专题四 高考立体几何命题动向
- 格式:doc
- 大小:280.50 KB
- 文档页数:10
立足立几考纲,把握高考动向一立体几何的考纲要求1.空间几何体:(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.空间点、直线、平面之间的位置关系:(1)理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;(2)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题;(3)以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理,并能够证明相关性质定理;(4)能运用平行、垂直的判定及性质定理证明一些空间图形的平行、垂直关系的简单命题.3. 立体几何与空间向量空间向量及其运算:(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直;立体几何中的向量方法:(1)理解直线的方向向量及平面的法向量;(2)能用向量语言表述线线、线面、面面的平行和垂直关系;(3)能用向量方法证明立体几何中有关线面位置关系的一些简单定理;(4)能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问题;了解向量方法在研究立体几何问题中的应用.近几年,全国卷立体几何考纲要求保持稳定,几乎没有什么变化近五年全国卷17题至22题的考点分布情况如下:二立体几何命题特点和命题趋向从近年来的情况来看,结构为两小题一大题,小题必考三视图问题,以柱体、椎体为主,还常常出现组合体问题。
命题趋势分析:从近三年来的全国试卷来看,立体几何知识的考查比较全面,往往涉及高中高中立体几何数学基础知识的各个方面,同时又注重对于考生的数学能力的考查,试题往往在平凡中体现创新,从而达到有效选材的效果。
有利于高三数学教学回归课本,回归基础---基本知识、基本技能、基本思想方法,基本活动经验复习使用指导:一轮系统复习:坚持教材为主,资料为辅,教师应当帮助、引导学生梳理、把握知识的联系、发展与变化,将点状的知识块状化、网络化,激活学生的思维。
优化学生的认知结构,使网络的知识体系印到每个学生的大脑里二轮专题复习:进一步优化学生的知识结构,强化学生知识之间的联结,数学概念、公式定理的提取,以及知识的交汇和综合。
帮助学生提炼数学方法,感悟数学思想,优化思维结构,以经典的课本问题、高考问题和资料名题为素材,开展变式的教学,一题多解、一题多变、多题一法一理,凸显知识的成长、生成与发展,优化学生的思维空间,积累提出问题、分析问题和解决问题的经验。
三轮临考复习:抓主干知识的“源”和“流”,突出核心概念的理解、重要的数学定理公式的推导,活化网络化的知识结构,在分析问题与解决问题的过程中,检查运用技能,知识方法的缺陷所在。
我们应知道,数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想,数学是关于模式的科学,这反映了数学解题时,需要进行“模式识别”,需要建构标准的模型,往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法。
数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂的问题简单化、陌生的问题熟悉化。
我们要知道,数学题目本身就是“解答这道问题”的信息源,题目中的信息往往通过语言文字、公式符号、数学图形。
以及它们之间的关系间接的告诉我们的。
所以读题、审题一定要逐字逐句看清楚,搞清楚,搞明白,力求从语法结构、逻辑关系、数学含义等方面真正看懂题目,弄清条件是什么(即从何入手)?结论是什么(即向何方向前进)?它们分别和那些知识有联系?从自己掌握的知识模块中提取与之相适应的解答问题的方法,通过已建立的思维链,把知识方法输入大脑,并在大脑里进行整合,找到解题的途径,并注意容易出现错误的点,想出解答方案,只有细致的审题,才能从题目本身获得尽可能多的有用的信息,这是解题思维训练的必经之路,也是提高解答数学问题效益好办法,理应成为我们数学知识,学会数学问题解决的良好习惯。
高考数学复习压抽题专项突破—立体几何的动态问题一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一立体几何中动态问题中的角度问题例1.已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为()A .12,23⎡⎤⎢⎥⎣⎦B.1,219⎡⎢⎣⎦C.2,319⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟)【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',所以QTQ '∠为二面角Q BC D --的平面角.设2QD a =(1233a ≤≤),则QQ a '=,DQ '=,BQ '=,)1122Q T BQ ''==,所以QT ===,所以sin 1QQ aQTQ QT ''∠====由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以1sin ,219QTQ ⎡'∠=⎢⎣⎦,即二面角Q BC D --的正弦的取值范围为1,219⎡⎢⎣⎦.故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是().A.,33⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C.,43⎣⎦D .11,43⎡⎤⎢⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PA C λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系.则11,,022O ⎛⎫⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=-- ⎪⎝⎭ .在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC ,所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()1122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.所以当12λ=时,sin θ取得最大值33,当0λ=或1时,sin θ取得最小值23.所以23sin ,33θ⎡⎤∈⎢⎥⎣⎦.故选A .2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是()A .13B .33C .12D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1,设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0),D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=--- ,DB (1,=1,0),1DC (0,= 1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=- ,1B E // 平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),11AB B E cosθAB B E⋅∴==⋅2a c 1ac 24+⎛⎫≤= ⎪⎝⎭ ,322ac 2∴-≥,1222ac 3∴≤-,sinθ∴==3==≥=.∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则()A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩ ,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==.结合图形可得:1323cos cos ,cos ,n n n n αβ====,12cos cos ,n n γ==∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D .