--第八章单室模型-3血管外给药
- 格式:ppt
- 大小:228.00 KB
- 文档页数:44
生物药剂学与药物动力学第一章生物药剂学概述1、生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学;2、研究生物药剂学的目的:为了正确评价药物制剂质量,设计合理剂型、处方及制备工艺,为临床合理用药提供科学依据,使药物发挥最佳的治疗作用并确保用药的有效性和安全性;3、影响剂型体内过程的剂型因素药物的某些化学性质、药物的某些物理因素、药物的剂型及用药方法、制剂处方中所用的辅料的性质及用量、处方中药物的配伍及相互作用4、影响剂型体内过程的生物因素:种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素第二章口服药物的吸收1、被动转运的特点:1从高浓度侧向低浓度侧的顺浓度梯度转运;2不需要载体,膜对药物无特殊选择性;3不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;4不存在转运饱和现象和同类物竞争抑制现象;2、膜孔转运中分子小于微孔的药物吸收快,如水,乙醇,尿素,糖类等;大分子药物或与蛋白质结合的药物不能通过含水小孔吸收;3、主动转运的转运速率可用米氏Michaelis-Menten方程描述:4、主动转运的特点①逆浓度梯度转运;②需要消耗机体能量;③需要载体参与;④速率及转运量与载体量及其活性有关;⑤存在竞争性抑制作用;⑥受代谢抑制剂影响;部位特异性5、被动转运与载体媒介转运速率示意图,如右图6、胃排空:胃内容物从胃幽门排入十二指肠的过程;7、胃空速率:胃排空的快慢用胃空速率来描述;8③食物的组成;④药物的影响;9、肝首过效应:透过胃肠道生物膜吸收的药物经肝门静脉入肝后,在肝药酶作用下药物可产生生物转化;药物进入体循环前的降解或失活称为“肝首过代谢”或“肝首过效应”;10、避免首过效应的方法:答:①静脉、肌肉注射;②口腔黏膜吸收;③经皮吸收;④经鼻给药;⑤经肺吸收;⑥直肠给药;11、避免首过效应的剂型:①贴剂皮肤给药;②气雾剂和粉雾剂经呼吸道或经鼻黏膜吸收;③口腔粘附片黏膜吸收;12、肠肝循环:指经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象;肠肝循环现象在药动学上表现为药时曲线出现双峰现象;13、引起肠肝循环的因素:现象主要发生在经胆汁排泄的药物中,有些由胆汁排入肠道的原型药物如毒毛旋花子苷G,极性高,很少能再从肠道吸收,而大部分从粪便排出;有些药物如氯霉素、酚酞等在肝内与葡萄糖醛酸结合后,水溶性增高,分泌人胆汁,排入肠道,在肠道细菌酶作用下水解释放出原型药物,又被肠道吸收进入肝脏;14、pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数;胃肠液中未解离型与解离型药物浓度之比是药物解离常数pKa与消化道pH的函数,可用Henderson-Hasselbalch方程表达:弱酸性药物:弱碱性药物:式中C u,C i分别为未解离型和解离型药物的浓度;·当酸性药物的pka值大于消化道体液pH值时通常是酸性药物在胃中,则未解离型药物浓度C u占有较大比例;·当碱性药物pka值大于体液pH值时通常是弱碱性药物在小肠中,则解离型药物浓度C i 所占比例15、评价药物脂溶性大小的参数是油/水分配系数K o/w16、溶出速度可用Noyes-Whitney方程描述:dC dt =DhS(C s−C)dCdt为药物的溶出速度,D未溶解药物的扩散系数,S为固体药物的表面积,h为扩散层厚度,C