4()]312y x x ππ⎛⎫=-=- ⎪⎝⎭,要得到函数43y sin x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数4y sin x =的图象向右平移12π个单位.本题选择B 选项.点睛:三角函数图象进行平移变换时注意提取x 的系数,进行周期变换时,需要将x 的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.10.已知两条直线l ,m 与两个平面α,β,下列命题正确的是()A.若//l α,l m ⊥,则m α⊥B.若//αβ,//m α,则//m βC.若//l α,//m α,则//l mD.若l α⊥,l //β,则αβ⊥【答案】D 【解析】【分析】A.利用线面的位置关系判断;B.利用线面的位置关系判断;C.利用直线与直线的位置关系判断;D.由l //β,过l 作平面γ,有m γβ= ,利用线面平行的性质定理得到得到//l m ,再利用面面垂直的判定定理判断.【详解】A.若//l α,l m ⊥,则//,m m αα⊂或,m α相交,故错误;B.若//αβ,//m α,则//m β或m β⊂,故错误;C.若//l α,//m α,则//l m ,l ,m 相交或异面,故错误;D.若l //β,过l 作平面γ,有m γβ= ,则//l m ,因为l α⊥,所以m α⊥,又m β⊂,则αβ⊥,故正确.故选:D11.已知函数()122,0,log ,0,x x f x x x ⎧≤⎪=⎨>⎪⎩则()()2f f -=()A.-2B.-1C.1D.2【答案】D 【解析】【分析】先根据分段函数求出()2f -,再根据分段函数,即可求出结果.【详解】因为()21224f --==,所以()()12112log 244f f f ⎛⎫-=== ⎪⎝⎭.故选:D.12.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,135log c =,则a 、b 、c 的大小关系为()A.a b c >> B.a c b>> C.b a c>> D.c b a>>【答案】A 【解析】【分析】利用对数函数、指数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为337log log 312a =>=,13110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,1133log 5log 10c =<=,因此,a b c >>.故选:A.二、填空题:本大题共6小题,每小题6分,共36分.13.已知i 是虚数单位,则复数4i1i-+的虚部为__________.【答案】2-【解析】【分析】先把复数化简为22i --,再根据虚部定义得出即可.【详解】()()()()224i 1i 4i 1i 4i4i 4i =22i 1i 1i 1i 1i 2------===--++--,则复数的虚部为2-.故答案为:2-.14.函数51x y a -=+且((0a >且1a ≠)的图象必经过定点______________.【答案】(5,2)【解析】【分析】由指数函数的性质分析定点【详解】令50x -=,得5x =,此时2y =故过定点(5,2)15.如果函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为2π,则ω的值为______________.【答案】4【解析】【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】2T πω=,∴2242Tππωπ===.故答案为:4.16.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为_____.【答案】48π.【解析】【分析】先由球的表面积为48π求出球的半径,然后由圆柱的侧面积公式算出即可【详解】因为球的表面积24π48πS R ==所以R所以圆柱的底面直径与高都为所以圆柱的侧面积:2π⨯故答案为:48π【点睛】本题考查的是空间几何体表面积的算法,较简单.17.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【解析】【详解】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .18.已知()f x 是定义在R 上的偶函数,当x ≥0时,()22xf x =-,则不等式()2f x ≤的解集是_______;【答案】[]22-,【解析】【分析】判断函数当0x ≥时的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【详解】∵当x ≥0时,()22xf x =-,∴偶函数()f x 在[0,+∞)上单调递增,且()2=2f ,所以()2f x ≤,即()()2fx f ≤,∴2x ≤,解得22x -≤≤.故答案为:[]22-,.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,已知46,5,cos 5a b A ===-(1)求角B 的大小;(2)求三角形ABC 的面积.【答案】(1)B=300(2)93122ABC S ∆-=【解析】【详解】分析:(1)由同角三角函数关系先求3sin 5A =,由正弦定理可求sinB 的值,从而可求B 的值;(2)先求得()()sin 30C sin A B sin A =+=+的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B 为锐角sinA=35,由正弦定理B=300(2)()()sin 30C sin A B sin A =+=+,∴19312bsin 22ABC S a C -==点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【解析】【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).21.某市出租车的票价按以下规则制定:起步公里为2.6公里,收费10元;若超过2.6公里的,每公里按2.4元收费.(1)设A 地到B 地的路程为4.1公里,若搭乘出租车从A 地到B 地,需要付费多少?(2)若某乘客搭乘出租车共付费16元,则该出租车共行驶了多少公里?【答案】(1)13.6元(2)5.1公里【解析】【分析】(1)设出租车行驶x 公里,根据题设写出付费额()f x 的分段函数形式,进而求从A 地到B 地需要的付费;(2)由题意出租车行驶公里数 2.6x >,结合解析式列方程求该出租车共行驶的公里数.【小问1详解】设出租车行驶x 公里,则付费额10,0 2.6()10 2.4( 2.6), 2.6x f x x x <≤⎧=⎨+->⎩,所以(4.1)10 2.4(4.1 2.6)13.6f =+⨯-=元.【小问2详解】由题意,出租车行驶公里数 2.6x >,令10 2.4( 2.6)16x +-=,则 5.1x =公里.22.如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC BC ⊥,且AC=BC=,O,M分别为AB,VA 的中点.(1)求证:VB //平面MOC ;(2)求三棱锥V-ABC 的体积.【答案】(1)证明见解析;(2)33.【解析】【详解】试题分析:(1)要证明线面平行,就是要证线线平行,题中有中点,由中位线定理易得线线平行,注意得出线面平行结论时,必须把判定定理的条件写全;(2)要求三棱锥的体积,首先要确定高,本题中有面面垂直,由此易得VO 与底面ABC 垂直,因此VO 就是高,求出其长,及ABC 面积,可得体积.试题解析:(1)证明: 点O,M 分别为AB,VA 的中点//OM VB ∴又,OM MOC VB MOC ⊂⊄平面平面//VB MOC∴平面(2)解:连接VO ,则由题知VO ⊥平面AB C,∴VO 为三棱锥V-ABC 的高.又112ABC S VO === ,11.1333V ABC ABC V S VO -∴==⨯=考点:线面平行的判断,体积.。
专业科目考试:2022数学1真题模拟及答案(1)共670道题1、微分方程y ″-y =e x+1的一个特解应具有形式( )。
(单选题) A. ae x+b B. axe x +b C. ae x +bx D. axe x +bx 试题答案:B2、设(a →×b →)·c →=2,则[(a →+b →)×(b →+c →)]·(c →+a →)=( )。
(单选题)A. 2B. 4C. 1D. 0 试题答案:B3、平行于平面5x -14y +2z +36=0且与此平面距离为3的平面方程为( )。
(单选题)A. 5x -14y +2z +36=0或5x -14y +2z -18=0B. 5x -14y +2z +36=0或5x -14y +2z -9=0C. 5x -14y +2z +81=0或5x -14y +2z -9=0D. 5x -14y +2z +81=0或5x -14y +2z -18=0 试题答案:C4、设0<x n<1,n=1,2,…,且有x n+1=-x n2+2x n,则()。
(单选题)A.B. 不存在C.D.试题答案:C5、设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()。
(单选题)A.B.C.D.试题答案:D6、下列结论正确的是()。
(单选题)A. z=f(x,y)在点(x0,y0)处两个偏导数存在,则z=f(x,y)在点(x0,y0)处连续B. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数存在C. z=f(x,y)在点(x0,y0)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x0,y0)处连续D. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数有界试题答案:C7、设函数f(x)在x=0处连续,下列命题错误的是()。
四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|(3)(1)0}A x x x =-+≤,{}2|1B y y x ==+,则A B ⋃等于()A .(1,)+∞B .[1,)-+∞C .(1,3]D .(1,)-+∞2.在复平面内,复数z 满足(1i)2z +=,则复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A S 和B S ,样本极差分别为A y 和B y ,则()A .>AB x x ,A B S S >,A B y y <B .<A B x x ,A B S S >,A B y y >C .>A B x x ,A B S S <,A B y y >D .<A B x x ,A B S S <,A B y y <4.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .655.若直线():430R l mx y m m --+=∈与曲线()()22231x y -+-=有公共点,则m 的取值范围为()A .⎡⎣B .(C .⎡⎢⎣⎦D .⎛ ⎝⎭6.如图,C ,D 为以AB 的直径的半圆的两个三等分点,E 为线段CD 的中点,F 为BE的中点,设AB a=,AC b = ,则AF = ()A .5182a b+ B .5142a b+C .5184a b+D .5144a b+7.下列命题中,不正确的是()A .“若11a b<,则a b >”的否命题为假命题B .在锐角ABC 中,不等式sin cos A B >恒成立C .在ABC 中,若cos cos a A b B =,则ABC 必是等腰直角三角形D .在ABC 中,若2π,3B b ac ==,则ABC 必是等边三角形8.函数()()()sin 0,0,0f x A x A ωϕωπϕ=+>>-<<,其部分图像如图所示,下列说法正确的有()①2ω=;②56π=-ϕ;③3x π=是函数()f x 的极值点;④函数()f x 在区间7,1212ππ⎛⎫⎪⎝⎭上单调递增;⑤函数()f x 的振幅为1.A .①②④B .②③④C .①②⑤D .③④⑤9.已知n S 为数列{}n a 的前n 项和,且()*1121,2n n S a n N a +=+∈=,则下列式子正确的是()A .20212022202032a =B .20212022202232a =C .202120212019342S =-+D .202020212020312S =+10.设1F ,2F 分别为双曲线22221x ya b-=(a >0,b >0)的左、右焦点,若双曲线上存在一点P使得12PF PF +=,且12PF PF ab ⋅=,则该双曲线的离心率为()A .2BCD11.已知函数()2,1x f x x e =++若正实数,m n 满足(9)(2)2f m f n -+=,则21m n+的最小值为()A .8B .4C .83D .8912.如图,在棱长为2的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点,则下列结论正确的有()①棱AB 上一定存在点Q ,使得1QC D Q ⊥②三棱锥F EPH -的外接球的表面积为8π③过点E F G ,,作正方体的截面,则截面面积为④设点M 在平面11BB C C 内,且1//A M 平面AGH ,则1A M 与AB 所成角的余弦值的最大值为3A .1个B .2个C .3个D .4个二、填空题13.已知实数x ,y 满足01,0,2,x y x y ≤≤⎧⎪≥⎨⎪+≤⎩则32x y +的最大值为_______.14.已知平面向量()2,0a = ,()1,2b =-r ,若向量()c a a b b =+⋅ ,则c = ______.(其中c用坐标形式表示)15.已知△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c .若3A π=,4c =,△ABC的面积为ABC 的外接圆的半径为________.16.已知O 为坐标原点,抛物线C :()220y px p =>上一点A 到焦点F 的距离为4,设点M 为抛物线C 准线l 上的动点,给出以下命题:①若△MAF 为正三角形时,则抛物线C 方程为24y x =;②若AM l ⊥于M ,则抛物线在A 点处的切线平分MAF ∠;③若3MF FA =,则抛物线C 方程为26y x =;④若OM MA +的最小值为C 方程为28y x =.其中所有正确的命题序号是________.三、解答题17.设n S 为数列{}n a 的前n 项和,已知37a =,1222(2)n n a a a n -=+-≥.(1)证明:{}1n a +为等比数列;(2)求{}n a 的通项公式,并判断,,n n n a S 是否成等差数列?18.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.19.如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE V 沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)设F 为1CD 的中点,若M 为线段AB 上的一点,满足14AM AB =.求证:MF ∥平面1D AE ;(2)求点B 到平面1CD E 的距离.20.已知椭圆()2222:10x y C a b a b +=>>,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122B B =,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)当1k =时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.21.已知函数()ln f x x kx =-(R k ∈),()()2xg x x e =-.(1)求函数()f x 的极值点;(2)若()()1g x f x -≥恒成立,求k 的取值范围.22.如图,在平面直角坐标系xOy 中,以坐标原点为极点,极轴所在的直线为x 轴,建立极坐标系,曲线1C 是经过极点且圆心在极轴上直径为2的圆,曲线2C 是著名的笛卡尔心形曲线,它的极坐标方程为[]()1sin 0,2ρθθπ=-∈.(1)求曲线1C 的极坐标方程,并求曲线1C 和曲线2C 交点(异于极点)的极径;(2)曲线3C 的参数方程为cos 3sin3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩(t为参数).若曲线3C 和曲线2C 相交于除极点以外的M ,N 两点,求线段MN 的长度.23.设函数()45f x x x =-+-的最小值为m .(1)求m ;(2)设123,,x x x R +∈,且123x x x m ++=,求证:22231212311114x x x x x x ++≥+++.参考答案:1.B【分析】根据集合的运算的定义求解.【详解】由(3)(1)0x x -+≤解得13x -≤≤,所以13{|}A x x =-≤≤,又因为211y x =+≥,所以{}|1B y y =≥,所以[1,)A B =-+∞ .故选:B.2.D【分析】先求出复数z ,即可求出答案.【详解】()()()21i 21i 1i 1i 1i z -===-++-,复数z 对应的点为()1,1-则复数z 对应的点位于第四象限故选:D.3.B【分析】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,利用平均数,标准差,极差的定义可得解.【详解】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,由平均数的计算可知<A B x x ,样本极差A B y y >样本B 的数据波动较小,故A B S S >,故选:B 4.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.5.C【分析】根据直线与圆相交,结合点到直线的距离公式可得出关于实数m 的不等式,即可解得实数m 的取值范围.【详解】曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,由题意可知,圆心()2,3到直线l 的距离应小于等于半径1,1=≤,解得m ≤≤故选:C.6.A【分析】直接利用向量的线性运算计算即可.【详解】因为C ,D 为以AB 的直径的半圆的两个三等分点则AB //CD ,且2AB CD=又E 为线段CD 的中点,F 为BE 的中点()()1111111122222242AF AE AB AE AB AC CE AB AC CD AB=+=+=++=∴++25111152828182AC AB AB AC AB a b =++==++故选:A.7.C【分析】根据不等式的性质和正弦定理,余弦定理即可判断求解.