类型二立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是()A .5B .2C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=,MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =,而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点,点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B ,()12,2,2C ,()0,1,2BE = ,()10,2,2BC =,∴点P 到点1C的最短距离:125||5d BC === .故选:A.【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值.【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是()A.3BC.3D.3【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果.【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-r ,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC的距离的最大值为233BN n d n ⋅===.故选C.2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为()A .14,42⎛⎫ ⎪ ⎪⎝⎭B .⎛⎝⎭C .142⎛⎫ ⎪ ⎪⎝⎭D .)4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上,设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED ,同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED ,由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心.由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =.令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<.因为1cos EF O EPE OEθ==,所以172OE EF O E PE ⋅=⋅=,又OE EF <,所以272EF >,即2EF >.综上可知42EF <<.故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是()A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面,∵平面,∴∥平面,故A 正确.又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确.对于B ,当为中点时,四棱锥为正四棱锥,设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则,∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是()A .92B .52C .32D .54【答案】C【解析】建系如图, 正方体的边长为3,则(3E ,0,32,1(0D ,0,3),设(P x ,y ,0)(0x,0)y ,则(3PE x =- ,y -,32,1(PD x =- ,y -,3),12θθ= ,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,32=,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=,即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯= ,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C.【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P 到平面BCD 的距离的最大值,选择公式,可求最值.【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D内(含边界)的动点,且满足tan tan PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是()A .20,3⎛⎤ ⎥⎝⎦B.2,33⎤⎥⎣⎦C .40,3⎛⎤ ⎥⎝⎦D.4,33⎤⎥⎣⎦【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==,因为tan tan PAD PBC ∠+∠=,所以PD PC +=.因为2PD PC CD +=>=,所以点P 的轨迹是以,C D为焦点2a =的椭圆.如下图所示:a =,1c =,1b ==,椭圆的标准方程为:2212x y +=.1(0,1)P 联立22112x x y =⎧⎪⎨+=⎪⎩,解得:22y =±.所以22(1,2P -,32(1,2P .当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长,所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=.当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 211()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=.综上所述:233P ABCD V -≤≤.2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE ' .设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为()A .14B .23C .15112D .518-【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-= ⎪⎝⎭,则111515tan 1sin cos 3222A BCDEV ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)1tan sin cos6ααα=⨯)21cos sin6ααα=-)112cos 21212αα=+-11511sin 2cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,tan 15ϕ⎛= ⎝⎭,∴四棱锥A BCDE '-体积的最大值为1113124-=.故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值;④二面角1P BC D --的大小为定值.其中真命题有()A .1个B .2个C .3个D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥ ,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APD Rt CPB ∴∆∆ ,51102APAD BPBC ∴===,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹【举一反三】1.