s为药物在液体介质中的溶解度,C为t时间药物在胃肠液或溶出介质中的浓度;17、漏槽效应:在胃肠道中,溶出的药物不断地透膜吸收入血,形成漏槽状态;18、影响溶出的药物理化性质1药物的溶解度;2粒子大小;3多晶型;4溶剂化物19、崩解时限:用来描述固体制剂在检查时限内全部崩解或溶散成碎粒的过程;20、溶出速率:指在规定溶出介质中,片剂或胶囊剂等固体制剂中药物溶出的速度和程度;21、溶出速率的测定方法:转篮法、桨法、小杯法;22、溶出介质有人工胃液、人工肠液、蒸馏水;第三章非口服药物的吸收1、透皮吸收促进剂:月桂氮卓酮2、影响口腔黏膜给药制剂吸收的最大因素是唾液的冲洗作用;3、药物粒子在气道内的沉积机制:①惯性碰撞;②沉降;③扩散第四章药物的分布1、药物的分布:药物从吸收部位进入血浆后,在血液和组织之间的转运过程;2、影响分布的因素:药物的化学结构、脂溶性、对组织的亲和性、相互作用,血液循环与血管通透性,不同组织的生理结构特征等药物的理化性质和机体的生理特性表观分布容积的意义;3、表观分布容积:用来描述药物在体内分布的程度,表示全血或血浆中药物浓度与体内药量的比例关系;X表示体内药量,C表示相应的血药浓度;4、血浆中的三种蛋白质:白蛋白、α1-酸性糖蛋白、脂蛋白;5、血脑屏障:由单层脑毛细血管内皮细胞形成连续性无膜孔的毛细血管壁,细胞之间存在紧密连接,几乎没有细胞间隙;6、弱碱性药物易透过血脑屏障;7、提高药物脑内分布的方法①对药物结构进行改造;②药物直接给药;③暂时破坏血脑屏障;④利用血脑屏障跨细胞途径⑤通过鼻腔途径给药第五章药物代谢1、代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,其化学结构可发生改变的过程,又称生物转化;代谢主要在肝中进行,也发生在其他器官,如肠、肾、肺、血液和皮肤等;2、代谢的临床意义1代谢使药物失去活性;2代谢使药物活性降低;3代谢使药物活性增强;4代谢使药理作用激活;5代谢产生毒性代谢物;3、药物代谢反应的I相反应包括氧化反应、还原反应和水解反应;4、首过效应:指某些药物经胃肠道给药,在尚未吸收进入血循环之前,在肠粘膜和肝脏被代谢,而使进入血循环的原形药量减少的现象;5、影响药物代谢的因素;1生理因素:种属、种族、年龄、性别、妊娠、疾病等;2剂型因素:给药途径、剂量、剂型、手性药物、药物相互作用等;第六章药物排泄1、排泄:是指体内药物或其代谢物排出体外的过程;肾排泄是许多药物消除的主要途径;2、药物肾排泄包括肾小球滤过、肾小管分泌和肾小管重吸收3、影响肾小管重吸收的因素答:①、药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小;②、尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,肾清除率增加;对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高;③、尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多;4、肾小管的主动分泌机制:阴离子分泌机制和阳离子分泌机制5、测量肾小球滤过:以菊粉清除率为指标,可以推测其他各种物质通过肾单位的变化;6、影响药物胆汁排泄的因素:1排泄机制的影响;2水溶性的影响;3分子量的影响;第七章药物动力学概述1、隔室模型:将整个机体按动力学特性划分为若干个独立的隔室,把这些隔室串接起来构成的的一种足以反映药物动力学特征的模型;2、隔室模型的划分隔室的划分与器官、组织的血流量、膜通透性、药物与组织的亲和力等因素密切相关;只要体内某些部位接受药物及消除药物的速率常数相似,而不管这些部位的解剖位置与生理功能如何;3、一级速率过程特点:①半衰期与剂量无关;②一次给药的血药浓度-时间曲线下面积与剂量成正比;③一次给药情况下,尿排泄量与剂量成正比;4、零级速率过程:指药物的转运速率在任何时间都是恒定的,与药物量或浓度无关;临床上恒速静脉滴注的给药速率以及控释制剂中药物的释放速率即为零级速率过程;5、生物半衰期:指体内药量或血药浓度通过各种途径消除一半所需要的时间,以t1/2表示6、清除率:整个机体或机体内某些消除器官、组织的药物消除率,是指机体或机体内某些消除器官、组织在单位时间内消除掉相当于多少体积的流经血液中的药物;即单位时间内从体内消除的药物表观分布容积;用Cl表示,公式如下:Cl=−dX/dtC=kXC=kV-dX/dt代表机体或消除器官中单位时间内消除的药物量,X为体内药物量,V为表观分布容积,C为血药浓度;第八章单室模型1、单室模型:某些药物进入全身循环后迅速向全身各部位分布,并在血液、组织与体液之间达到分布动态平衡,即动力学上的“均一”状态,因而称为单室模型;2、静脉注射1血药浓度与时间的关系lg