【详解】对于A ,原命题的否命题为“若11a b≥,则a b ≤”,由11a b ≥得,110b a a b ab--=≥,得0b a ≥>或0a b ≤<或0b a <<,所以该否命题为假命题,故A 正确;对于B ,在锐角ABC 中,因为ππ()2C A B =-+<,所以π2A B >-,因为π,0,2A B ⎛⎫∈ ⎪⎝⎭,所以ππ0,22B ⎛⎫-∈ ⎪⎝⎭,又因为sin y x =在π0,2⎛⎫⎪⎝⎭单调递增,所以π2sin sin A B >-⎛⎫ ⎪⎝⎭,即sin cos A B >,故B 正确;对于C ,在ABC 中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B∴=,(0,π),22A B A B ∈∴= 或2π2A B =-,得A B =或π2A B +=,ABC ∴ 是等腰三角形或直角三角形,故C 错误;对于D ,由余弦定理2222cos b a c ac B =+-得222b a c ac =+-,又因为2b ac =,所以22220,()0a c ac a c +-=-=,所以a c =,又因为π3B =,所以ABC 是等边三角形,故D 正确,故选:C.8.C【分析】根据函数()f x 的部分图像求出函数的解析式,即可判断①②⑤是否正确;若=3x π是函数()f x 的极值点则=03f π⎛⎫⎪⎭'⎝,可判断③是否正确;求出()f x 的单调增、减区间,即可验证④是否正确;【详解】设()f x 的最小正周期为T ,根据函数()f x 的部分图像可知,512π,1112π是函数()f x 的两个相邻的零点,115212122T πππ∴=-=,T π∴=,222T ππωπ∴===,故①正确;根据函数()f x 的部分图像可知,1A =,故⑤正确;1A = ,2ω=,()()sin f x A x =+ωϕ,()()sin 2f x x ϕ∴=+,将5012π⎛⎫⎪⎝⎭,代入()()sin 2f x x ϕ=+中,5sin 2=012πϕ⎛⎫∴⨯+ ⎪⎝⎭,5=26k πϕπ∴+,56=2k πϕπ∴-,0πϕ-<< ,∴当0k =时,56π=-ϕ,故②正确;()5sin 26f x x π⎛⎫∴=- ⎪⎝⎭()562cos 2f x x π⎛⎫∴=- ⎪⎝⎭',若=3x π是函数()f x 的极值点则必有=03f π⎛⎫ ⎪⎭'⎝,而52cos 2=2cos 03636f ππππ⎛⎫⎛⎫⎛⎫=⨯--= ⎪ ⎪ ⎪⎝⎭⎝⎭'⎝⎭,3x π∴=不是函数()f x 的极值点,故③错误;由5222262k x k πππππ-≤-≤+,得263k x k ππππ+≤≤+,()f x \的单调递增区间为2[]63k k ππππ++,,由53222262k x k πππππ+≤-≤+得,2736k x k ππππ+≤≤+,()f x \的单调递减区间为27[]36k k ππππ++,()f x \在126ππ⎛⎫ ⎪⎝⎭,上单调递减,在7612ππ⎛⎫⎪⎝⎭,上单调递增,()f x \在71212ππ⎛⎫⎪⎝⎭,上不单调,故④错误.故选:C 9.D【分析】由已知得()*121n n S a n N +=+∈,+1221n n S a +=+,两式作差得+2132n n a a +=,再求得212a =,2132a a ≠,得数列{}n a 从第2项起构成以32为公比的等比数列,求得2n ≥时,n a ,n S ,代入判断可得选项.【详解】解:因为()*121n n S a n N +=+∈,所以+1221n n S a +=+,两式作差得()()+1+212+121n n n n S S a a +-=-+,即+1+2122n n n a a a +=-,所以+2132n n a a +=,又12a =,1221a a =+,解得212a =,211132242aa ==≠,所以数列{}n a 从第2项起构成以32为公比的等比数列,所以12a =,()22113,32222n n n n n a ---⎛⎫⨯=≥ ⎪⎝⎭=,()2111221333132+1++++2+22312++++1,23122222n n n n n a n S a a ---⎡⎤⎛⎫⎛⎫===⨯⎢⎥ ⎪ ⎝⎭⎝⎭⎢⎥⎣⎛⎫- ⎪⎛⎫⎝⎭=≥ ⎪⎭-⎦⎝ ,所以20222202020222022120213322a --==,故A 不正确,B 不正确;2021120012022+1+13322S -⎛⎫⎛⎫= ⎪ ⎝⎭⎝⎭=,所以202020212020312S =+,故C 不正确,D 正确,故选:D.10.B【分析】由双曲线的定义得到122PF PF a -=,再由题意知12PF PF +=,12PF PF ab ⋅=,三个式子组合即可得到22484ab b a =-,解出ba的值,在由双曲线的离心率为c e a =.【详解】()221212=8PF PF PF PF b+=∴+ ,,即222121228PF PF PF PF b ++⋅=①.根据双曲线的定义可得()2212122=4PF PF a PF PF a-=∴-,,即222121224PF PF PF PF a +-⋅=②,①减去②得2212484PF PF b a ⋅=-.12PF PF ab ⋅= ,故222222484221210bb b b ab b a ab b a aa a a ⎛⎫⎛⎫=-⇒=-⇒-⇒--= ⎪ ⎪⎝⎭⎝⎭,解得1b a =或12b a -=(舍).双曲线的离心率为c e a ==故选:B.11.D【分析】构造函数()()1g x f x =-,由导数结合奇偶性得出()g x 在R 上单调递增,进而得出29m n +=,最后由基本不等式得出答案.【详解】函数()f x 定义域为R ,令()()2111xg x f x x e =-=+-+21()111x x x e h x e e -=-=++,111()()1x x x x e e h x h x e e -----===-++易知y x =和2()11xh x e =-+均奇函数,所以()g x 为奇函数()()22101+xx e g x e +'=>,所以()g x 在R 上单调递增由()()922f m f n -+=得()()91210f m f n --+-=即()()()922g m g n g n -=-=-,所以920m n -+=,即29m n +=则()()211211418222449999m n m n m n m n n m ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当33,2m n ==时,取等号故选:D【点睛】关键点睛:本题考查点较为综合,解决时关键在于利用导数得出29m n +=,进而由基本不等式得出最值.12.C【分析】根据题意,建立空间直角坐标系,设出Q 点坐标,求出满足题意的位置即可,经计算可知Q 点不存在,故①错误;根据三棱锥F EPH -的几何特征,可计算出其外接球半径,所以②正确;由图可知,过点E F G ,,的截面为边长是的正六边形,即可计算其面积,所以③正确;利用空间向量写出1A M 与AB 所成角的余弦值的表达式求其最值即可,所以④正确.【详解】建立如图空间直角坐标系,设(2,,0)Q a ,其中102,(0,2,0),(0,0,2)a C D ≤≤,所以1(2,2,0),(2,,2)QC a D Q a =--=-,若棱AB 上存在点Q ,使得1QC D Q ⊥,则10QC D Q =,整理得2(1)30a -+=,此方程无解,①不正确;设AB 的中点为K ,则四边形PHKE 其外接圆的半径为1r =,又FK ⊥底面ABCD ,所以三棱锥F EPH -的外接球的半径为R ==所以其表面积为8π,②正确;过点E F G ,,作正方体的截面,截面如图中六边形所示,因为边长均为,且对边平行,所以截面六边形为正六边形,其面积为16sin 602S =⨯=③正确;点M 在平面11BB C C 内,设(,2,)M m n ,则1(2,0,2),(2,0,0),(0,2,1),(1,2,0),(2,2,0)A A G H B ,1(2,2,2),(2,2,1),(1,0,1),(0,2,0)A M m n AG GH AB =--=-=-=设()n x y z = ,,是平面AGH 的一个法向量,则·0·0n AG n GH ⎧=⎪⎨=⎪⎩ ,令1z =可得112x y ==,,即1(1,,1)2n = ,因为1//A M 平面AGH ,所以10A M n =,即3m n +=,设1A M 与AB 所成角为θ,则11cos A M ABA M ABθ==,当32m =时,2269y m m =-+取最小值92,所以1A M 与AB所成角的余弦值的最大值为3,故④正确;故选:C.13.5【分析】本题考查简单的线性规划,属基础题,根据约束条件画出可行域,将目标函数看成直线,直线经过可行域内的点,观察可得何时目标值取得要求的最值,进而得解.【详解】解:根据方程组画出可行域如图所示,可以求得B (1,1),当直线32x y z +=经过点B 时取得最大值为5,故答案为:5.14.()4,4-【分析】根据向量的线性坐标运算,以及向量数量积的坐标运算可求得答案.【详解】解:因为平面向量()2,0a = ,()1,2b =-r ,所以()21+022a b ⋅=⨯-⨯=-,所以()()()()()22021244c a a b b a b =+⋅=+-=--=- ,,,,故答案为:()4,4-.15.2【分析】利用三角形面积公式求解2b =,再利用余弦定理求得a =,进而得到外接圆半径.【详解】由14sin 23b π⨯⋅=,解得2b =.22224224cos 123a π∴=+-⨯⨯=.解得a =.24sin3R π∴==,解得2R =.故答案为:2.16.①②③④【分析】根据抛物线的标准方程及抛物线的几何性质依次判断即可.【详解】①若△MAF 为正三角形时,122p AM ==,故①正确;②若AM l ⊥于M ,设()00,A x y ,过A 的切线m 方程为:00x ty ty x =-+,代入22y px =得2002220y pty pty x -+-=,()()20024220pt pty x ∆=---=,又202y px =Q ,()200tp y ∴-=,y t p =,所以过A 点的切线的斜率为0p k y =,因为00022MF y yk p p p -==---,所以过A 的切线m MF ⊥,又AM AF =,故抛物线在A 点处的切线平分MAF ∠,②正确③若3MF FA =,则A M F 、、三点共线,4,12AF MF ==,由三角形的相似比得12,3164pp ==,故③正确;④设(),0B p -则14,2A p ⎛- ⎝,O B 、关于准线l 对称,OM BM =,O M BM MA A M B A =+≥==+1402p ->Q ,解得4p =,故④正确.故答案为:①②③④17.(1)证明见解析(2)21nn a =-,n ,n a ,n S 成等差数列【分析】(1)由已知可得:37a =,3232a a =-,解得23a =,可得1121,21n n n n a a a a -+=+=+,可得()111212n n a n a ++=+ ,即可证明;(2)由(1)知,12nn a +=,可得n S ,n a .只要计算20n n n S a +-=即可.【详解】(1)证明:37a = ,3232a a =-,23a ∴=,1121,21n n n n a a a a -+∴=+=+,11a ∴=,()111121222n n n n a a n a a +++==++ ,112a +=,{1}n a ∴+是首项为2公比为2的等比数列.(2)由(1)知,12n n a +=,∴21nn a =-,∴11222212n n n S n n ++-=-=---,∴12222(21)0n n n n n S a n n ++-=+----=,2n n n S a ∴+=,即n ,n a ,n S 成等差数列.18.(1)男30人,女45人(2)710【分析】(1)根据频率分布直方图求出男、女生优秀人数即可;(2)求出样本中的男生和女生的人数,写出所有的基本事件以及满足条件的基本事件的个数,从而求出满足条件的概率即可.【详解】(1)由题可得,男生优秀人数为()1000.010.021030⨯+⨯=人,女生优秀人数为()1000.0150.031045⨯+⨯=人;(2)因为样本容量与总体中的个体数的比是51304515=+,所以样本中包含男生人数为130215⨯=人,女生人数为145315⨯=人.设两名男生为1A ,2A ,三名女生为1B ,2B 3B .则从5人中任意选取2人构成的所有基本事件为:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B ,{}12,B B ,{}13,B B ,{}23,B B 共10个,记事件C :“选取的2人中至少有一名男生”,则事件C 包含的基本事件有:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B 共7个.所以()710P C =.【点睛】本题考查了频率分布问题,考查了古典概型概率问题,是一道中档题.19.(1)证明见解析(2)d =【分析】(1)取1D E 的中点N ,证明AMFN 是平行四边形,得到AN MF ∥,再利用线面平行的判定定理证明;(2)取AE 的中点O ,BC 的中点Q ,连接EF ,1D O ,由平面1D AE ⊥平面AECB ,得到1D O ⊥平面AECB ,设点B 到平面1CD E 的距离为d ,由11D BCE B CED V V --=求解.【详解】(1)证明:如图所示:取1D E 的中点N ,连AN 、NF ,则12NF EC =,//NF EC ,∵122EC AB ==,当114AM AB ==时,12AM EC =,//AM EC ,是NF AM =且//NF AM ,所以AMFN 是平行四边形,则//AN MF .又MF ⊄平面1D AE ,AN ⊂平面1D AE ,所以//MF 平面1D AE ;(2)如图所示:取AE 的中点O ,BC 的中点Q ,连接EF ,1D O .易知1EF D C ⊥,OQ CB ⊥.因为11D A D E =,AO EO =,所以1D O AE ⊥,平面1D AE 平面AECB AE =,平面1D AE ⊥平面AECB ,1D O ⊂平面1AD E ,所以1D O ⊥平面AECB .设点B 到平面1CD E 的距离为d .在1Rt D OC △中,OC 1D O =,所以1D C ==.在1D EC △中,因为12EC D E ==,1D C =所以1EF ==.由11D BCE B CED V V --=,得1111113232CB CE D O CD EF d ⋅⋅⋅⋅=⋅⋅⋅⋅.即11112213232d ⋅⋅⋅=⋅⋅⋅解得d =20.(1)2212x y +=;(2)面积不存在;(3)证明见解析.【分析】(1)根据题意求出1b =,再由离心率为2和222c a b =-,求出a =1c =,即可得到椭圆方程.(2)把直线与椭圆进行联立,得到Δ0<,直线与椭圆无交点,故OMN 的面积不存在.(3)设直线l 的方程并和椭圆进行联立,由直线和椭圆有两个交点,232k >,再由1B ,T ,M 在同一条直线上,得111111313y kx n k m x x x +++===+;2B ,T ,N 在同一条直线上,222221111y kx n k m x x x -+-===+.化简得12n =,故交点T 的纵坐标为定值12.【详解】(1)因为122B B =,所以22b =,即1b =,因为离心率为2,所以2c a =,设c m =,则a =,0m >,又222c a b =-,即2222m m b =-,解得1m =或1-(舍去),所以a =1b =,1c =,所以椭圆的标准方程为2212x y +=(2)由22122x y y x ⎧+=⎪⎨⎪=+⎩得()222220x x ++-=23860x x ++=,284360∆=-⨯⨯<所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2y kx =+,设()11,M x y ,()22,N x y ,则22212y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2221860k x kx +++=,则()()22122122Δ846120821621k k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210∆=-+>k k ,则232k >,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313y kx n k m x x x +++===+,因为2B ,T ,N 在同一条直线上,则222221111y kx n k m x x x -+-===+,由于()21212283311213440621k x x n n k k k m m x x k ⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+,所以12n =,则交点T 恒在一条直线12y =上,故交点T 的纵坐标为定值12.21.(1)当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)[1,)+∞【分析】(1)先求出函数的定义域,然后求出导函数,通过判断导函数的正负来判断函数的极点;(2)将不等式恒成立转化为1ln 2xx k e x+≥-+对0x >恒成立,构造函数1ln ()2xx m x e x+=-+,利用导数研究函数()m x 的性质,求解()m x 的最值,即可得到k 的取值范围【详解】解:(1)函数的定义域为(0,)+∞,由()ln f x x kx =-,得'11()kx f x k x x-=-=,当0k ≤时,'()0f x >,所以()f x 在(0,)+∞上单调递增,函数无极值点,当0k >时,由'()0f x =,得1x k=,当10x k <<时,'()0f x >,当1x k >时,'()0f x <,所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 有极大值点1k,无极小值点,综上,当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)因为()()1g x f x -≥恒成立,即(2)(ln )1x x e x kx ---≥恒成立,所以1ln 2xx k e x+≥-+对0x >恒成立,令1ln ()2x x m x e x+=-+,则2'221(1ln )ln ()x x x x x x e x m x e x x ⋅-+--=-=,令2()ln x n x x x e =--,则'22l l ()(2)(2)0(0)x x x n x xe x e e x x x x x=--+=--+<>,所以()n x 在(0,)+∞上单调递减,因为12110,(1)0e n e n e e -⎛⎫=->=-< ⎪⎝⎭,所以由零点存在性定理可知,存在唯一的零点01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00n x =,即0200ln xx x e -=,两边取对数可得000ln(ln )2ln x x x -=+,即0000ln(ln )(ln )ln x x x x -+-=+,因为函数ln y x x =+在(0,)+∞上单调递增,所以00ln x x =-,所以当00x x <<时,()0n x >,当0x x >时,()0n x <,所以()m x 在()00,x 上单调递增,在()0,x +∞上单调递减,所以00000001ln 11()()221x x x m x m x e x x x +-≤=-+=-+=,所以0()1k m x ≥=,所以k 的取值范围为[1,)+∞【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决不等式恒成立问题,解题的关键是()()1g x f x -≥恒成立,转化为1ln 2x x k e x +≥-+对0x >恒成立,然后构造函数1ln ()2x x m x e x+=-+,利用导数求出()m x 的最大值即可,考查数学转化思想和计算能力,属于较难题22.(1)极坐标方程为2cos ρθ=,[)0,2θ∈π,极径为85(2)2【分析】(1)先求出曲线1C 的直角坐标方程,再根据极坐标与直角坐标的互化公式可得曲线1C 的极坐标方程;联立曲线1C 与曲线2C 的极坐标方程,消去θ可得结果;(2)将曲线3C 的参数方程化为直角坐标方程,再化为极坐标方程,联立曲线3C 和曲线2C 的极坐标方程,消去θ得到,M N 两点的极径后相加即可得解.【详解】(1)曲线1C 的直角坐标方程为()2211x y -+=,即2220x y x +-=,将222x y ρ+=,cos x ρθ=代入并化简得1C 的极坐标方程为2cos ρθ=,[)0,2θ∈π.由2cos 1sin ρθρθ=⎧⎨=-⎩消去θ,并整理得2580ρρ-=,∴10ρ=或285ρ=.∴所求异于极点的交点的极径为85ρ=.(2)由cos 3sin 3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩消去参数t 得曲线3C的普通方程为y =,∴曲线3C 的极坐标方程为()03πθρ=≥和()403πθρ=≥由31sin πθρθ⎧=⎪⎨⎪=-⎩和431sin πθρθ⎧=⎪⎨⎪=-⎩得曲线3C 与曲线2C两交点的极坐标为1,23M π⎛⎫- ⎪ ⎪⎝⎭,413N π⎛⎫ ⎝⎭,∴112MN OM ON ⎛⎛=+=+= ⎝⎭⎝⎭(O 为极点).23.(1)1m =;(2)证明见解析.【解析】(1)利用“零点讨论法”将绝对值函数表示为分段函数的形式,求分段函数的最值即可;(2)由(1)易构造出1231114x x x +++++=,利用柯西不等式即可得结果.【详解】(1)∵()29,41,4529,5x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩,∴4x <时,()1f x >,且5x >时,()1f x >,∴()min 1f x =,∴1m =;(2)由(1)知1231x x x ++=,∴1231114x x x +++++=,∵()()()2222223312121231231234111111111x x x x x x x x x x x x x x x ⎛⎫⎛⎫++⨯=+++++++≥⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭()21231x x x ++=,∴22231212311114x x x x x x ++≥+++,当且仅当12313x x x ===取等号.【点睛】关键点点睛:得出1231114x x x +++++=,构造柯西不等式的形式.。