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积263PMN S =△,则点P 的轨迹长度为()A .269πB .263C .469D .463π【答案】B【解析】如图所示:连接11BC B C O = ,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C ,又11111,BC D C C BC =⊂ 平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥,同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B = ,所以1D B ⊥平面1ACB ,根据题意可知:1116,D B AB B C AC =====1ACB 为正三角形,所以160∠=︒B AC ,所以1122ACB S =⨯= ,设B 到平面1ACB 的距离为h ,因为11B ACB B ABC V V --=,所以111133ACB ACB S h S BB ⋅⋅=⋅⋅ ,所以11ACB ACB S h S BB ⋅=⋅ ,所以(23232342h ⨯⨯=⨯1123h D B ==,所以h BN =,所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMN S MN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 602AO AC =︒==,所以内切圆的半径12633r AO ==<,且3AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于3的圆,圆的周长为463,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为263,故选:B.2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为()A .直线B .椭圆C .圆D .抛物线【答案】D3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于()A .612π+B .2263π+C .20123π+D .22123π+【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱.四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=;又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是().①异面直线AD 与1CB 所成的角为45︒②11DC D M⊥③三棱锥1M DCC -的体积为定值④1AM MD +的最小值为2.A .①②③B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角,可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1,∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1,又△DCC 1的面积为定值12,因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确;④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值,在△D 1A 1A 中,∠D 1A 1A =135°,利用余弦定理解三角形得12AD =,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为()A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D 中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为()A .2B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值.【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC.在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),=,整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=,所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=,即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为()A .1116πB.8C.2D【来源】浙江省五校2021届高三下学期5月联考数学试题【答案】C【解析】正四面体A BCD -,建立空间直角坐标系如图所示,)(22,,,22E C B ⎛ ⎝,设(),,P x y z,()22,,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,),PC x y z =-- .由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩ ,即))220220x x y y z z y ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨-=,即2222220220x x y y z z y z ⎧-+-+-=⎪⎨⎪+=⎩,即222222344240x y z y z ⎧⎛⎛⎛⎪-+-+-= ⎪⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩,22222234424x y z ⎛⎫⎛⎛-+-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球.y z+=表示垂直于yAz平面的一个平面.所以P的轨迹是上述平面截球面所得圆.球心,,442⎛⎫⎪⎪⎝⎭到平面0y z+=的距离为14d=,所以截得的圆的半径4r===,所以截得的圆,也即P点的轨迹的长度为2242rππ=⨯=.故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A .B.C .D.【答案】C【解析】如图所示:三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.6.(2020九江高三一模)在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H、Q、R分别为、的中点,易证平面ACD1∥平面EFGHQR,∵直线D1P与平面EFG不存在公共点,∴D1P∥面ACD1,∴D1P面ACD1,∴P∈AC,∴过P作AC的垂线,垂足为K,则BK=,此时BP最短,△PBB1的面积最小,∴三角形面积的最小值为,故选:C.7.(2020·浙江高三期末)在三棱锥P ABC -中,PA PB PC AB AC BC ======,点Q 为ABC∆所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是A .圆B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=-,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,cos PA PQ PA PQ θ⋅==⋅则()()22222cos 11x y x θ++=+,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+=,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为()A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1).①在Rt △AA C ''中,||tan ||A C A AC AA '''∠'==',因此45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为45≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 45≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则2|||cos ,|2||||BP AC BP AC BP AC '=<'>==',化为2410y y ++=,无正数解,舍去;同理,当点P 位于棱A D ''上时,也不符合条件;③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y,则(0BP = ,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则2|||cos ,|2||||BP AC BP AC BP AC '=<'>==',化为2410y y -+=,01y,解得2y =-(1,2P .