C=−k2.303t+lg C0k为一级消除速率常数,C0初始浓度;2基本参数k与Co的求算以上述公式的lg C对t作图,可得一直线k=C0=10ab为直线斜率,a为截距;3生物半衰期t1/2=0.693 k4表观分布容积V=X0 C0X0为静脉注射剂量;3、静脉滴注体内血药浓度C与时间t的关系1稳态血药浓度或坪浓度C ssC ss=k0 kVk0为静脉滴注速率;4、血管外给药1达峰时间t max和峰浓度C maxt max=ln k a−ln k k a−kC max=FX0Ve−kt maxk a一级吸收速率常数,F为吸收率0≤F≤1,X0给药剂量; 2血药浓度-时间曲线下面积AUCAUC=FX0 kV3残数法步骤①根据lg C-t数据,采用线性回归求得尾段直线方程ln C=−kt+ln A或lg C=−k2.303t+lg A,式中,根据斜率求得消除速率常数k、消除半衰期t1/2,根据截距求得A;②将吸收相中的时间代入尾端直线方程,求得尾端直线外推线上血药浓度值;③用外推线上血药浓度值减去吸收相中同一时间点的实测浓度,即得一系列参数浓度C.④根据根据lg C r-t数据,采用线性回归求得残数直线方程ln C r=−k a t+ln A或lg C r=−k a2.303t+lg A,从而根据斜率求得吸收速率常数k a、吸收半衰期;⑤若已知F、X0,根据A可求出V值;第九章多室模型1、α称为分布相混合一级速率常数或快配置速率常数;β称为消除相混合一级速率常数或慢配置速率常数;α和β又称为混杂参数;两者的关系有:α+β=k12+k21+k10αβ=k21k10第十章多剂量给药1、多剂量给药:指药物按一定的剂量、一定的给药间隔,经多次给药后才能达到并保持在一定的有效血药浓度范围内的给药方法;多数疾病的治疗必须采用多次给药方可达到有效治疗目的;2、多剂量函数:n为给药次数,k i为一级速率常数,τ为给药间隔时间;3、达坪分数:指n次给药后,血药浓度C n相当于坪浓度C ss的分数以f ssn表示4、平均稳态血药浓度:当血药浓度达到稳态后,在一个剂量间隔时间内t=0→τ,血药浓度-时间曲线下面积除以间隔时间τ所得的商;用C ss̀表示:5、蓄积系数:指稳态血药浓度与第一次给药后的血药浓度的比值,以R表示;6、波动百分数PF:指稳态最大血药浓度与稳态最小血药浓度之差与稳态最大血药浓度比值的百分数;PF=C maxss−CminssC maxss∗100%7、波动度DF:指稳态最大血药浓度与稳态最小血药浓度之差与平均稳态血药浓度的比值;8、血药浓度变化率:指稳态最大血药浓度与稳态最小血药浓度之差与稳态最小血药浓度比值的百分数;第十一章非线性药物动力学1、非线性动力学特征的药物的体内过程特点1药物的消除不遵循一级动力学,而遵从米氏Michaelis-Menten方程,消除动力学是非线性的;2血药浓度和SUC与剂量不成正比;3药物消除半衰期随剂量增加而延长;4其他药物可能竞争酶或载体系统,其动力学过程可能受合并用药的影响;5药物代谢物的组成和或比例可能由于剂量变化而变化;2、米氏Michaelis-Menten方程−dC为药物在t时间的下降速率,表示消除速率的大小;V m为药物在体内消除过程中理dt论上的最大消除速率;K m为米曼常数,指药物在体内的消除速度为V m的一半时所对应的血药浓度,即当时,K m=C;十二章统计矩分析1、只要药物的体内过程符合线性药物动力学过程,都可以用统计矩分析;2、MRT:代表给药剂量或药物浓度消除掉%所需的时间;3、MDT:药物的平均溶出时间;第十三章药物动力学在临床药学中的应用1、静脉滴注给药方案的设计给药间隔第十四章药物动力学在新药研究中的应用1、生物利用度:指剂型中的药物被吸收进入体循环的速度与程度;有相对生物利用度F rel和绝对生物利用度F abst跟r分别代表受试制剂与参比制剂,iv表示静脉注射给药,X给药剂量;2、生物等效性:指一种药物的不同制剂在相同试验条件下、给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异;——以上由C_D-m整理。