普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。
陕西省铜川市王益区2025届高三3月份模拟考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a >0,b >0,a +b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( ) A .3B .4C .5D .62.已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,P 是上底面1111D C B A 上的动点.给出以下四个结论中,正确的个数是( )①与点D 距离为3的点P 形成一条曲线,则该曲线的长度是2π; ②若//DP 面1ACB ,则DP 与面11ACC A 所成角的正切值取值范围是6,23⎡⎤⎢⎥⎣⎦; ③若3DP =,则DP 在该四棱柱六个面上的正投影长度之和的最大值为62.A .0B .1C .2D .33.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺4.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:6.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +7.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A .3372-- B .3372-+ C .4- D .28.已知圆22670x y x +--=与抛物线()220y px p =>的准线相切,则p 的值为()A .1B .2C .12D .49.如图所示是某年第一季度五省GDP 情况图,则下列说法中不正确的是( )A .该年第一季度GDP 增速由高到低排位第3的是山东省B .与去年同期相比,该年第一季度的GDP 总量实现了增长C .该年第一季度GDP 总量和增速由高到低排位均居同一位的省份有2个D .去年同期浙江省的GDP 总量超过了4500亿元10.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =,则DE DF ⋅的取值范围是( )A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞11.在各项均为正数的等比数列{}n a 中,若563a a =,则3132310log log log a a a +++=( )A .31log 5+B .6C .4D .512.已知向量,a b 满足||1,||3a b ==,且a 与b 的夹角为6π,则()(2)a b a b +⋅-=( ) A .12B .32-C .12-D .32二、填空题:本题共4小题,每小题5分,共20分。
贵州省普通高中学业水平测试数学模拟卷(二)注意事项:1. 本试卷分为选择题和非选择题两部分,本试卷共6页,43题,满分150分。
考试用时120分钟。
2. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号填写在答题卡上,将条形码横贴在答题卡“考生条码区”。
3. 选择题选出答案后,用2B 铅笔把答题卡上对应题目选项在答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
所有题目不能答在试卷上。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
选择题本题包括35小题,每小题3分,共计105分,每小题给出的四个先项中,只有一项....是符合题意的。
一.选择题(3*35=105)1.设集合=⋂==S M S M 则},4,3,2{},4,1{( )A.{2,4}B.{1,3}C.{2,3,4}D.{1,2,3,4}2.若函数21)(x x f =,则)4(f 等于( )A. 0B. 1C. 2D.43.不等式0)2)(1(>-+x x 的解集是( ) A. }12{<<-x x B. }1,2{>-<x x x 或 C. }21{<<-x x D. }2,1{>-<x x x 或4.已知25ln ,5ln ,2ln 则b a ==等于( )A. b-aB. a+bC.b/aD.ab5.下列几何体中,正视图,侧视图和俯视图都相同的是( )A.圆柱B.圆锥C. 球D.三棱锥6.函数)4(log 2-=x y 的定义域为( )A. ),4(+∞B. )4,(-∞C. RD. ⋃-∞)4,(),4(+∞7.已知点A(2,4),B(3,6),则直线AB 的斜率为( )A.21B. -21 C.2 D. -2 8. 16sin 14cos 16cos 14sin +的值是( ) A. 21 B. -21 C. 23 D. 22 9.直线0742:1=--y x l 与直线052:2=-+y x l 的位置关系为( )A.相交但不垂直B.平行C. 相交且垂直D. 重合10.下列函数中,是偶函数的是( )A.1)(+=x x fB. x x f tan )(=C. 1)(2+=x x fD. 3)(x x f =11.在ABC ∆中,若 30=A ,2,32==AC AB ,则ABC ∆的面积是( ) A. 3 B. 2 C. 3 D.2312. 15cos 15sin 的值是( ) A.21 B. -21 C. -23 D. 41 13.一次函数2)12()(--=x k x f 在区间),(+∞-∞上是增函数,则( ) A. 21>k B. 21<k C. 21->k D. 21-<k 14.某班有男同学30人,女同学20人,用分层抽样的方法从全班同学中抽出一个容量为5的样本,则应分别抽取( )A.男同学2人,女同学3人B. 男同学30人,女同学20人C. 男同学3人,女同学2人D. 男同学20人,女同学30人15.在程序框图中,图形符号图符号“)A 终端框 B处理框 C 判断框 D 输入,输出框16. 不等式组⎩⎨⎧≥-≥02y x x 所表示的平面区域是( )A B C D 17. 在ABC ∆中,若 45=∠C ,则,2,1==BC AC B C A C •=( )A. 1B. -1C. 2D. -2 18.为了得到函数R x x y ∈=,21cos 的图像,只需把余弦曲线x y cos =上所有的点的(A.横坐标伸长到原来的2倍,纵坐标不变B. 横坐标伸长到原来的21倍,纵坐标不变 C. 纵坐标伸长到原来的2倍,横坐标不变D. 纵坐标伸长到原来的21倍,横坐标不变 19. 右图是某职业篮球运动员在连续10场比赛中得分的茎叶统计图,其中左边的数表示得分的十位数,右边的数表示得分的个位数,则该组数据的中位数是( )A. 32B. 33C. 3420.已知xx y x 4,0+=>那么函数有( ) A. 最小值2 B.最小值4 C. 最大值4 D. 最大值221.若从不包括大小王的52张扑克牌中随机抽取一张,取得红心的概率是41,取得方片的概率是41,则取得红色牌的概率为( )A. 43B. 41C. 31D. 21 22.在正方体1111D C B A ABCD -中,直线AC 与平面11B BCC 所成角的大小是( )(A )30° (B )45 ° (C )60° (D )90°23.圆086222=++-+y x y x 的面积为( )(A )π2 (B )2π (C )2π2 (D )π424.在边长为3的正方形ABCD 内任取一点P ,则P 到正方形四边均不小于1的概率为A. 91B. 31C. 94D. 98 25.若A,B 为对立事件,则( )A. 1)()(<+B P A PB. 1)()(=+B P A PC. 1)()(>+B P A PD. )()(B P A P =26. 用二分法研究函数3()33f x x x =--的零点时,可得该函数存在零点0x ∈(A )(0,1) (B )(1,2) (C ) (2,3) (D ) (3,4)27. 函数x x y cos sin +=的最大值是( ) A. 1 B. 2 C. 3 D. 2 28.已知直线αα∈P l ,平面//,那么过点P 且平行于直线l 的直线() A. 只有一条,不在平面α 内 B. 有无数条,不一定在平面α 内C. 只有一条,且在平面α 内D. 有无数条,一定在平面α 内29.读右图程序,当x=1时,运行后的输出结果为(A )3 (B ) -1 (C ) 0 (D ) 130. 已知向量b a b a 和则向量),6,3(),4,2(==( )A.共线且方向相同B. 互为相反向量C. 共线且方向相反D. 不共线31. 把二进制1011(2)化为十进制,其结果为( )A .8B .9C .10D .1132. 已知向量2,4,==b a b a 与,且=•b a 4,则b a 与的夹角为()A. 30B. 45C. 60D. 9033.已知空间中两点A(2,3,5),B(3,1,4),则=AB ( )(A )3 (B )2 (C )5 (D )634.棱长为2的正方体的内切球的表面积为( )(A )π4 (B )π32 (C )π4/3(D )π1235.已知函数x x f 3log )(=,若)()(,0b f a f b a =<<且,则( )(A )10<<ab (B )1>ab (C )1=ab (D )2=ab二、填空题(3*5=15)36.等差数列{n a }中,已知==+471,10a a a 则 。
2021年黄高预录考试数学模拟试题(一)考试时间:120分钟,满分:120分一、选择题(每小题3分,共30分)1.若2|1|816x x x ---+化简的结果为25x -,则x 的取值范围是( ) A .x 为任意实数 B .14x ≤≤C .1x ≥D .4x ≤2.边长为的正六边形的面积等于( ) A .243a B .2a C .2233a D .233a3.已知三角形的三边长分别是3,8,x ;若x 的值为偶数, 则x 的值有( )A.6个 B.5个 C.4个 D.3个4.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)5.在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN =2NC ,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )A.3 B.103C.4 D.1336.⊙O 的半径为r ,其外切直角梯形ABCD 的两底AB =a ,DC =b ,则r ,a ,b 之间的关系是( )A .r a b =-B . 2212r a b =- C . 12r ab = D . 111r a b=+ 7.已知x ,y ,z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) A.8 B.7 C.6 D.58.已知关于x 的不等式组230bx a x -≥⎧⎨<⎩的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(,)a b 的个数有 ( )A 2 对B 4对C 6对D 8对9.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)10、已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( )A 、a >0或a =-2B 、a =-2C 、 a ≥0D 、a =0二、填空题(每小题3分,共18分)11.从-2,-1,2这三个数中任取两个不同的数作为点的坐标, 该点在第四象限的概率是 .12.如图,AC =BC ,AC ⊥BC 于点C ,AB =AD =BD ,CD =CE =DE ,若AB =2,则BE = 。
一、单选题二、多选题1. 的值为( )A.B.C.D.2. 已知i 是虚数单位,若复数z 满足,则( )A .1B.C .2D.3. 命题“,”的否定是( )A.,B .,C .,D .,4. 设,,,则( )A.B.C.D.5. 已知函数,设,,,则( )A.B.C.D.6. 在三棱锥中,,,,,则该三棱锥的外接球的表面积为( )A.B.C.D.7. 已知向量,, 且,那么的值为( )A.B.C.D.8.已知,则的最小值为( )A .4B .6C.D.9. 为了调查学生对两会相关知识的了解情况,某高校开展了两会知识问答活动,现从全校参与该活动的学生中随机抽取320名学生,他们得分(满分100分)的频率分布直方图如图所示,则下列说法正确的是()A .若全校参与该活动的学生共2000人,则得分在内的人数约为650B .全校参与知识问答活动的学生的平均分约为65分C.该校学生得分的分位数约为77.7(结果精确的到0.1)D .若此次知识问答的得分,则10. 已知F 是抛物线的焦点.设,是抛物线C 上一个动点.P 在C 的准线l 上的射影为M ,M 关于点P 的对称点为N ,曲线C 在P 处的切线与准线l 交于点T ,直线NF 交准线l 于点Q ,则( )A.B .是等腰三角形C .PT平分D .的最小值为22024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(1)2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(1)三、填空题四、解答题11. 已知函数f (x )=|sin x |﹣|sin(﹣x )|(π=3.14159……),则下列说法中正确的是( )A .π是f (x )的周期B .f (x )的值域为[﹣,]C .f (x )在(,5π)内单调递减D .f (x )在[﹣2021,2021]中的零点个数不超过2574个12. 下列选项中,与“”互为充要条件的是( )A.B.C.D.13.双曲线(,)上一点关于渐近线的对称点恰为右焦点,则该双曲线的离心率为__________.14.已知等差数列和等比数列满足,,则数列在________时取到最小值.15. 已知函数为R上的奇函数,且当时,,则____.16.已知在各项均为正数的等差数列中,,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设数列___________,求数列的前项和.请在①;②;③这三个条件中选择一个,补充在上面的横线上,并完成解答.17.已知椭圆与双曲线有两个相同的顶点,且的焦点到其渐近线的距离恰好为的短半轴的长度.(1)求椭圆的标准方程;(2)过点作不垂直于坐标轴的直线与交于,两点,在轴上是否存在点,使得平分若存在,求点的坐标;若不存在,请说明理由.18. 如图,三棱柱中,侧棱垂直底面,,,点是棱的中点.(1)证明:平面平面;(2)求三棱锥的体积.19. 某校为了解学生在新冠病毒疫情期间学生自制力,学校随机抽取80位学生,请他们家长(每位学生请一位家长)对学生打分,满分为10分.如表是家长所打分数的频数统计.分数5678910频数482024168(1)求家长所打分数的平均值;(2)若分数不小于8分为“自制力强”,否则为“自制力一般”,在抽取的80位学生中,男同学共42人,其中打分为“自制力强”的男同学为18人,是否有的把握认为“自制力强”与性别有关?(3)在评分为10分的学生中有7名女同学,小雯同学也在其中,学校团委随机抽选这七名女同学中的两名同学座谈,则小雯同学被选中的概率是多少?附:.0.100.050.010.0052.7063.841 6.6357.87920.在平面直角坐标系中,①已知点,直线,动点P满足到点Q的距离与到直线的距离之比为.②已知点是圆上一个动点,线段HG的垂直平分线交GE于P.③点分别在轴,y轴上运动,且,动点P满足.(1)在①,②,③这三个条件中任选一个,求动点P的轨迹C的方程;(注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆上任意一点A处的切线交轨迹C于M,N两点,试判断以MN为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.21. 已知数列为公差大于0的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,数列的前n项和为,若,求m的值.。