④同理可求得棱C D ''上一点(5P -,棱C C '上一点4)P -.而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为()A .B .C .D .不能确定【答案】C【解析】如图所示:∵P A ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA,过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵P A ⊥平面ABC ,∴P A ⊥BC ,∴BC ⊥平面PAE ,∴BC ⊥PE,在Rt △AED ,Rt △PAD ,Rt △PED 中:cos ,cos ,cos ,∴coscoscos <cos ,又均为锐角,∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,AB =Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为()A .45πB .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC -外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥设直线PQ 与平面ABC 所成角为θ,如图所示;则3PA sin PQ PQ ,θ==由题意且θ的最大值是3π,∴332PQ=,解得PQ =即PQ 的最小值为∴AQ A 到BC AQ BC ∴⊥,AB BC ∴== 6BC ;∴=取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R ===∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为()A .B .6C .D【来源】江西省赣州市2021届高三二模数学(理)试题【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC 面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD ,∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =示,11 B M C M +的最小时,1C 、M 、E 三点共线.∴1111||B M C M EM C M EC +=+≥===.故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足3PA PB += ,则PD 的最大值为()A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=> ,所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴233a =,该椭圆的短半轴为33b ==,所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,113333OE OC ===,故点E 正好为椭圆短轴的一个端点,22333CE OC ==,则263DE ==,因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则0,,03E ⎛⎫⎪ ⎪⎝⎭,则2222223423123543333333EP x y y y y y ⎛=+-=-+-+=--+ ⎝⎭,当333933y ⎡=∈-⎢⎣⎦时,2EP 取最大值,即22max3233516393939EP ⎛⎫⎛=-⨯---+= ⎪ ⎪ ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD 的最大值为2103.故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是()A .1B .54C .2D 【来源】北京市朝阳区2021届高三一模数学试题【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D ,设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =- ,()1,1,0AC = ,()10,0,1AA =,所以,0BD AC ⋅=,10BD AA ⋅= ,则BD AC ⊥,1BD AA ⊥,1AC AA A ⋂=,BD ∴⊥平面11AA C C ,此时平面α即为平面11AA C C ,截面面积为1S AA AC =⋅=;②当1t =时,同①可知截面面积为S =;③当01t <<时,()1,1,DP t t =- ,()11,1,1A C =-,1110DP AC t t ⋅=+--= ,1A C PD ∴⊥,则1A C α⊂,设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+= ,可得11z t=>,不合乎题意.设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1A C =- ,()11,1,0A N t =-,11111cos A C A NCA N A C A N⋅∠==⋅则1sin CA N ∠=所以,截面面积为11112sin 2CA NS S A C A N CA N ==⋅∠=<△.综上所述,截面面积的最小值为2.故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为()A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-223cos ,=62(2)112AB AP x y ⇒<>+-=所以点P 的轨迹是椭圆.故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是()AB .233C.2D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥,由//B E D C '',d 为E 到平面ACD '的距离,因为111111333D ACE ACE V S '-=⨯⨯==⨯⨯= ,而2133346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =,故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ' ,所成二面角A DE B '--的平面角为α,则()A .A DB A EC α∠≥∠'≥'B .A EC A DB α∠≥∠'≥'C .A DB A EC α≥∠'∠≥'D .A EC A DBα≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====,在直角三角形ADE 中,255AO ==,因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯=,所以5ON =,5BN OM ==,同理5RC OS ==,5NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯⨯=-,故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯,同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>,故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为()A .三棱锥1P A BD -中,点P 到面1A BDB .