⏹课程内容与基本要求生物药剂学与药物动力学是药学专业的一门主要专业课,其中生物药剂学是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学;药物动力学是应用动力学原理与数学处理方法,定量地描述药物通过各种途径进入体内的吸收、分布、代谢、排泄过程的量时变化或血药浓度经时变化动态规律的一门科学。
本课程教学目的是使学生了解生物药剂学与药物动力学对于新药、新剂型与新制剂的研究与开发及临床合理用药的重要理论和实践意义。
掌握生物药剂学与药物动力学的基本工作原理、基本计算方法和基本实验技能,培养学生分析问题与解决问题的能力,培养学生一定的动手能力,为毕业后从事新药研发和药学服务等专业工作打下必要的基础。
⏹课程学习进度与指导(*为重点章节)第九章多室模型 1 学习课件,理解多室模型特点和识别方法第十章* 多剂量给药 3 学习课件,重点掌握稳态血药浓度的计算第十一章非线性药物动力学 2 学习课件,重点理解特点,机制和识别方法第十二章统计矩分析 1 学习课件,掌握MRT含义及计算第十三章* 药物动力学在临床药学中的应用3 学习课件,重点掌握给药方法设计方法第十四章* 药物动力学在新药研究中的应用3 学习课件,重点掌握第一章生物药剂学概述一、学习目标掌握生物药剂学的定义,剂型因素与生物因素的含义。
熟悉生物药剂学的研究内容和进展,了解生物药剂学研究在新药开发中的作用。
二、学习内容生物药剂学的定义与研究内容;剂型因素与生物因素的含义。
三、本章重点、难点生物药剂学的概念;剂型因素与生物因素的含义。
四、建议学习策略通读教材后观看视频,并复习相关药剂药理知识帮助理解.五、习题一、名词解释1、生物药剂学(Biopharmacutics)2、吸收(absorption)3、分布(distribution)4、代谢 (metabolism) 5、排泄 (excretion) 6、转运 (transport) 7、处置 (disposition) 8、消除 (elimination) 二、简答题1.简述生物药剂学研究中的剂型因素。
P1生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
P2转运、处置、消除:药物的吸收、分布和排泄过程统称为“转运”,而分布、代谢和排泄过程称为“处置”。
代谢与排泄过程药物被消除,合称为“消除”。
P3药物的体内过程关系到“吸收、分布、代谢与排泄”。
P13生物膜液态镶嵌模型:以脂质双分子层为基本结构,是动态的,“蛋白质”分子以不同的方式和不同的深度镶嵌入磷脂双分子层中(流动性和不对称性)P19胃:除一些“弱酸性”药物有效好吸收外,大多数药物吸收较差。
P20小肠:是药物的主要吸收部位,也是药物主动转运吸收的特异性部位。
小肠液的pH约5~7.5是”弱碱性”药物吸收的最佳环境。
P27 pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数的学说。
P30脂溶性:对于主动吸收的药物,其吸收是受载体或酶作用实现转运的。
主动转运药物的吸收也药物脂溶性不相关。
通过细胞旁路转运吸收的药物,脂溶性大小也与其吸收没有直接相关性。
P30溶出速率:溶出是难溶性药物吸收的限速过程。
P33亚稳定型:介于稳定型和无定型之间其熔点较低,具有较高的溶解度和溶出速度。
P35防止药物在胃肠道不稳定的方法有,制成药物的“衍生物”和“前体药物”。
P55促进药物吸收的方法:①提高药物溶出速度②加入口服吸收促进剂一、注射给药P67静脉注射:不存在吸收过程,作用迅速,生物利用度为100%。
静脉注射的容量一般小于50ml,当药物的半衰期较短或需要大容量(100~1000ml)给药时,可采用静脉滴注给药。
P67静脉注射或静脉滴注的药物制剂一般为水溶性或水醇溶液,有时亦为乳剂或脂质体制剂。
P68肌内注射:①药物经肌内注射有“吸收”过程。
毛细血管壁是具有微孔的脂质膜,药物以“扩散”和“滤过”两种方式转运,通过速度快于其他生物膜。
②一般认为药物吸收程度与静脉注射相当。