一、单选题二、多选题1. 下列计算正确的是( )A .52×5-2=0B .= 1C.+=D.2. 已知一个玻璃酒杯盛酒部分的轴截面是抛物线,其通径长为1,现有一个半径为的玻璃球放入该玻璃酒杯中,要使得该玻璃球接触到杯底(盛酒部分),则的取值范围是( )A.B.C.D.3. 某几何体的三视图如图所示,则此几何体的外接球表面积为()A.B.C.D.4.已知向量,,,夹角为,则为( )A.B .19C.D .185. 已知是定义在上的奇函数,当时,,且当时,满足,若对任意,都有,则的取值范围是( )A.B.C.D.6.设,,则( )A.B.,C.D.,7. 已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为A.B.C.D.8.已知平面向量,,,则=( )A .3B .3C .4D .49. 已知且,,则下列说法正确的是( )A .一条对称轴方程为B.时值域为C.的图像可由的图像向左平移个单位得到D .的一个对称中心为10.已知函数,则下列说法正确的是( )广东省2024年普通高中学业水平合格性考试考前冲刺数学试题二(1)广东省2024年普通高中学业水平合格性考试考前冲刺数学试题二(1)三、填空题四、解答题A.的图像关于轴对称B.是周期为的周期函数C .的值域为D .不等式的解集为11. 已知,,且满足,,则的可能取值为( )A.B .3C.D .912. 某企业对目前销售的A ,B ,C ,D 四种产品进行改造升级,经过改造升级后,企业营收实现翻番,现统计了该企业升级前后四种产品的营收占比,得到如下饼图:下列说法正确的是( )A .产品升级后,产品A 的营收是升级前的4倍B .产品升级后,产品B 的营收是升级前的2倍C .产品升级后,产品C 的营收减少D .产品升级后,产品B 、D 营收的总和占总营收的比例不变13. 平面向量与的夹角为,且,,则__________.14. 已知(为正整数)的展开式中所有项的二项式系数的和为64,则__________.15.如图所示,在正方体中,M是棱上一点,平面与棱交于点N.给出下面几个结论:①四边形是平行四边形;②四边形可能是正方形;③存在平面与直线垂直;④任意平面都与平面垂直.其中所有正确结论的序号是______.16.设数列满足.(1)求的通项公式;(2)求数列的前项和.17.记数列的前项和,对任意正整数,有 ,且 .(1)求数列的通项公式;(2)对所有正整数,若,则在和两项中插入,由此得到一个新数列,求的前91项和.18. 某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段,…后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并估计该校学生的数学成绩的中位数.(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为80分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.19. 已知,且.将表示为的函数,若记此函数为,(1)求的单调递增区间;(2)将的图象向右平移个单位,再将所得图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象,求函数在上的最大值与最小值.20. 已知正项数列满足:,其中数列的前项和.(1)求数列的通项公式;(2)设,记数列的前项积,试求的最小值.21. 已知(1)若,讨论函数的单调性;(2)有两个不同的零点,,若恒成立,求的范围.。
2020年重庆市高职分类考试招生试题及答案数学(共100分)一、选择题(共10小题,每小题6分,共60分。
在每个小题给出的四个备选项中,只有一项是符合题目要求的. )1.设集合A={0.1),B={-10,1},则AUB=( )(A) {-1} (B) {0,1} (C) {-1,1}(D) {-1,0,1)2.若log.8=3,则实数a=( ) (A) 21 (B)2 (C)3 (D)4 3.不等式|2x+1|<3 的解集为( )(A) (-2,1) (B) (-∞,-2)U0,+∞) (C) (-2,2) (D) (-∞x,-2)U(2,+∞) 4. sin(3-π)的值等于 (A)-23 (B)-21 (C) 21 (D)23 5.函数f(x)=2x -x+2的增区间为( )(A)(-∞, -21] (B)[-21,+∞) (C)(-∞, 21 ] (D)[21,+∞) 6.在∆ABC 中,内角A, B, C 所对的边分别为a, b, e,若a=3, b=5, c=2, 则B=( ). (A)6π(B) 4π (C) 3π (D)43π 7.若实数a 、b 满足a<b ,则下列结论一-定成 立的是(A) -a>-b (B) -a<-b (C) 2a <2b (D) 2a >2b8.某学习小组有男生5人,女生3人,现从男生中任选2人,从女生中任选1人参加测试, 则不同的选法有( )(A) 15种 (B)20种. (C) 30种 (D) 40种9.设函数f(x)、g(x)的定义城均为R ,且f(x)为奇函数,g(x) 为偶函数,则下列说法正确的是( )(A) f(x)+ g(x)必为奇函数 (B) f(x)+ g(x)必为偶函数(C) f(x)g(x)必为奇函数 (D) f(x)g(x) 必为偶函数10. 已知椭圆C 的中心在原点,右焦点坐标为(5, 0),半长轴与半短轴的长度之和为5,则C 的标准方程为( ) (A)19522=+y x (B)19422=+y x (c)15922=+y x (D)14922=+y x 二、解答题(共3小题,共40分)11. (本小题满分14分,(I )小问7分,(II)小问7分)在等比数列{n a }中,2a =8,公比q=21(I)求8a 的值:.(II)若{n a }的前k 项和为31,求k 的值.12. (本小题满分13分,(I )小问6分,(II)小问7分)设直线4x -3y+12=0与x 轴、y 轴的交点分别为A 、B.(I )求|AB|;(II)求过点A 、 B 和原点的圆的方程.13. (本小题满分13分,(I )小问5分,(II)小问8分)设函数f(x)=xx 2cos 12sin -1 ; (I )求f(x)的定义城;(II)若tana=31, 求f(a)的值. .数学标准答案一、选择题(共10小题,每小题6分,共60分)1. D2. B3. A4. A5.D6. B7. A8. C9.C 10. D。
2020年河南省普通高中招生考试数学模拟试卷一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×10104.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣46.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣27.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=______.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是______.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为______.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为______.13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为______.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是______.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是______.(结果保留根号)三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?22.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?2020年河南省普通高中招生考试数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<3,故在﹣2,0,3,这四个数中,最大的数是3,故选:B.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:1 460 000 000=1.46×109.故选C.4.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=÷2=36°,∵l∥BE,∴∠1=36°,故选:B.5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4【考点】解二元一次方程组;解一元一次不等式组.【分析】理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.【解答】解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.6.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【考点】规律型:图形的变化类.【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.7.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=﹣2.【考点】负整数指数幂;零指数幂.【分析】首先根据有理数的乘方的运算方法,求出(﹣1)2020的值是多少;然后根据零指数幂的运算方法,求出(π﹣3.14)0的值是多少;最后根据负整数指数幂的运算方法,求出()﹣2的值是多少;再从左向右依次计算,求出算式(﹣1)2020+(π﹣3.14)0﹣()﹣2的值是多少即可.【解答】解:(﹣1)2020+(π﹣3.14)0﹣()﹣2=1+1﹣4=2﹣4=﹣2.故答案为:﹣2.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是③.【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a<0,b<0,c>0,再结合图象判断各结论.【解答】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①a<0,正确;②abc>0,正确;③当x=1时,y=a+b+c<0,错误;④抛物线与x轴有两个不同的交点,b2﹣4ac>0,正确.故不正确的序号是③.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】利用列表法找出点P的所有坐标,再根据反比例函数图象上点的坐标特征找出符合题意的点的个数,由此即可得出结论.【解答】解:∵点P在双曲线y=的图象上,∴xy=6.利用列表法找出所用点P的坐标,如下表所示.其中满足xy=6的点有:(1,6)、(2,3)、(3,2)、(6,1).∴点P落在双曲线y=上的概率为:=.故答案为:.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为5﹣.【考点】实数与数轴.【分析】先根据勾股定理计算出斜边的长,进而得到A的坐标,再根据A点表示的数,可得B点表示的数.【解答】解:∵直角三角形中较长的直角边是较短的直角边长度的2倍,∴斜边的长==,∴A点表示的数为﹣1,∵C所表示的数为2,点A与点B关于点C对称,∴点B表示的数为5﹣,故答案为:5﹣.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)【考点】菱形的性质;相似三角形的判定与性质.【分析】设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH,根据菱形邻角互补求出∠ABC=60°,再求出点B到CD的距离以及点G到CE的距离;然后根据阴影部分的面积=S△BDH+S△FDH,根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,设BF交CE于点H,∵菱形ECGF的边CE∥GF,∴△BCH∽△BGF,∴,即,解得CH=,所以,DH=CD﹣CH=2﹣,∵∠A=120°,∴∠ECG=∠ABC=180°﹣120°=60°,∴点B到CD的距离为2×,点G到CE的距离为4×,∴阴影部分的面积=S△BDH+S△FDH,=,=.故答案为:三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.【考点】分式的化简求值.【分析】通分计算括号里面的加法,再算除法,由此顺序化简,进一步代入求得答案即可.【解答】解:原式=•=x+1,∵x+2=,∴x=﹣2,则原式=x+1=﹣1.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)通过证明△BCD∽△BAC,利用相似比得到结论;(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.【解答】(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,从而可以求出被调查的居民数;(2)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,可以求得选B和选C的人数以及B、D所占的百分比,从而可以将统计图补充完整;(3)由C所占的百分比可以求得图2中“C”层次所在扇形的圆心角的度数;(4)根据条形统计图和扇形统计图,估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【解答】解:(1)由条形统计图和扇形统计图可知A有90人占调查总数的30%,∴本次被抽查的居民有:90÷30%=300(人),即本次被抽查的居民有300人;(2)由条形统计图和扇形统计图可得,选B的人数有:300﹣(30%+20%)×300﹣30=120(人),选C的人数有:300×20%=60人,B所占的百分比为:120÷300=40%,D所占的百分比为:30÷300=10%,∴补全的图1和图2如右图所示,(3)由题意可得,图2中“C”层次所在扇形的圆心角的度数是:360°×20%=72°,即图2中“C”层次所在扇形的圆心角的度数是72°;(4)由题意可得,该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有:4000×(30%+40%)=2800(人),即该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x 的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A 射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)【考点】解直角三角形的应用.【分析】(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT 中利用三角函数即可列方程求解;(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.【解答】解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°∵AT⊥MN∴∠A TC=90°在Rt△ACT中,∠ACT=31°∴tan31°=可设AT=3x,则CT=5x在Rt△ABT中,∠ABT=22°∴tan22°=即:解得:∴,∴;(2),,∴该车大灯的设计不能满足最小安全距离的要求.21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【考点】一次函数的应用.【分析】(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)由图象可知,当8<t≤13时,渔船和渔政船相遇,利用“两点法”求渔政船的函数关系式,再与这个时间段,渔船的函数关系式联立,可求相遇时,离港口的距离,再求两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【解答】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)设渔政船离港口的距离s 与渔政船离开港口的时间t 之间的函数关系式为s=kt +b (k ≠0),则,解得.所以s=45t ﹣360;联立,解得.所以渔船离黄岩岛的距离为150﹣90=60(海里);(3)s 渔=﹣30t +390,s 渔政=45t ﹣360,分两种情况:①s 渔﹣s 渔政=30,﹣30t +390﹣(45t ﹣360)=30,解得t=(或9.6); ②s 渔政﹣s 渔=30,45t ﹣360﹣(﹣30t +390)=30,解得t=(或10.4).所以,当渔船离开港口9.6小时或10.4小时时,两船相距30海里.22.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0)、B (0,6),点P 为BC 边上的动点(点P 不与点点B 、C 重合),经过点O 、P 折叠该纸片,得点B ′和折痕OP .设BP=t .(1)如图1,当∠BOP=30°时,求点P 的坐标;(2)如图2,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得点C ′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(3)在(2)的条件下,当点C ′恰好落在边OA 上时如图3,求点P 的坐标(直接写出结果即可).【考点】几何变换综合题.【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB ′P 、△QC ′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB ′P ≌△OBP ,△QC ′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,在△PC′E和△OC′B′中,∴△PC′E≌△OC′B′,∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.2020年9月19日。
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