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -截得的多边形的面积为3C .直线1PA 与面1A BD 所成角的正弦值的范围为36,33⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -的外接球体积为2π【来源】广东省普宁市2020-2021学年高三上学期期末数学试题【答案】C【解析】对于A 中,由111142323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为112A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由1433h ⨯=,求得233h =,所以A 不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C ,此时三角形11B D C 为边长为的等边三角形,其面积为12⨯B 不正确;对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 的距离为233,当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m PA =,设直线1PA 与平面1A BD 所成角为θ,则sin 33θ∈⎢⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB ===所以三棱锥1P A BD -的外接球的球心为1B D ,所以三棱锥1P A BD -的外接球的体积为343π⨯=,所以D 不正确.故选:C.18.如图,在棱长为1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为()(参考数据:43sin 53,sin 3755== )A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,(1B ,(1A ,()B ,(1C ,(1DB = ,(1A B =- ,(1BC =-,110DB A B ⋅= ,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=,即((2311131132232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =,19B D ==,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,32,02B ⎫⎪⎪⎭,132,02C ⎛⎫⎪ ⎪⎝⎭,()1,,3B P x y =-,()1BC =-,15PB PD +=+,5=+,2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-11111144cos ,,555B P BC x B P BC B P BC ⋅⎡⎤<>===-∈-⎢⎥⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为()A .14B .212C.6D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC ,因为CE ⊂平面BEC ,所以CE ⊥AD ,因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD ,AB +BD =AC +CD =2,显然ABD ACD ≅ ,所以BE =CE .取BC 中点F ,,,BC E AD E F F ⊥∴⊥要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大,因为AB +BD =AC +CD =2,1AB ∴=,,22EB EF ∴====,所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三。
高考全国卷立体几何命题动向分析作者:***来源:《中学生数理化·高考使用》2019年第11期一.近三年试题特点分析题型上,近三年高考全国卷对立体几何的考查题型有选择题、填空题及解答题。
题量上,多数以“两小一大”为主,偶有“一小一大”,如2018年全国I卷有“三小一大”共27分,而2019年全国I卷才“一大一小”共17分,所以说题量并不是固定的,有时有微调。
知识点分布上,小题主要考查点线面的位置关系与数量关系,求体积、面积等知识,部分试题渗透数学文化、实际背景及知识交汇处命题,突出试题的思想性和知识点的实际应用价值,主要考查同学们的直观想象、逻辑推理、数学运算、数学抽象等核心素养。
另外2019年全国9套试卷均未考查三视图,这与新课改中要求删除三视图有一定关系,但2020年高考的命题仍按老课标与老教材进行命题,没有任何信息表明2020年高考不考三视图,因此在备考时一定要注意。
立体几何解答题一般位于17-20题的位置,题型比较常规,第一小题重点考查线线、线面、面面的位置关系的证明,第二小题理科主要考查空间角,文科主要考查求锥体的体积、表面积等问题,要求同学们对基本概念的掌握要清晰,并且具备一定的运算能力。
难度上,小题以容易题和中档题为主,也有压轴小题,比如2018年全国I卷理科第12题,2019年全国I卷理科第12题,2017年全国I卷理科第16题。
解答题基本上是以中档题为主。
二、考查问题分析高考全国卷立体几何的小题主要考查以下几个方面的问题:(1)几何体中的线面位置关系、数量关系,主要情形有:①已知一个球及其内接或外切的几何图形求其中的数量关系;②已知一个多面体中的位置或数量关系求其他的数量关系。
(2)根据某几何体的三视图猜想其几何特征并求该几何体的某个数量关系,主要情形有:①给出几何体的三视图,通过看图、想图和画图得到其直观图,以此确定其几何特征并求其有关数量;②根据三视图的条件确定直观图所表示的几何体的几何特征,计算难度很低,一般是求能反映几何体本身特征的量,并且只要求代公式直接求值。
立体几何考查特点及其新动向立体几何是高考的重要内容,从近几年高考试题可知立体几何高考命题形式比较稳定、难易适中,一般保持着两小一大,重点考查以下四个方面。
其一是空间中直线与直线、直线与平面、平面与平面的位置关系,这部分内容是立体几何的理论基础,尤其是平行、垂直关系的判定和论证是历年高考的重点和热点。
高考试题中考查直线与平面的位置关系,多数是选择题或多项填空题的形式出现。
在解答题中一般以多面体为载体,重点考查直线、平面平行或垂直的位置关系;其次是空间的角和距离,空间图形中各元素间的位置关系都可以用这两个几何量来定量的描述,所以角度和距离是立体几何的基础和核心。
在高考试卷中,每年都至少有一个以角度和距离为内容的选择题或填空题,还有一个是以多面体或球为载体,重点考查如何计算空间中角的大小和距离的解答题;其三是多面体和球的面积和体积问题是每年都要考查的一类问题。
这类问题多在高考的选择题、填空题、解答题中某一小题出现;其四是在立体几何与排列组合、解析几何、函数等知识的交汇处设计综合试题,以体现在知识的交汇处设计试题的命题原则。
在解答立体几何的过程中要注意立体问题平面化,面面问题线面化,线面问题线线化,几何问题代数化;注意掌握立体几何与排列组合、概率、函数、方程、不等式、解析几何等知识的交叉与渗透,不断提高综合运用数学知识和数学思想方法解决数学中的综合问题的能力。
【例1】平面α的斜线AB 交α于点B ,过定点A 的动直线L 与AB 垂直,且交α于点C ,则动点C 的集合是 。
【解析】设'L 与L 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线垂直于这个平面,故过定点A 与L 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上。
【答案】一条直线【例2】(2011·北京高考)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ) A.8B. C.10D.【解析】选 C.该四面体的直观图,如图所示,090B ∠=,P A A B C ⊥面,PA=4,AB=4,BC=3.该四面体的四个面都是直角三角形.四个面的面积分别为 6,8,10.ABC PAB PBC PAC S S S S ∆∆∆∆==== 故最大面积为10.【例3】如下的三个图中,左侧的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如右图(单位:cm )。