福建省泉州第一中学高中自主招生考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】自变量的取值范围是.【答案】【解析】试题分析:当时,函数有意义,解得,所以时,函数有意义.考点:函数自变量的取值范围.【题文】如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y 轴相切于点D,则点A 的坐标是.【答案】(5,4)【解析】试题分析:连接AB,作AE⊥BC于点E,∵B(2,0)、C(8,0),∴OE=5,BE=3,∴AB=5,∴,∴点A 的坐标是(5,4).评卷人得分考点:1.垂经定理2.勾股定理【题文】若方程ax2-3x+2=0有唯一实数解,则a的值为______________.【答案】0或【解析】试题分析:当a=0时,方程为-3x+2=0,所以x=,所以方程ax2-3x+2=0有唯一实数解,当时,当时,方程ax2-3x+2=0有唯一实数解,所以a=,所以当a=0或时,方程ax2-3x+2=0有唯一实数解.考点:方程的解【题文】已知函数,则使y=k成立的x值恰好有三个,则k的值为________.【答案】3【解析】试题分析:函数的图象如图:观察函数图象可知:此函数与直线y=3有恰好有三个交点,∴k=3.考点:二次函数的性质.【题文】已知:,且则.【答案】14【解析】试题分析:因为,所以,所以,所以a-b=0,a-c=0,b-c=0,所以a=b=c,又,所以6a=12,所以a=2,所以b=c=2,所以2+4+8=14.考点:1.配方法2.非负数的性质.【题文】如图,在ABC中,C=90,D、E分别是BC上的两个三等分点,以D为圆心的圆过点E,且交AB于点F,此时CF恰好与⊙D相切于点F.如果AC=,那么⊙D的半径=.【答案】【解析】试题分析:连结DF,因为CF与⊙D相切,所以CFD=90,因为D、E分别是BC上的两个三等分点,所以CE=ED=DB=DF,所以sin FCD=,所以FCD=30,所以FDC=2B=60,所以B=30,因为AC=,所以,所以⊙D的半径=.考点:1.切线的性质2.解直角三角形.【题文】在四边形ABCD中对角线AC、BD交于点O,则在①AO=CO;②BO=DO;③AB=CD;④AB∥CD;从中任选两个结论作条件,恰好能组成一个平行四边形的概率是________.【答案】【解析】试题分析:因为在①AO=CO;②BO=DO;③AB=CD;④AB∥CD中任选两个结论作条件共有①②,①③,①④,②③,②④,③④,6种情况,而能组成一个平行四边形的是①②,①④,②④,③④,4种情况,所以恰好能组成一个平行四边形的概率是.考点:简单事件的概率.【题文】关于x的不等式组,只有4个整数解,则a的取值范围是________.【答案】【解析】试题分析:解不等式1得:x<11,解不等式2得:x>2-3a,所以不等式组的解集是:2-3a<x<11,因为不等式组只有4个整数解,所以62-3a<7,解得.考点:不等式组.【题文】如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为(n≥3).则的值是,当的结果是时,n的值.【答案】30,999【解析】试题分析:观察图形可得:图(1)总边数为a3=12=3×4,图(2)总边数为a4=20=4×5,…以此类推可得规律:图形总边数=(基础图形的边数)×(基础图形的边数+1),即an=n×(n+1);当n=5时,=5×6=30,又,所以,所以n=999.考点:1.列代数式2.探寻规律【题文】函数的最大值是.【答案】【解析】试题分析:根据题意可得:,解得,所以,所以函数的最大值是.考点:函数与不等式.【题文】先化简,再求值:,其中是不等式组的整数解【答案】,2.【解析】试题分析:先把所给的分式化为最简分式,然后求出不等式组的整数解,代入计算即可.试题解析:原式又由①解得:,由②解得:不等式组的解得为,其整数解为得时,原式考点:1.分式的化简求值2.不等式组.【题文】关于三角函数有如下的公式:利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD上方A点处测得建筑物顶端D点的俯角为,底端C点的俯角为,此时直长机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
2025届全国普通高等学校招生统一考试高三(最后冲刺)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 2.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .193.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116D .15164.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-325.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( )A .3B .2C .4D .236.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A .2B .3C .2D .37.已知四棱锥E ABCD -,底面ABCD 是边长为1的正方形,1ED =,平面ECD ⊥平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为( ) A .26B .13C .23D .18.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 9.若双曲线222:14x y C m -=的焦距为5C 的一个焦点到一条渐近线的距离为( )A .2B .4C 19D .1910.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21)-,则b c +=( ) A .5B .22C .4D .1611.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-12.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .14二、填空题:本题共4小题,每小题5分,共20分。
新疆维吾尔自治区昌吉自治州北京大学附属中学2024届高中高考第一次模拟考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线221x y a +=的一条渐近线倾斜角为56π,则a =( ) A .3 B .3- C .33- D .3-2.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:3.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A .35B .710C .45D .9104.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .35.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误..的是( )A .甲得分的平均数比乙大B .甲得分的极差比乙大C .甲得分的方差比乙小D .甲得分的中位数和乙相等6.已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左右焦点,过1F 的直线与双曲线的两支分别交于,A B 两点(A 在右支,B 在左支)若2ABF ∆为等边三角形,则双曲线的离心率为( )A .3B .5C .6D .77.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .848.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且21PF PF >,椭圆的离心率为1e ,双曲线的离心率为2e ,若112PF F F =,则2133e e +的最小值为( ) A .623+B .622+C .8D .6 9.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A .36πB .64πC .144πD .256π10.如图所示,在平面直角坐标系xoy 中,F 是椭圆22221(0)x y a b a b+=>>的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠=︒,则该椭圆的离心率是( )A 6B .34C .12D 311.已知f (x )=ax 2+bx 是定义在[a –1,2a]上的偶函数,那么a+b 的值是A .13- B .13 C .12- D .12 12.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A .17种B .27种C .37种D .47种二、填空题:本题共4小题,每小题5分,共20分。
2024年普通高等学校招生全国统一考试(新课标I卷)数学参考答案与解析1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准注意事项:考证号条形码粘贴在答题卡上的指定位置。
考试结束后,请将本试卷和答题卡一并上交。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A B=A.{−1,0}B.{2,3}C.{−3,−1,0}D.{−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513,而1<513<2,因此A B={−1,0}.故答案为A.2.若zz−1=1+i,则z=A.−1−iB.−1+iC.1−iD.1+i【答案】C.【解析】两边同时减1得:1z−1=i,进而z=1+1i=1−i.故答案为C.3.已知向量a=(0,1),b=(2,x).若b⊥(b−4a),则x=A.−2B.−1C.1D.2【答案】D.【解析】即b⋅(b−4a)=0.代入得4+x(x−4)=0,即x=2.故答案为D.4.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=A.−3mB.−m3C.m3D.3m【答案】A.【解析】通分sinαsinβ=2cosαcosβ.积化和差12(cos(α−β)−cos(α+β))=2⋅12(cos(α−β)+cos(α+β)).即cos(α−β)=−3cos(α+β)=−3m.故选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为√3,则圆锥的体积为A.2√3π B.3√3π C.6√3π D.9√3π【答案】B.【解析】设二者底面半径为r,由侧面积相等有πr √r2+3=2πr⋅√3,解得r=3.故V=13⋅πr2⋅√3=√33π×9=3√3π.故答案为B.6.已知函数为f(x)=⎧{⎨{⎩−x2−2ax−a,x<0e x+ln(x+1),x⩾0在R上单调递增,则a的取值范围是A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)【答案】B.【解析】x⩾0时,f′(x)=e x+11+x>0,故f(x)在[0,+∞)上单调递增.而y=−x2−2zx−a的对称轴为直线x=−a,故由f(x)在(−∞,0)上单调递增可知−a⩾0⇒a⩽0.在x=0时应有−x2−2ax−a⩽e x+ln(x+1),解得a⩾−1,故−1⩽a⩽0.故答案为B.7.当x∈[0,2π]时,曲线y=sin x与y=2sin(3x−π6)的交点个数为A.3B.4C.6D.8【答案】C.【解析】五点作图法画图易得应有6个交点.故答案为C.8.已知函数f(x)的定义域为R,f(x)>f(x−1)+f(x−2),且当x<3时f(x)=x,则下列结论中一定正确的是A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)>143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩收入的样本均值为x =2.1,样本方差s 2=0.01.已知该种植区以往的亩收入x 服从正态分布M(1.8,0.12),假设推动出口后的亩收入Y 服从正态分布N(x,s 2),则(若随机变量Z 服从正态分布N(μ,σ2),则P (Z <μ+σ)≈0.8413)A.P (X >2)>0.2 B.P (X >2)<0.5 C.P (Y >2)>0.5 D.P (Y >2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P (X >2)<P (X >1.9)=1−P (X <1.9)=1−0.8413<0.2,A 错误;P (X >2)<P (X >1.8)=0.5,B 正确;P (Y >2)>P (Y >2.1)=0.5,C 正确;P (Y >2)=P (Y <2.2)=0.8413>0.8,D 错误.故答案为BC.10.设函数f(x)=(x −1)2(x −4),则A.x =3是f(x)的极小值点B.当0<x <1时,f(x)<f(x 2)C.当1<x <2时,−4<f(2x −1)<0D.当−1<x <0时,f(2−x)>f(x)【答案】ACD.【解析】计算知f ′(x)=3(x −1)(x −3).故x ∈(1,3)时f(x)单调减,其余部分单调增.由此知x =3为f(x)极小值点,A 正确;由上知x ∈(0,1)时f(x)单调增,又此时x >x 2,故f(x)>f(x 2),B 错误;此时2x −1∈(1,3),故f(2x −1)∈(f(3),f(1))=(−4,0),C 正确;由f(2−x)=(x −1)2(−x −2),故f(2−x)−f(x)=2(1−x)3>0,D 正确.故答案为ACD.11.造型∝可以看作图中的曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于−2;到点F (2,0)的距离与到定直线x =a(a <0)的距离之积为4,则A.a =−2B.点(2√2,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点(x 0,y 0)在C 上时,y 0⩽4x 0+2【答案】ABD.【解析】由原点O 在曲线C 上且|OF |=2知O 到直线x =a 距离为2,由a <0知a =−2,A 正确;由x >−2知C 上点满足(x +2)√(x −2)2+y 2=4,代(2√2,0)知B 正确;解出y 2=16(x +2)2−(x −2)2,将左边设为f(x),则f ′(2)=−0.5<0.又有f(2)=1,故存x0∈(0,1)使f(x0)>1.此时y>1且在第一象限,C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D正确.故答案为ABD.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线C∶x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为..【答案】3 2 .【解析】根据对称性|F2A|=|AB|2=5,则2a=|F1A|−|F2A|=8,得到a=4.另外根据勾股定理2c=|F1F2|=12,得到c=6,所以离心率e=ca=32.13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=..【答案】ln2.【解析】设曲线分别为y1,y2,那么y′1=e x+1,得到切线方程y−1=2x,根据y′2=1x+1得到切点横坐标为−12,代入y2得到a=ln2.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为..【答案】1 2 .【解析】.由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8),为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7}.首先注意到8是最大的,故甲不可能得四分.若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况;若甲得两分,则讨论在何处得分:若在b,c处,则同样c=7,b=5,进而a=1,d=3,共一种;若在a,c处,则必有c=7,a≠1,b≠5,在b=1时有全部两种,在d=1时仅一种,共三种;若在a,b处,则b∈{5,7},a≠1,c≠7.当a=5时,由上述限制,c=1时有两种,d=1时仅一种;当a=7时,a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种.故共有1+3+8=12种,又总数为4!=24,故所求为1−1224=12.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C=√2cos B,a2+b2−c2=√2ab.(1)求B;(2)若△ABC的面积为3+√3,求c.【解析】(1)根据余弦定理a 2+b 2−c 2=2ab cos C =√2ab ,那么cos C =√22,又因为C ∈(0,π),得到C =π4,此时cos B =12,得到B =π3.(2)根据正弦定理b =c sin B sin C =√62c ,并且sin A =sin (B+C)=sin B cos C +cos B sin C =√6+√24,那么S =12bc sin A =3+√3,解得c =2√2.16.(15分)已知A(0,3)和P (3,32)为椭圆C ∶x 2a 2+y 2b2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【解析】(1)直接代入后解方程,得到a 2=12,b 2=9,c 2=3,所以e 2=14,离心率e =12.(2)设B(x 0,y 0),则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AB =(x 0−3,y 0−32),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AP =(3,−32).得到9=S =12∣−32(x 0−3)−3(y 0−32)∣,或者x 0+2y 0=−6,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3),对应的直线方程y =12x 或者y =32x −3.17.(15分)如图,四棱锥P −ANCD 中,P A⊥底面ABCD ,P A =AC =2,BC =1,AB =√3.(1)若AD⊥AB ,证明:AD平面P BC ;(2)若AD⊥DC ,且二面角A −CP −D 的正弦值为√427,求AD .【解析】(1)由P A⊥面ABCD 知P A⊥AD ,又AD⊥P B ,故AD⊥面P AB .故AD⊥AB ,又由勾股定理知AB⊥BC ,故AD//BC ,进而AD//面P BC .(2)由P A⊥面ABCD .P A⊥AC ,P C =2√2,设AD =t ,则P D =√4+t 2,CD =√4−t 2,由勾股定理知P D⊥CD .则S △P CD =12√16−t 4,S △ACD =12t √4−t 2,设A到P CD距离为ℎ.由等体积,S△P CD ⋅ℎ=S△ACD⋅P A.代入解出ℎ=2t√4+t2.考虑A向CP作垂线AM,二面角设为θ则ℎ=AM sinθ=2√217.由此解出t=√3.18.(17分)已知函数f(x)=lnx2−x+ax+b(x−1)3.(1)若b=0,且f′(x)⩾0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>−2当且仅当1<x<2,求b的取值范围.【解析】函数定义域(0,2).(1)当b=0时,f′(x)=1x+12−x+a=2x(2−x)+a⩾0恒成立.令x=1得a⩾−2.当a=−2时,f′(x)=2(x−1)2x(2−x)⩾0,从而a的最小值为−2.(2)f(x)+f(2−x)=lnx2−x+ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1),且定义域也关于1对称,因此y=f(x)是关于(1,a)的中心对称图形.(3)先证明a=−2.由题意,a=f(1)⩽−2.假设a<−2,由f(2e|b|+11+e|b|+1)> |b|+1−|b|=1,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0,矛盾.故a=−2.此时,f′(x)=(x−1)2x(2−x)[3bx(2−x)+2].当b⩾−23,f′(x)⩾(x−1)2x(2−x)(2−4x+2x2)⩾0,且不恒为0,故f(x)在(0,2)递增.f(x)>−2=f(1)当且仅当1<x<2,此时结论成立.当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0,且f′(x)<0,当x∈(x0,1),因此f(x)在(x,1)递减,从而f(x0)>f(1)=−2,而x0∉(1,2)此时结论不成立.综上,b的取值范围是[−23,+∞).19.(17分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为0的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1)写出所有的(i,j),1⩽i⩽j⩽6,使数列a1,a2,⋯a6是(i,j)−可分数列;(2)当m⩾3时,证明:数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j),记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为Pm ,证明Pm>18.【解析】记{a n }的公差为d .(1)从a 1,a 2,⋯,a 6中去掉两项后剩下4项,恰构成等差数列,公差必为d ,否则原数列至少有7项.因此剩下的数列只可能为a 1,a 2,a 3,a 4,a 2,a 3,a 4,a 5,a 3,a 4,a 5,a 6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2).(2)考虑分组(a 1,a 4,a 7,a 10),(a 3,a 6,a 9,a 12),(a 5,a 8,a 11,a 14),(a 4k−1,a 4k ,a 4k+1,a 4k+2)(4⩽k ⩽m),(当m =3时只需考虑前三组即可)即知结论成立.(3)一方面,任取两个i,j(i <j)共有C 24m+2种可能.另一方面,再考虑一种较为平凡的情况:i−1,j−i−1均可被4整除,此时,只要依次将剩下的4m 项按原顺序从头到尾排一列,每四个截取一段,得到m 组公差为d 的数列,则满足题意,故此时确实是(i,j)−可分的.接着计算此时的方法数.设i =4k+1(0⩽k ⩽m),对于每个k ,j 有(4m +2)−(4k +1)−14+1=m−k+1(种),因此方法数为m∑k=1(m −k +1)=(m +1)(m +2)2.当m =1,2,已经有(m +1)(m +2)2/C 24m+2>18.下面考虑m ⩾3.我们证明:当i −2,j −i +1被4整除,且j −i +1>4时,数列是(i,j)−可分的.首先我们将a 1,a 2,⋯,a i−2,及a j+2,a j+3,⋯,a 4m+2顺序排成一列,每4个排成一段,得到一些公差为d 的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j −i +1个数即可.为书写方便,我们记j −i =4t −1(t >1),并记b n =a n+i−2,即证b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组.引理:设j−1能被4整除.若b 1,b 2,⋯,b j+1是(2,j)−可分的,则b 1,b 2,⋯,b j+9是(2,j+8)−可分的.引理证明:将b 1,b 2,⋯,b j+1去掉b 2,b j 后的j −14组四元组再并上(b j ,b j+2,b j+4,b j+6),(b j+3,b j+5,b j+7,b j+9)即证.回原题.由(2),b 1,⋯,b 14是(2,13)−可分数列,且(b 1,b 3,b 5,b 7)和(b 4,b 6,b 8,b 10)知b 1,⋯,b 10是(2,9)−可分数列,因而结合引理知b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组,由此结论成立.计算此时的方法数.设i =4k+2(0⩽k ⩽m−1),则此时j 有(4m +2)−(4k +2)4−1=m −k −1种,因此方法数为m−1∑k=0(m −k −1)=m(m −1)2.因此我们有p m ⩾m(m −1)+(m +1)(m +2)2C 2m+1>18.。
中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合,,,则()A. B. C. D.2、命题甲:,命题乙:,甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D既不充分又不必要条件3、下列各函数中偶函数为()A. B. C. D.4、若,,则的值为()A. B. C. D.5、已知等数比列,首项,公比,则前4项和等于()A. 80B.81C. 26D. -266、下列向量中与向量垂直的是()A. B. C. D. 7、直线的倾斜角的度数是( )A. B. C. D.8、如果直线和直线没有公共点,那么与()A. 共面B.平行C. 是异面直线 D可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在中,已知AC=8,AB=3,则BC的长为_________________10、函数的定义域为_______________________11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、的展开式中含的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 B A B C A D C D二、填空题(本大题共4小题,每小题4分,共16分)9. 710. ,也可以写成或11.12. 84中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设全集,,,则等于()A. B. C. D.2、设命题甲:,命题乙:,甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D既不充分又不必要条件3、设,下列不等式正确的是()A. B. C. D.4、若,是第二象限角,则的值为()A. B. C. D.5、下列直线中与平行的是()A. B. C. D.6、一条直线和两条异面直线中的一条平行,则它与另一条直线的位置关系是()A. 平行B.相交C. 异面D.相交或异面7、下列函数中,定义域为R的函数是()A. B. C. D.8、抛物线的准线方程为()A. B. C. D.二、填空题(本大题共4小题,每小题4分,共16分)9、若向量,且,则等于___________________10、一名教师与4名学生随机站成一排,教师恰好站在中间位置的概率为____________11、已知数列为等比数列,,,则________________12、直二面角内一点S,S到两个半平面的距离分别是3和4,则S到的距离为_________________参考答案中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
2022年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的. 1.12-的相反数是A .12B .2C .2-D .12-2.2022年冬奥会的奖牌“同心”表达了“天地合⋅人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的 一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字 是 A .合B .同C .心D .人3.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O .若154∠=︒,则2∠的度数为A .26︒B .36︒C .44︒D .54︒4.下列运算正确的是A .2332-=B .22(1)1a a +=+C .235()a a =D .2322a a a ⋅=5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD的中点.若3OE =,则菱形ABCD 的周长为 A .6 B .12 C .24D .486.一元二次方程210x x +-=的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为A.5分B.4分C.3分D.45%8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿1=万1⨯万,1兆1=万1⨯万1⨯亿.则1兆等于()A.810B.1210C.1610D.24109.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,//AB x轴,交y轴于点P.将OAP∆绕点O顺时针旋转,每次旋转90︒,则第2022次旋转结束时,点A的、坐标为A.(3,1)-B.(1,3)--C.(3-,1)-D.(1,3)10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1)R,1R的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是A.呼气酒精浓度K越大,1R的阻值越小B.当0K=时,1R的阻值为100C.当10K=时,该驾驶员为非酒驾状态D.当120R=时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.请写出一个y 随x 的增大而增大的一次函数的表达式 .12.不等式组30,12x x -⎧⎪⎨>⎪⎩的解集为 .13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 . 14.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形AO B '''.若90O ∠=︒,2OA =,则阴影部分的面积为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,点D 为AB 的中点,点P 在AC 上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ . 当90ADQ ∠=︒时,AQ 的长为 .三、解答题(本大题共8个小题,共75分)16.(1)(5011()23-+;(2)(5分)化简:211(1)x x x -÷-.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课, 被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况, 随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:ab .成绩在7080x <这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79 根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由. (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数(0)ky x x=>的图象经过点(2,4)A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证://CD AB .19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁 顶端D 的仰角为34︒,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为 45︒.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上, 求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67)︒≈.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园, 需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆. (1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动, 对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立 如图所示的平面直角坐标系,并设抛物线的表达式为2()y a x h k =-+,其中()x m 是水柱距 喷水头的水平距离,()y m 是水柱距地面的高度. (1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚 铁环时,铁环O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为BAD ∠,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:90BOC BAD ∠+∠=︒.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD ∠=.已知铁环O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30︒的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,MBQ∠=︒;∠=︒,CBQ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断MBQ∠的∠与CBQ 数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当1=时,直接写出AP的FQ cm长.2022年河南省普通高中招生考试试卷数学试题参考答案与试题解析一、 选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBDCABCBC二、 填空题(每小题3分,共15分)题号 1112131415答案y x =, (答案不唯一)23x <16332π+ 5或13三、解答题(本大题共8个小题,共75分) 16.(10分) 解:(1)原式1312=-+52=; (2)原式(1)(1)1x x x x x +--=÷(1)(1)1x x xx x +-=⋅- 1x =+.17.(9分)解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为787978.52+=(分), 成绩不低于80分的人数占测试人数的百分比为166100%44%50+⨯=, (2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)(1)解:反比例函数(0)ky x x=>的图象经过点(2,4)A ,248k ∴=⨯=,∴反比例函数的解析式为8y x=; (2)解:如图,直线m 即为所求.(3)证明:AC 平分OAB ∠,OAC BAC ∴∠=∠,直线m 垂直平分线段AC ,DA DC ∴=,OAC DCA ∴∠=∠, DCA BAC ∴∠=∠, //CD AB ∴.19.(9分)解:延长EF 交DC 于点H ,由题意得:90DHF ∠=︒,15EF AB ==米, 1.5CH BF AE ===米,设FH x =米,(15)EH EF FH x ∴=+=+米,在Rt DFH ∆中,45DFH ∠=︒,tan45DH FH x ∴=⋅︒=(米),在Rt DHE ∆中,34DEH ∠=︒,tan340.6715DH xEH x ∴︒==≈+, 30.1x ∴≈,经检验:30.1x ≈是原方程的根,30.1 1.532DC DH CH ∴=+=+≈(米),∴拂云阁DC 的高度约为32米.20.(9分)解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300300354x x =+, 解得20x =,经检验,20x =是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,A 种菜苗的捆数不超过B 种菜苗的捆数,100m m ∴-,解得50m ,设本次购买花费w 元,200.9300.9(100)92700w m m m ∴=⨯+⨯-=-+, 90-<,w ∴随m 的增大而减小,50m ∴=时,w 取最小值,最小值为95027002250-⨯+=(元),答:本次购买最少花费2250元. 21.(9分)解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,将(0,0.7)代入得:0.725 3.2a =+,解得110a =-, 22117(5) 3.2101010y x x x ∴=--+=-++, 答:抛物线的表达式为2171010y x x =-++; (2)当 1.6y =时,2171.61010x x -++=, 解得1x =或9x =,∴她与爸爸的水平距离为312()m -=或936()m -=,答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m . 22.(10分)(1)证明:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .CD 与O 相切于点C , 90OCD ∴∠=︒. AD CD ⊥, 90ADC ∴∠=︒. //EF CD ,90OFB AEB ∴∠=∠=︒,90BOC OBF ∴∠+∠=︒,90ABE BAD ∠+∠=︒,AB 为O 的切线,90OBA ∴∠=︒. 90OBF ABE ∴∠+∠=︒,90OBF ∴∠=︒. 90OBF ABE ∴∠+∠=︒,OBF BAD ∴∠=∠, 90BOC BAD ∴∠+∠=︒;(2)解:如图1,在Rt ABE ∆中,75AB =,3cos 5BAD ∠=,45AE ∴=.由(1)知,OBF BAD ∠=∠,3cos 5OBF ∴∠=, 在Rt OBF ∆中,25OB =, 15BF ∴=, 20OF ∴=.25OC =, 5CF ∴=.90OCD ADC CFE ∠=∠=∠=︒,∴四边形CDEF 为矩形,5DE CF ∴==, 50AD AE ED cm ∴=+=.23.(10分)解:(1)对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠==, 30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP CBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可);数学试卷 第11页(共11页) (2)①由(1)可知30CBM ∠=︒,四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, 15CBQ MBQ ∴∠=∠=︒,故答案为:15,15; ②MBQ CBQ ∠=∠,理由如下: 四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4DF CF cm ==,AP PQ =,Rt BCQ Rt BMQ ∆≅∆, CQ MQ ∴=,当点Q 在线段CF 上时,1FQ cm =, 3MQ CQ cm ∴==,5DQ cm =, 222PQ PD DQ =+, 22(3)(8)25AP AP ∴+=-+, 4011AP ∴=, 当点Q 在线段DF 上时,1FQ cm =, 5MQ CQ cm ∴==,3DQ cm =, 222PQ PD DQ =+, 22(5)(8)9AP AP ∴+=-+, 2413AP ∴=,综上所述:AP 的长为4011cm 或2413cm .。