立体几何试题的创新动向上虞中学 沈波近几年高考立体几何试题在命题的立意和思路上注重对学生能力的考查,其中包括空间想象能力、逻辑思维能力、归纳推理能力、综合探究能力等等,试题看似平常,但创新知识层出不穷,以下结合试题的命题方向,对试题的创新动向做了归类和总结,希望能给读者带来一些启示。
一、突现新增内容例1.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( ) A. 22B. 32C. 4D. 52解析:结合长方体的对角线在三个面的投影来理解计算。
如图设长方体的高宽高分别为,,m n k ,由题意得=1n ⇒=a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ⇒+≤当且仅当2a b ==时取等号。
故选出答案A.例2.一个多面体的三视图和直观图如图所示,其中M,N 分别是AF,BC 中点 (1) 求证:MN//平面CDEF; (2) 求 MN 与AC 所成角的余弦值。
正视图 侧视图2F解析:(1)连接EC,BF ,则AF,BE 交于点M ,在△ECB 中,M 、N 分别为BE 、BC 的中点,所以MN//EC, 又因为CE ⊆平面EFCD,MN ⊄平面EFCD,所以MN//平面EFCD (2)因为MN//EC ,所以MN 与AC 所成角就是EC 与AC 所成角。
由三视图可知:四边形ABFE,EFCD 为正方形,△ADE 为等腰直角三角形, 所以AE ⊥平面EFCD,故AE ⊥EC, 在△AEC 中,因为EC=22,AC=32 所以36cos ==∠AC CE ACE ,故得MN 与AC 所成角的余弦值为36。
点评:在新课程实施的几个省市中,高考试题都涉及了空间几何体的三视图。
探索高考立体几何命题动向高考中立体几何主要考查学生的空间想象能力,在推理中兼顾考查逻辑思维能力,解决立体几何的基本方法是将空间问题转化为平面问题。
近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。
考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。
其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
本文就是在对新课标思想的深入理解、对最新考纲的深入研究和对近年高考试题细致归纳总结的基础上深入研究,力图揭示立体几何高考命题新动向,为更有效备战高考支招。
一、立体几何命题特点立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体。
通过研究近年各地高考试卷,不难发现有关立体几何的命题较稳定,难易适中,体现出“一小一大”的特点,即1~2道小题,一道大题,占17~22分,小题灵活多变且有一定的难度,其中常有组合体三视图问题和开放型试题;而解答题大多属中档题,其中,在几何体中考查直线与平面的平行与垂直、空间角与距离的计算等。
高考命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展。
二、客观题命题规律第一类:以三视图为载体考查空间想象能力,由几何体的三视图识别几何体,由几何体的三视图得到几何体的直观图,由几何体(组合体)的三视图求几何体的表面积和体积等,成为新课标高考必考的内容。
专题四高考立体几何命题动向高考命题分析立体几何主要包括柱、锥、台、球及其简单组合体的结构特征、三视图,点、直线、平面的位置关系等.高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间中点、线、面位置关系的判断及空间角等几何量的计算,既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.一般来说,选择题、填空题大多考查概念辨析,位置关系探究,空间几何量的简单计算求解等,考查画图、识图、用图的能力;解答题多以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直的探究,关注对条件和结论不完备情形下开放性问题的探究.高考命题特点立体几何在高考中占据重要的地位,通过分析近几年的高考情况,可以发现对立体几何问题的考查已经突破了传统的框架,在命题风格上,正逐步由封闭性向灵活性、开放性转变.因此,如何进一步把握复习的重点,提高复习效率,从而快速地突破立体几何难点是高考复习过程中必须认真考虑的问题.近几年高考对立体几何的考查特点主要表现在以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变:除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查空间角、空间距离、面积、体积等知识,其解题思路也都是“作证——求”,强调作图、证明和计算相结合.(2)从内容上来看,主要考查:①直线和平面的各种位置关系的判定和性质,这类试题一般难度不大,多为选择题和填空题;②计算角的问题,试题中常见的是异面直线所成的角,直线与平面所成的角;③求距离,试题中常见的是点与点之间的距离,点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离,要特别注意解决此类问题的转化方法;④求简单几何体的侧面积和表面积问题,解此类问题时除套用特殊几何体的侧面积和表面积公式外,还可将侧面展开,转化为求平面图形的面积问题;⑤体积问题,要注意解题技巧,如等积变换、割补思想的应用;⑥三视图,要能辨认空间几何体的三视图,高考中三视图常与表面积、体积相结合.(3)从能力上来看,着重考查空间想象能力,即对空间几何体的观察分析和抽象的能力,要求“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术.高考动向透视空间几何体的结构、三视图、直观图本部分在新课标高考中的考查重点是以三视图为命题背景来研究空间几何体的结构特点和求解几何体的表面积和体积.备考中,要熟悉一些典型的几何体(如三棱柱、长(正)方体、三棱锥等)的三视图.近年的新课标高考的命题重点和热点依然是以选择题、填空题的方式考查以下两个方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积.【示例1】►(2010·广东)如图,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC ,且3AA ′=32BB ′=CC ′=AB ,则多面体ABCA ′B ′C ′的正视图(也称主视图)是( ).解析 画三视图时,由内到外CC ′为虚线,且虚线所在直线应垂直平分AB ,故选D.答案 D三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化.空间几何体的计算问题本部分是新课标高考考查的重点内容,常以几何体的表面积和体积的计算以及几何体的外接球、内切球的知识为主要命题点进行考查.在备考中要牢记一些典型几何体的表面积和体积的计算公式,以及几何体的棱长与它的内切球、外接球的半径之间的转换关系.【示例2】►(2011·辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥SABC的体积为().A.3 3 B.2 3 C. 3 D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在△SAD和△SBD中,由已知条件可得AD=BD=33x,又因为SC为直径,所以∠SBC=∠SAC=90°,所以∠DCB=∠DCA=60°,在△BDC中,BD=3(4-x),所以33x=3(4-x),所以x=3,AD=BD=3,所以△ABD为正三角形,所以V=13S△ABD×4= 3.故选C.答案 C本题考查空间想象能力、逻辑推理能力和运算能力.本题的难点在于对三棱锥SABC的结构特征的分析判断,其中的体积分割法是求解体积问题时经常使用的方法.【训练】(2011·陕西)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC 上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD =1,求三棱锥DABC 的表面积.