2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.样本数据16,24,14,10,20,30,12,14,40的中位数为()A.14B.16C.18D.20【答案】B 【解析】【分析】由中位数定义即可得.【详解】将这些数据从小到大排列可得:10,12,14,14,16,20,24,30,40,则其中位数为16.故选:B.2.椭圆2221(1)x y a a+=>的离心率为12,则=a ()A.3B.C.D.2【答案】A 【解析】【分析】由椭圆的离心率公式即可求解.【详解】由题意得112e a ==,解得3a =,故选:A.3.记等差数列{}n a 的前n 项和为3712,6,17n S a a a +==,则16S =()A.120B.140C.160D.180【答案】C 【解析】【分析】利用下标和性质先求出512a a +的值,然后根据前n 项和公式结合下标和性质求解出16S 的值.【详解】因为37526a a a +==,所以53a =,所以51231720a a +=+=,所以()()116165121681602a a S a a +⨯==+=,故选:C.4.设,αβ是两个平面,,m l 是两条直线,则下列命题为真命题的是()A.若,,m l αβαβ⊥∥∥,则m l ⊥B.若,,m l m l αβ⊂⊂∥,则αβ∥C.若,,m l l αβαβ= ∥∥,则m l ∥D.若,,m l m l αβ⊥⊥∥,则αβ⊥【答案】C 【解析】【分析】由线面平行性质判断真命题,举反例判定假命题即可.【详解】对于A ,,m l 可能平行,相交或异面,故A 错误,对于B ,,αβ可能相交或平行,故B 错误,对于D ,,αβ可能相交或平行,故D 错误,由线面平行性质得C 正确,故选:C5.甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种【答案】B 【解析】【分析】分类讨论:乙丙及中间2人占据首四位、乙丙及中间2人占据尾四位,然后根据分类加法计数原理求得结果.【详解】因为乙和丙之间恰有2人,所以乙丙及中间2人占据首四位或尾四位,①当乙丙及中间2人占据首四位,此时还剩末位,故甲在乙丙中间,排乙丙有22A 种方法,排甲有12A 种方法,剩余两个位置两人全排列有22A 种排法,所以有212222A A A 8⨯⨯=种方法;②当乙丙及中间2人占据尾四位,此时还剩首位,故甲在乙丙中间,排乙丙有22A 种方法,排甲有12A 种方法,剩余两个位置两人全排列有22A 种排法,所以有212222A A A 8⨯⨯=种方法;由分类加法计数原理可知,一共有8816+=种排法,故选:B.6.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.EB.E 是一条与l 相交的直线C.E 上的点到lD.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==,故A 、B 、D 错误,C 正确.故选:C .7.已知3ππ,π,tan24tan 44θθθ⎛⎫⎛⎫∈=-+ ⎪ ⎪⎝⎭⎝⎭,则21sin22cos sin2θθθ+=+()A.14 B.34C.1D.32【答案】A 【解析】【分析】根据正弦、余弦、正切二倍角公式,将21sin22cos sin2θθθ++齐次化即可得出答案.【详解】由题3ππ,π,tan24tan 44θθθ⎛⎫⎛⎫∈=-+⎪ ⎪⎝⎭⎝⎭,得()()224tan 12tan 4tan 12tan 1tan 1tan θθθθθθ-+=⇒-+=--,则()()2tan 1tan 20tan 2θθθ++=⇒=-或1tan 2θ=-,因为()3π,π,tan 1,04θθ⎛⎫∈∈-⎪⎝⎭,所以1tan 2θ=-,222221sin2sin cos 2sin cos tan 12tan 2cos sin22cos 2sin cos 22tan θθθθθθθθθθθθθ+++++==+++()11114214+-==+-.故选:A8.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过坐标原点的直线与C 交于,A B 两点,211222,4F B F A F A F B a =⋅=,则C 的离心率为()A.B.2C.D.【答案】D 【解析】【分析】由双曲线的对称性可得12F A F B =、12F B F A =且四边形12AF BF 为平行四边形,由题意可得出21F BF ∠,结合余弦定理表示出与a 、c 有关齐次式即可得离心率.【详解】由双曲线的对称性可知12F A F B =,12F B F A =,有四边形12AF BF 为平行四边形,令12F A F B m ==,则122F B F A m ==,由双曲线定义可知212F A F A a -=,故有22m m a -=,即2m a =,即122F A F B m a ===,124F B F A a ==,2222222cos 24cos 4F A F B F A F B AF B a a AF B a ⋅=⋅∠=⨯∠=,则21cos 2AF B ∠=,即23AF B π∠=,故212π3F BF ∠=,则有()()()222222121221124221cos 22422a a c F B F B F F F BF F B F Ba a+-+-∠===-⋅⨯⨯,即2222041162a c a -=-,即2204116162e -=-,则27e =,由1e >,故e =.故选:D.【点睛】关键点睛:本题考查双曲线的离心率,解题关键是找到关于a 、b 、c 之间的等量关系,本题中结合题意与双曲线的定义得出1F A 、2F B 与a 的具体关系及21F BF ∠的大小,借助余弦定理表示出与a 、c 有关齐次式,即可得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()A.函数π4f x ⎛⎫-⎪⎝⎭为偶函数B.曲线()y f x =的对称轴为π,Z x k k =∈C.()f x 在区间ππ,32⎛⎫⎪⎝⎭单调递增D.()f x 的最小值为2-【答案】AC 【解析】【分析】利用辅助角公式化简()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,再根据三角函数的性质逐项判断即可.【详解】()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭3π3π3π3πsin 2cos sin cos 2cos2cos sin2sin 4444x x x x =++-sin 2cos 2cos2sin22222x x x x x =-+--=,即()f x x =,对于A ,i ππ42n 2x x f x ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭-⎝⎭,易知为偶函数,所以A 正确;对于B ,()f x x =对称轴为πππ2π,Z ,Z 242k x k k x k =+∈⇒=+∈,故B 错误;对于C ,ππ2π,,2,π323x x ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,sin2y x =单调递减,则()f x x =单调递增,故C 正确;对于D ,()f x x =,则[]sin21,1x ∈-,所以()f x ⎡∈⎣,故D 错误;故选:AC10.已知复数,z w 均不为0,则()A.22||z z = B.22||z z z z =C.z z w w -=- D.z z w w=【答案】BCD 【解析】【分析】设出i z a b =+、i w c d =+,结合复数的运算、共轭复数定义及复数的模的性质逐个计算即可得.【详解】设i z a b =+(),R a b ∈、i w c d =+(),R c d ∈;对A :设i z a b =+(),R a b ∈,则()222222i 2i 2i z a b a ab b a b ab =+=+-=-+,2222||z ab ==+,故A 错误;对B :2z z z z z=⋅,又2z z z ⋅=,即有22||z z z z =,故B 正确;对C :()i i i a b c d z a c d w b =+-=+----,则()i a c z w b d ----=,i z a b =-,i w c d =-,则()i i i z w a b c d a c b d =--+=----,即有z z w w -=-,故C 正确;对D :()()()()()22i i i i i i i z c w a b c d ac bd ad bc a b c d c d c d d +-+--+===++-+==22c d ==+,22z w c d ===+22c d =+,故z z w w=,故D 正确.故选:BCD.11.已知函数()f x 的定义域为R ,且102f ⎛⎫≠⎪⎝⎭,若()()()4f x y f x f y xy ++=,则()A.102f ⎛⎫-= ⎪⎝⎭B.122f ⎛⎫=-⎪⎝⎭C.函数12f x ⎛⎫- ⎪⎝⎭是偶函数 D.函数12f x ⎛⎫+⎪⎝⎭是减函数【答案】ABD 【解析】【分析】对抽象函数采用赋值法,令12x =、0y =,结合题意可得()01f =-,对A :令12x =、0y =,代入计算即可得;对B 、C 、D :令12y =-,可得122f x x ⎛⎫-=- ⎪⎝⎭,即可得函数12f x ⎛⎫- ⎪⎝⎭及函数12f x ⎛⎫+ ⎪⎝⎭函数的性质,代入1x =,即可得12f ⎛⎫⎪⎝⎭.【详解】令12x =、0y =,则有()()1110100222f f f f f ⎛⎫⎛⎫⎛⎫⎡⎤+⨯=+= ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭,又102f ⎛⎫≠⎪⎝⎭,故()100f +=,即()01f =-,令12x =、12y =-,则有1111114222222f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-=⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即()110122f f f ⎛⎫⎛⎫+-=-⎪ ⎪⎝⎭⎝⎭,由()01f =-,可得11022f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,又102f ⎛⎫≠ ⎪⎝⎭,故102f ⎛⎫-= ⎪⎝⎭,故A 正确;令12y =-,则有()1114222f x f x f x ⎛⎫⎛⎫⎛⎫-+-=⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即122f x x ⎛⎫-=- ⎪⎝⎭,故函数12f x ⎛⎫- ⎪⎝⎭是奇函数,有()1121222f x x x ⎛⎫+-=-+=-- ⎪⎝⎭,即1222f x x ⎛⎫+=-- ⎪⎝⎭,即函数12f x ⎛⎫+⎪⎝⎭是减函数,令1x =,有12122f ⎛⎫=-⨯=-⎪⎝⎭,故B 正确、C 错误、D 正确.故选:ABD.【点睛】关键点睛:本题关键在于利用赋值法解决抽象函数问题,借助赋值法,得到()01f =-,再重新赋值,得到102f ⎛⎫-= ⎪⎝⎭,再得到122f x x ⎛⎫-=- ⎪⎝⎭.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为__________.【答案】5【解析】【分析】由A B A = 可得A B ⊆,解出集合B 后结合集合的关系计算即可得.【详解】由A B A = ,故A B ⊆,由3x m -≤,得33m x m -+≤≤+,故有4323m m ≤+⎧⎨-≥-+⎩,即15m m ≥⎧⎨≥⎩,即5m ≥,即m 的最小值为5.故答案为:5.13.已知轴截面为正三角形的圆锥MM '的高与球O 的直径相等,则圆锥MM '的体积与球O 的体积的比值是__________,圆锥MM '的表面积与球O 的表面积的比值是__________.【答案】①.23②.1【解析】【分析】设圆锥的底面圆半径r 以及球的半径R ,用r 表示出圆锥的高h 和母线l 以及球的半径R ,然后根据体积公式求出体积比,根据表面积公式求得表面积之比.【详解】设圆锥的底面半径为r ,球的半径为R ,因为圆锥的轴截面为正三角形,所以圆锥的高h =,母线2l r =,由题可知:2h R =,所以球的半径2R r =所以圆锥的体积为()2311ππ33V r r =⨯⨯=,球的体积333244πππ3322V R r ⎛⎫==⨯= ⎪ ⎪⎝⎭,所以312π23332rV V ==;圆锥的表面积221ππ3πS rl r r =+=,球的表面积22224π4π3π2S R r ⎛⎫==⨯= ⎪ ⎪⎝⎭,所以21223π13πS r S r ==,故答案为:23;1.14.以max M表示数集M 中最大的数.设01a b c <<<<,已知2b a ≥或1a b +≤,则{}max ,,1b a c b c ---的最小值为__________.【答案】15##0.2【解析】【分析】利用换元法可得11b n pa m n p =--⎧⎨=---⎩,进而根据不等式的性质,分情况讨论求解.【详解】令,,1,b a m c b n c p -=-=-=其中,,0m n p >,所以11b n pa m n p =--⎧⎨=---⎩,若2b a ≥,则()121b n p m n p =--≥---,故21m n p ++≥,令{}{}=max ,,1max ,,M b a c b c m n p ---=,因此22M mM n M p≥⎧⎪≥⎨⎪≥⎩,故421M m n p ≥++≥,则14M ≥,若1a b +≤,则111n p m n p --+---≤,即221m n p ++≥,{}{}=max ,,1max ,,M b a c b c m n p ---=,则2222M mM n M p≥⎧⎪≥⎨⎪≥⎩,故5221M m n p ≥++≥,则15M ≥,当22m n p ==时,等号成立,综上可知{}max ,,1b a c b c ---的最小值为15,故答案为:15【点睛】关键点睛:本题的关键是利用换元法,在2b a ≥和1a b +≤前提下进行合理分类讨论,根据题意得到相对应的不等式组,注意题目的条件关键词是“或”.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()2ln 2f x x x ax =+++在点()()22f ,处的切线与直线230x y +=垂直.(1)求a ;(2)求()f x 的单调区间和极值.【答案】(1)3a =-(2)单调递增区间为10,2⎛⎫ ⎪⎝⎭、()1,+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,极大值3ln 24-,极小值0【解析】【分析】(1)结合导数的几何意义及直线垂直的性质计算即可得;(2)借助导数可讨论单调性,即可得极值.【小问1详解】()12f x x a x '=++,则()1922222f a a '=+⨯+=+,由题意可得92123a ⎛⎫⎛⎫+⨯-=-⎪ ⎪⎝⎭⎝⎭,解得3a =-;【小问2详解】由3a =-,故()2ln 32f x x x x =+-+,则()()()2211123123x x x x f x x x x x---+'=+-==,0x >,故当102x <<时,()0f x ¢>,当112x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭、()1,+∞,()f x 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,故()f x 有极大值211113ln 32ln 222224f ⎛⎫⎛⎫=+-⨯+=- ⎪ ⎪⎝⎭⎝⎭,有极小值()21ln113120f =+-⨯+=.16.盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;(2)记取出的3个小球上的最小数字为X ,求X 的分布列及数学期望()E X .【答案】(1)47(2)分布列见解析,()107E X =【解析】【分析】(1)先确定3个不同数字的小球,然后再从确定的每种小球中取1个,通过计算可求符合要求的取法数,再除以总的取法数可得结果;(2)先确定X 的可取值为1,2,3,然后计算出不同取值的概率,注意X 的每种取值对应两种情况,由此可求分布列和期望()E X .【小问1详解】记“取出的3个小球上的数字两两不同”为事件M ,先确定3个不同数字的小球,有34C 种方法,然后每种小球各取1个,有111222C C C ⨯⨯种取法,所以()3111422238C C C C 4=C 7P M ⨯⨯⨯=.【小问2详解】由题意可知,X 的可取值为1,2,3,当1X =时,分为两种情况:只有一个数字为1的小球、有两个数字为1的小球,所以()1221262638C C C C 91=C 14P X +==;当2X =时,分为两种情况:只有一个数字为2的小球、有两个数字为2的小球,所以()1221242438C C C C 22=C 7P X +==;当3X =时,分为两种情况:只有一个数字为3的小球、有两个数字为3的小球,所以()1221222238C C C C 13=C 14P X +==,所以X 的分布列为:X123P 91427114所以()92110123147147E X =⨯+⨯+⨯=.17.如图,平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,11112,,45AA C CB C CD C CO =∠=∠∠=︒.(1)证明:1C O ⊥平面ABCD ;(2)求二面角1B AA D --的正弦值.【答案】(1)证明见解析;(2)223【解析】【分析】(1)根据题意,利用线面垂直的判定定理证明即可.(2)建立空间直角坐标系,利用向量法求二面角的正弦值.【小问1详解】连接11,BC DC ,因为底面ABCD 是边长为2的正方形,所以BC DC =,又因为11C CB C CD ∠=∠,11CC CC =,所以11C CB C CD ≅ ,所以11BC DC =,点O 为线段BD 中点,所以1C O BD ⊥,在1C CO △中,1122,CC CO AC ===,145C CO ∠=︒,所以22211111cos 22C C OC C O C CO C O C C OC+-∠==⇒=⨯⨯,则222111C C OC C O C O OC =+⇒⊥,又OC BD O = ,OC ⊂平面ABCD ,BD ⊂平面ABCD ,所以1C O ⊥平面ABCD .【小问2详解】由题知正方形ABCD 中AC BD ⊥,1C O ⊥平面ABCD ,所以建系如图所示,则()())()(1,0,,,,0,0,B D A C C ,则11AA CC ==,()(),AB AD == ,设面1BAA 的法向量为()111,,m x y z = ,面1DAA 的法向量为()222,,x n y z = ,则()11111001,1,100AA m m AB m ⎧+=⋅=⎪⇒⇒=-⎨⋅=+=⎪⎪⎩⎩,()22122001,1,100AA n n AD m ⎧=⋅=⎪⇒⇒=--⎨⋅==⎪⎪⎩⎩ ,设二面角1B AA D --大小为θ,则1cos sin 33m n m nθθ⋅===⇒=⋅ ,所以二面角1B AA D --的正弦值为3.18.已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN 面积的最小值.【答案】(1)证明见解析(2)8【解析】【分析】(1)设出直线AB 与直线CD 的方程,联立曲线后得到与纵坐标有关韦达定理,结合题意,表示出直线MN 后即可得定点坐标;(2)设出直线AE 与直线BD 的方程,联立两直线后结合第一问中韦达定理得出点G 的横坐标恒为1-,再结合面积公式及基本不等式即可得.【小问1详解】由2:4C y x =,故()1,0F ,由直线AB 与直线CD 垂直,故两只直线斜率都存在且不为0,设直线AB 、CD 分别为11x m y =+、21x m y =+,有121m m =-,()11,A x y 、()22,B x y 、()33,E x y 、()44,D x y ,联立2:4C y x =与直线AB ,即有2141y x x m y ⎧=⎨=+⎩,消去x 可得21440y m y --=,2116160m ∆=+>,故1214y y m +=、124y y =-,则()2121112112111242x x m y m y m y y m +=+++=++=+,故2121212x x m +=+,12122y y m +=,即()21121,2M m m +,同理可得()22221,2N m m +,当22122121m m +≠+时,则()()2212112212122:12221MN m m l m m x m y m ---=++-+,即()()21212121212121112221212122m m m m x y x m m m m m m m m m m m m +-+=-+-=--++++1212212121212211212122m m m m x x m m m m m m m m m m =--=-+++-++-,由121m m =-,即()2121213121y x x m m m m m m -=++=-++,故3x =时,有()213013m m y -+==,此时MN 过定点,且该定点为()3,0,当22122121m m +=+时,即2212m m =时,由121m m =-,即11m =±时,有213:MN l x =+=,亦过定点()3,0,故直线MN 过定点,且该定点为()3,0;【小问2详解】由()11,A x y 、()22,B x y 、()33,E x y 、()44,D x y ,则()311131:AE y y l y x x y x x -=-+-,由2114y x =、2224y x =,故22231113131112231313131313144444y y y y y y y y y x x y x y y y y y y y y y y y y y ⎛⎫-+=-+=-+=+ ⎪+++++⎝⎭-,同理可得2442424:BD y y x l y y y y y =+++,联立两直线,即13313124424244y y x y y y y y y y x y y y y y ⎧=+⎪++⎪⎨⎪=+⎪++⎩,有13243131424244y y y y x x y y y y y y y y +=+++++,即()()()()42134231243144x y y y y y y x y y y y y y +++=+++,有()()()2431134242314y y y y y y y y x y y y y +-+=+--,由124y y =-,同理344y y =-,故()()()()243113422341241341234231423144y y y y y y y y y y y y y y y y y y y y x y y y y y y y y +-++--==+--+--()()24134231414y y y y y y y y -+--==-+--,故1G x =-,过点G 作//GQ x 轴,交直线MN 于点Q ,则12M N Q G GMN S y y x x =-⨯- ,由()21121,2M m m +、()22221,2N m m +,故121122224M N y y m m m m -=-=+≥,当且仅当11m =±时,等号成立,下证4Q G x x -≥:由抛物线的对称性,不妨设10m >,则20m <,当11m >时,有()2111,0m m =-∈-,则点G 在x 轴上方,点Q 亦在x 轴上方,有21120111m m m m =>+-,由直线MN 过定点()3,0,此时()314Q G x x ->--=,同理,当11m <时,有点G 在x 轴下方,点Q 亦在x 轴下方,有2110m m <+,故此时4Q G x x ->,当且仅当11m =时,3Q x =,故4Q G x x -≥恒成立,且11m =±时,等号成立,故1144822MN M G N Q G S y y x x =-⨯-≥⨯⨯= ,【点睛】关键点睛:第二问关键在于借助直线联立及第一问中韦达定理得出点G 的横坐标恒为1-,此时可根据三角形的面积公式及基本不等式求取最值.19.离散对数在密码学中有重要的应用.设p 是素数,集合{}1,2,,1X p =- ,若,,u v X m ∈∈N ,记u v ⊗为uv 除以p 的余数,,m u ⊗为m u 除以p 的余数;设a X ∈,2,2,1,,,,p a a a ⊗-⊗ 两两不同,若{}(),0,1,,2n a b n p ⊗=∈- ,则称n 是以a 为底b 的离散对数,记为log()a n p b =.(1)若11,2p a ==,求1,p a -⊗;(2)对{}12,0,1,,2m m p ∈- ,记12m m ⊕为12m m +除以1p -的余数(当12m m +能被1p -整除时,120m m ⊕=).证明:()log()log()log()a a a p b c p b p c ⊗=⊕,其中,b c X ∈;(3)已知log()a n p b =.对{},1,2,,2x X k p ∈∈- ,令,,12,k k y ay x b ⊗⊗==⊗.证明:()2,21n p x y y -⊗=⊗.【答案】(1)1(2)证明见解析(3)证明见解析【解析】【分析】(1)第一问直接根据新定义来即可.(2)第二问结合新定义、带余除法以及费马小定理即可得证.(3)根据新定义进行转换即可得证.【小问1详解】若11,2p a ==,又注意到102102493111==⨯+,所以1,01,21p a -⊗⊗==.【小问2详解】当2p =时,此时{1}X =,此时1b c ==,1b c ⊗=,故()log()0,log()0,log()0a a a p b c p b p c ⊗===,此时()log()log()log()a a a p b c p b p c ⊗=⊕.当2p >时,因2,2,1,,,,p a a a ⊗-⊗ 相异,故2a ≥,而a X ∈,故,a p 互质.设()12=log(),log(),=log()a a a n p b c n p b n p c⊗=记()12=log(),log(),=log()a a a n p b c n p b n p c ⊗=,则12,N m m ∃∈,使得1212,n n a pm b apm c =+=+,故()()1212n n a pm b pm c +=++,故12(mod )n n a bc p +≡,设()121,02n n t p s s p +=-+≤≤-,则12n n s ⊕=,因为1,2,3,..1p -除以p 的余数两两相异,且(),2,3,..1a a a p a -除以p 的余数两两相异,故()()1!23,..1(mod )p a a a p a p ⎡⎤-≡⨯⨯⨯-⎣⎦,故11mod p a p -≡,故(mod )s a bc p ≡,而(mod )(mod ),n a b c p bc p ≡⊗=其中02n p ≤≤-,故s n =即()log()log()log()a a a p b c p b p c ⊗=⊕.【小问3详解】当2b ≥时,由(2)可得11mod p b p -≡,若1b =,则11mod p b p -≡也成立.因为log()a n p b =,所以()mod na b p ≡.另一方面,()()()()()22,2,,,2121n p n p n p k k y y y y x b a --⊗-⊗⊗⊗⊗≡≡⊗()()()()()()()()112211mod mod k k kn p k p k k p xb a xb b x bx p x p -----≡≡≡≡≡.由于x X ∈,所以()2,21n p x y y -⊗=⊗.【点睛】关键点睛:本题的关键是充分理解新定义,然后结合带余除法以及费马小定理等初等数论知识即可顺利得解.。
年南京外国语学校高中招生考试数学冲刺试题(一)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某种生物孢子的直径为0.000 63 m ,用科学记数法表示为( ).A .0.63×10-3 mB .6.3×10-4 mC .6.3×10-3 mD .6.3×10-5 m 2.下列多项式能用平方差公式因式分解的是( ).A .a 2 + b 2B .-a 2-b 2C .(-a 2)+(-b )2D .(-a )2 +(-b )2 3.P 是反比例函数图象上的一点,P A ⊥y 轴于A ,则⊥POA 的面积等于( ). A .4 B .2 C .1 D .4.在⊥ABC 中,⊥C = 90︒,AC = 4,BC = 3,则⊥ABC 外接圆的半径为( ). A .B .2C .D .3 5.若关于x ,y 的方程组有无数组解,则a ,b 的值为( ).A .a = 0,b = 0B . a =-2,b = 1C . a = 2,b =-1D . a = 2,b = 1 6.汽车由绵阳驶往相距280千米的乐山,如果汽车的平均速度是70千米/小时,那么汽车距乐山的路程s (千米)与行驶时间t (小时)的函数关系用图象表示应为( ).A .B .C .D . 7.已知弓形的弦长为4,弓形高为1,则弓形所在圆的半径为( ). A . B .C .3D .4 8.右图是一个几何体的三视图,根据图中数据,可得该 几何体的表面积是(球的表面积公式为4πR 2)( ).xy 2=212325⎩⎨⎧=+-=++012,01y bx ay x 325t /小Os /千米4 280t /小Os /千米4 280t /小Os /千米4 280t /小Os /千米4 280俯视主视图左视图2 32 2A .9πB .10πC .11πD .12π9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( ).分数 5 4 3 2 1 人数2010303010A .B .C .3D .10.若二次函数y = x 2 +(k 2-1)x + k -1与x 轴的两个交点关于原点对称,则k 的值为( ). A .1或-1 B .1 C .-1 D .0 11.如图,边长为1的正方形ABCD 绕点A 逆时针旋转 30︒ 到正方形AB ′C ′D ′,图中阴影部分的面积为( ). A .1-B .C .1-D .12.小明按如图所示设计树形图,设计规则如下:第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成120°的线段,长度为其一半;第三层按第二层的方法,在每一条线段的前端生成两条线段;重复前面的作法作到第10层.则树形图第10层的最高点到水平线的距离为( ). A .B .C .D .2二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.若︱x ︱= 6,则 x = . 14.函数中自变量x 的取值范围是 . 15.如果对任意实数x 不等式ax >b 都成立,那么实数a 、b 的取值情况是 . 16.矩形纸片ABCD 中,AD = 9,AB = 12,将纸片折叠使A 、C 两点重合,那么折痕长的是 .35102583333432111024170410241705102412-=x xy ABCDD ′C ′B ′30︒CP第一层 第二层 第三层 第四层17.如图,在小山的东侧A 庄有一热气球,由于受西风的影响, 以每分钟35 m 的速度沿着与水平方向成75︒的方向飞行,40 min 时 到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30︒,又在A 庄测得山顶P 的仰角为45︒.则A 庄与B 庄的距离为 ,山高是 . (保留准确值)18.如果有2009名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1、…… 的规律报数,那么第2009名学生所报的数是 .三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤. 19.(本题共2个小题,每小题8分,共16分)(1)先化简,再求值:(a 2b -2ab 2-b 3)÷ b -(a + b )(a -b ),其中,b = 1.(2)解不等式组: 并把解集在数轴上表示出来.21-=a ⎪⎩⎪⎨⎧-≥+-<-,221,132x x x20.(本题满分12分)六一国际儿童节时,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图⊥所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图⊥的频数分布直方图. 根据以上信息解答下列问题:(1)从图⊥中,可以看出人均捐赠图书最多的是 年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?21.(本题满分12分)一个家庭有3个孩子.(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.九年级 35%八年级七年级 35%图⊥八 年 级 九 年 级O七 年 级 年级人均捐65 4.5图⊥22.(本题满分12分)如图,⊥ABC 中,点D 、E 分别在边AB 、 AC 上,连接DE 并延长交BC 的延长线于点,连接DC 、BE ,若 ⊥BDE +⊥BCE = 180 .(1)写出图中三对相似三角形;(注:不再添加字母和线) (2)请在你所找出的相似三角形中选取一对,说明它们 相似的理相由.23.(本题满分12分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560 + 48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = )购地总费用建筑总面积CDA BEF24.(本题满分12分)如图甲,直线P A 交⊥O 于A 、E 两点,P A 的垂线CD 切⊥O 于点C ,过点A 作⊥O 的直径AB . (1)求证:AC 平分∠DAB ;(2)如图乙,将直线CD 向下平行移动,得到CD 与⊥O 相切于C ,AC 还平分∠DAB 吗?说明理由;(3)在将直线CD 向下平行移动的过程中,如图丙、丁,试指出与∠DAC 相等的角(不要求证明).甲 乙 丙 丁OBE AP CDED C F OBAAD C FOB E CDOBE A25.(本题满分14分)在矩形AOBC 中,OB = 4,OA = 3.分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B ,C 重合), 过F 点的反比例函数(k >0)的图象与AC 边交于点E . (1)求证:⊥AOE 与⊥BOF 的面积相等;(2)记S = S ⊥OEF -S ⊥CEF ,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将⊥CEF 沿EF对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.xkyBMNECF AOxyBECF AOxy参考答案一.1.B 2.C 3.C 4.C 5.B 6.C 7.B 8.D 9.B 10.C 11.A 12.C 二.13.±6 14. x ≠±1 15.a = 0,b <0 16. 17. 1400m , 700(-)m 18.1三. 19.(1)原式=(a 2-2ab -b 2)-(a 2-b 2)=-2ab =-2×()×1 = 1. (2)-1≤x <2 20.(1)八.(2)九年级的学生人数为1200×35% = 420(人),捐赠图书 420×5 = 2100(册). (3)七年级的学生人数为1200×35%= 420(人),捐赠图书 420×4.5 = 1890(册). 八年级的学生人数为1200×30%= 360(人),捐赠图书为360×6 = 2160(册). 全校大约共捐赠图书为 2100 + 1890 + 2160 = 6150(册). 答:估计九年级共捐赠图书2100册,全校大约捐赠图书6150册. 21.用“树状图”列出所有结果为:共有(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,女,女),(女,女,男),(女,男,女),(女,男,男)八种可能的情形. ⊥ 这个家庭有2个男孩和1个女孩的概率为,这个家庭至少有一个男孩的概率. 445262218387男女男女 男女男 女男女男 女男女22.(1)⊥ADE ⊥⊥ACB ,⊥AEB ⊥⊥ADC ,⊥CEF ⊥⊥DBF (2)证明略 23.设楼房每平方米的平均综合费为y 元,则(x ≥10,x 是整数)=≥2000. 当且仅当,得 x = 15,y 取最小值2000. 所以为了楼房每平方米的平均综合费最少,该楼房应建为15层. 24.(1)连结OC .⊥ OA 、OC 是⊥O 的半径,⊥ OA = OC ,得 ⊥OAC =⊥OCA . ⊥ CD 切⊥O 于点C ,⊥ CD ⊥OC .又 ⊥ CD ⊥P A , ⊥ OC ⊥P A ,于是得⊥P AC =⊥OCA , 故 ⊥OAC =⊥P AC ,表明AC 平分∠DAB . (2)AC 平分∠DAB .连结OC . ⊥ CD 切⊥O 于C ,⊥ CD ⊥OC .又 ⊥ AD ⊥CD ,⊥ OC ⊥AD ,于是得⊥COB =⊥DAB . 而 OA = OC ,所以 ⊥CAO =⊥ACO ,因此 ∠DAC =⊥ACO =⊥CAO ,表明AC 平分∠DAB . (3)∠DAC =∠BAF .25.(1)设E (x 1,y 1),F (x 2,y 2),⊥AOE 与⊥BOF 的面积分别为S 1,S 2, 由题意得 k = x 1y 1,k = x 2y 2.⊥ S 1 =x 1y 1 =k ,S 2 =x 2y 2 =k , ⊥ S 1 = S 2,即⊥AOE 与⊥BOF 的面积相等. (2)由题意知:E ,F 两点坐标分别为 E (,3),F (4,), ⊥ S ⊥CEF =CE ·CF =(4-)(3-), 于是 S ⊥OEF = S 矩形OABC -S ⊥OAE -S ⊥OBF -S ⊥CEFxx x x y 10800485602000100002160)48560(++=⨯++=3048)15(48560)225(485602⨯+-+=++x x x x xx 15=212121213k 4k21213k 4k= 12-k -k -S ⊥CEF , ⊥ S = S ⊥OEF -S ⊥CEF = 12-k -2×(4-)(3-), 得 , ⊥ 当 k = 6时,S 有最大值3.(3)设存在这样的点F ,将⊥CEF 沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN ⊥OB ,垂足为N .由题意得 EN = AO = 3,EM = EC = 4-,MF = CF = 3-. ⊥ ⊥EMN +⊥FMB =⊥FMB +⊥MFB = 90︒, ⊥ ⊥EMN =⊥MFB . 又 ⊥ ⊥ENM =⊥MBF = 90︒,⊥ ⊥ENM ⊥⊥MBF , ⊥ EN : MB = EM : MF , 代入值,可得 . ⊥ MB 2 + BF 2 = MF 2, ⊥ ()2 +()2 =(3-)2,解得 . ⊥ BF ==,即存在符合条件的点F ,它的坐标为(4,).2121213k 4k3)6(12112122+--=+-=k k k S 3k 4k49=MB 494k 4k 821=k 4k 32213221。