(1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥BD ,又DB ∩DC =D ,∴AD ⊥平面BDC ,∵AD ⊂平面ABD ,∴平面ABD ⊥平面BDC .(2)解 由(1)知,DA ⊥DB ,DC ⊥DA ,∵DB =DA =DC =1,DB ⊥DC ,∴AB =BC =CA =2,从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin 60°=32,∴三棱锥DABC 的表面积S =12×3+32=3+32.空间的线面位置关系对于直线与平面的位置关系,高考中主要考查平面的基本性质,考查空间的线线、线面和面面的平行关系与垂直关系的判定并运用平行、垂直的判定定理与性质进行推理论证,一般会以选择题或解答题的形式进行考查.解题的策略:结合图形进行平行与垂直的推理证明,由线线平行或垂直推证出线面平行或垂直,再由线面平行或垂直证明面面平行或垂直.如果是选择题还可以依据条件举出反例否定.【示例3】►(2011·扬州模拟)在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,P A ⊥平面ABCD ,P A =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面P AD ;(2)平面P AD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定点N 的位置;若不存在,请说明理由.(1)证明如图,取PD 中点E ,连接EM 、AE ,∴EM綉12CD,而AB綉12CD,∴EM綉AB.∴四边形ABME是平行四边形.∴BM∥AE.∵AE⊂平面ADP,BM⊄平面ADP,∴BM∥平面P AD.(2)解∵P A⊥平面ABCD,∴P A⊥AB.而AB⊥AD,P A∩AD=A,∴AB⊥平面P AD,∴AB⊥PD.∵P A=AD,E是PD的中点,∴PD⊥AE.AB∩AD=A. ∴PD⊥平面ABME.作MN⊥BE,交AE于点N.∴MN⊥平面PBD.易知△BME∽△MEN.而BM=AE=2,EM=12CD=1,由ENEM=EMBM,得EN=(EM)2BM=12=22,∴AN=22.即点N为AE的中点.在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知图形通过计算证明线线垂直,也可以根据已知的垂直关系证明线线垂直,其中要特别重视平面与平面垂直的性质定理.空间角的计算高考中立体几何的计算主要有两个方面,即空间几何体的表面积、体积的计算,空间角与距离的计算,其中空间角的计算是高考考查考生逻辑推理能力、空间想象能力和运算求解能力的重点.这类试题如果是在选择题或者填空题中出现,则考查简单的空间角的计算,如果是在解答题中出现,则往往是试题的一个组成部分.【示例4】►(2011·湖南)如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,点C在AB上,且∠CAB=30°,D为AC的中点.(1)证明:AC⊥平面POD;(2)求直线OC和平面P AC所成角的正弦值.(1)证明如图,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)解由(1)知,AC⊥平面POD,又AC⊂平面P AC,所以平面POD⊥平面P AC.在平面POD中,如图,过O作OH⊥PD于H,则OH⊥平面P AC.连接CH,则CH是OC在平面P AC上的射影,所以∠OCH是直线OC和平面P AC所成的角.在Rt△ODA中,OD=OA·sin 30°=1 2.在Rt△POD中,OH=PO·ODPO2+OD2=2×122+14=23.在Rt△OHC中,sin∠OCH=OHOC=23.故直线OC和平面P AC所成角的正弦值为23.本题考查垂直关系的证明,线面角的求解及逻辑推理能力、空间想象能力和运算求解能力.试题的难点是第二问的线面角,其中作出线面角是解题的关键,作线面角就是找直线上的点在平面内的射影,一个根本的方法就是通过两个平面互相垂直的性质定理得出点在平面上的射影.空间距离的计算高考试题中直接考查距离求解的不多,但距离是立体几何的重要内容之一,在计算空间几何体的体积、空间角时,往往需要计算距离.距离问题的关键是“垂直”,通过作垂线把求解的距离问题纳入到一个具体的平面图形中进行计算.距离问题也与逻辑推理、空间想象密不可分,是立体几何考查逻辑推理能力和空间想象能力的深化.【示例5】►(2011·重庆)高为2的四棱锥SABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ). A.102 B.2+32 C.32 D. 2解析 设题中的球的球心为O ,球心O 与顶点S 在底面ABCD 上的射影分别是O 1,E ,连接OA ,OB ,OC ,OD ,OS ,则有OA =OB =OC =OD =OS =1,点O 1是底面正方形ABCD 的中心,OO 1∥SE ,且OO 1=OA 2-O 1A 2=12-⎝ ⎛⎭⎪⎫222=22,SE = 2.在直角梯形OO 1ES 中,作OF ⊥SE 于点F ,则四边形OO 1EF 是矩形,EF =OO 1=22,SF =SE -EF =2-22=22.在Rt △SOF 中,OF 2=OS 2-SF 2=1-⎝ ⎛⎭⎪⎫222=12,即O 1E =22.在Rt △SO 1E 中,SO 1=O 1E 2+SE 2=⎝ ⎛⎭⎪⎫222+(2)2=102,选A. 答案 A本小题主要考查了考生的空间想象能力以及如何有效地利用已知条件恰当地将空间问题平面化,从而借助于平面几何知识解决相关问题.【训练】 (2011·北京)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由.(1)证明 因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,所以DE ∥平面BCP .(2)证明 因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE ∥PC ∥FG ,DG ∥AB ∥EF .所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)解 存在点Q 满足条件,理由如下:如图,连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM=QN =12EG ,所以Q 为满足条件的点.空间向量及其运算高考对空间向量的考查主要在立体几何的解答题中进行,试题的一般设计模式是先进行一个线面位置关系的证明,再设计一个求解空间角或距离的问题,第一个问题的意图是考查考生使用综合几何法进行逻辑推理的能力,对于空间角或距离的求解,虽然也可以使用综合几何法解决,但命题者的意图显然不是如此,其真正的意图是考查考生使用空间向量的方法解决立体几何问题的能力.【示例6】►(2011·湖北高考)如图,已知正三棱柱ABCA 1B 1C 1的各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角CAFE 的大小为θ,求tan θ的最小值.解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4). 又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4, 所以tan θ=λ2+163λ=13+163λ2.故0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F与点C1重合时,tan θ取得最小值6 3.本题考查空间垂直关系的证明和二面角的求解及函数思想.本题的空间几何体便于建立空间直角坐标系,而且对于要证明的线线垂直和要求解的二面角正切的最值,使用空间向量的方法有一定的优势.线线垂直就是直线的方向向量的数量积等于零,二面角的大小可以使用两个平面的法向量进行计算,便于建立函数关系式.。
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
分析历届高考试题探讨今年高考立体几何试题的思维动向湖南 曹仁斌从近十年各地高考试题分析,立体几何是每年高考必考内容之一,其题型一般是一个解答题,2至3个填空或选择题.解答题一般与棱柱和棱锥相关,主要考查线线关系、线面关系和面面关系,其重点是考查空间想象能力和推理运算能力,其解题方法一般都有二种以上,并且一般都能用空间向量来求解.下面让我们一起来探讨今年高考立体几何试题的思维动向和解题方法.重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式: 1、求线段的长度:222z y x AB ++==()()()212212212z z y y x x -+-+-=2、求P 点到平面α的距离:||n PN =(N 为垂足,M 为斜足,为平面α的法向量)3、求直线l 与平面α所成的角:|sin |=θ,(l PM ⊂,α⊂M ,为α的法向量)4、求两异面直线AB 与CD 的夹角:||||cos CD AB ⋅=θ5、求二面角的平面角θ:|||cos |2121n n ⋅=θ( 1n ,2n 为二面角的两个面的法向量)6、求二面角的平面角θ:SS 射影=θcos ,(射影面积法)7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x n =为α的法向量,则由方程组⎪⎩⎪⎨⎧=⋅=⋅0,可求得法向量.例1、(2000年)本题主要考查线线关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA=CB=1, ∠BCA=90º,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点, (I )求BN 的长;(II )求异面直线BA 1与CB 1的夹角; (III )求证:A 1B ⊥C 1M. [方法一]:(几何法)解析:(I )∵CA=CB=1,∠BCA=90°,∴AB=2 又∵AN=21AA 1, ∴BN=22AN AB +=3 ( II )如图,作AD ∥BC ,BD ∥AC ,A 1D 1∥B 1C 1,B 1D 1∥A 1C 1, E 、F 分别是AC 、B 1D 1的中点,连结DD 1,EF ,A 1F ,A 1E ,EB ,BF ,A 1B 与 EF 交于O 点,则EF ∥CB 1,A 1F ∥EB ,A 1E ∥BF , ∴四边形A 1EBF 为平行四边形,∴OB 与OE 的夹角等于异面直线BA 1与CB 1的夹角,∵B A 1=6,CB 1=5,BE=521 ∴OBOE EB OB OE ⋅-+=2cos 222θ=1030即异面直线BA 1与CB 1的夹角为1030arccos(III )∵CA=CB=1,A 1M=B 1M , ∴C 1M ⊥A 1 B 1 又AA 1⊥平面A 1B 1C 1, ∴AA 1⊥C 1M∴C 1M ⊥平面ABB 1A 1, 又∵A 1B ⊂平面ABB 1A 1∴ A 1B ⊥C 1M [方法二]:(向量法)解析:(I )如图,以C 点为原点建立直角坐标系, 则B (0,1,0),N (1,0,1),∴ ||=222)01()10()01(-+-+-=3 (II )A 1(1,0,2),B 1(0,1,2),C (0,0,0) =1BA (1,-1,2),=1CB (0,1,2), ∴cos <1BA ,1CB >|CB ||BA |11112223222102)1(1221)1(01++⋅+-+⨯+⨯-+⨯=1030故异面直线BA 1与CB 1的夹角为1030arccos(III )C 1(0,0,2),M (21,21,2),C 1=(21,21,0),A 1(-1,1,-2) AB CDNM A B C D O E F 1111ABCN MA B C 111xyz∴C 1·A 1=21×(-1)+21×1+0×(-2)=0 ∴ A 1B ⊥C 1M例2、本题主要考查线面关系和面面关系等基础知识,同时考查空间想象能力和推理运算能力.如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且,21a AD AF ==G 是EF 的中点,(Ⅰ)求证平面AGC ⊥平面BGC ;(Ⅱ)求GB 与平面AGC 所成角的正弦值. (Ⅲ)求二面角B —AC —G 的大小. [方法一]:(几何法)(Ⅰ)证明:正方形ABCD AB CB ⊥⇒∵面ABCD ⊥面ABEF 且交于AB ,∴CB ⊥面ABEF ∵AG ,GB ⊂面ABEF , ∴CB ⊥AG ,CB ⊥BG 又AD=2a ,AF= a ,ABEF 是矩形,G 是EF 的中点, ∴AG=BG=a 2,AB=2a , AB 2=AG 2+BG 2, ∴AG ⊥BG ∵CG ∩BG=B ∴AG ⊥平面CBG而AG ⊂面AGC , 故平面AGC ⊥平面BGC(Ⅱ)解:如图,由(Ⅰ)知面AGC ⊥面BGC ,且交于GC ,在平面BGC 内作BH ⊥GC ,垂足为H ,则BH ⊥平面AGC , ∴∠BGH 是GB 与平面AGC 所成的角 ∴在Rt △CBG 中a BG BC BG BC CGBGBC BH 33222=+⋅=⋅=又BG=a 2, ∴36sin ==∠BG BH BGH (Ⅲ)由(Ⅱ)知,BH ⊥面AGC作BO ⊥AC ,垂足为O ,连结HO ,则HO ⊥AC , ∴BOH ∠为二面角B —AC —G 的平面角在a BO ABC Rt 2,=∆中在Rt △BOH 中, 36arcsin36sin =∠==∠BOH BO BH BOH 即二面角B —AC —G 的大小为36arcsin[方法二]:(向量法)解析:如图,以A 为原点建立直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ), G (a ,a ,0),F (a ,0,0) (I )证明:略.A B CDEF Gxyz A BCDEFGH O A BCDEFG(II )由题意可得)0,,(a a =,)2,2,0(a a =,)0,,(a a BG -=,)2,0,0(a BC =,设平面AGC 的法向量为)1,,(111y x n =,由⎪⎩⎪⎨⎧=⋅=⋅011n n AG ⎩⎨⎧=+=+⇒0220111a ay ay ax ⎩⎨⎧-==⇒1111y x )1,1,1(1-=⇒n sin 11=θ322⋅=a a 36=(III )因)1,,(111y x n =是平面AGC 的法向量,又AF ⊥平面ABCD ,平面ABCD 的法向量)0,0,(a AF =,得|||||c o s |1AF n ⋅=θ333==aa , ∴ 二面角B —AC —G 的大小为33arccos . [方法三]:(射影面积法) (I )、(II )略(III )过G 作GH ⊥AB ,∵ 平面ABCD ⊥平面ABEF ,∴ △AHC 就是△AGC 在平面ABCD 内的射影,又由(I )可知AG ⊥GC ,知221aBC AH S AHC =⋅=,2321a GC AG S AGC =⋅=, ∴SS 射影=θcos 33322==aa, ∴ 二面角B —AC —G 的大小为33arccos .例3、(1997年) 本题主要考查线线关系、正方体和三棱锥等基础知识,同时考查空间想象能力和推理运算能力.如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明AD ⊥D 1F; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明面AED ⊥面A 1FD 1;()11EDA F 111V ED A F 2AA IV --=的体积,求三棱锥设[方法一]:(几何法)解:(Ⅰ)∵AC 1是正方体, ∴AD ⊥面DC 1. 又D 1F 面DC 1, ∴AD ⊥D 1F.A BCDEFGH(Ⅱ)取AB 中点G ,连结A 1G ,FG .∵ F 是CD 的中点,∴ GF 、AD 平行且相等, 又A 1D 1、AD 平行且相等,∴ GF 、A 1D 1平行且相等,故GFD 1A 1是平行四边形,∴ A 1G ∥D 1F. 设A 1G 与AE 相交于点H,则∠AHA 1是AE 与D 1F 所成的角,∵ E 是BB 1的中点, ∴ Rt △A 1AG ≌Rt △ABE ,∠GA 1A=∠GAH ,从而∠AHA 1=90°, 即直线AE 与D 1F 所成角为直角.(Ⅲ)由(Ⅰ)知AD ⊥D 1F ,由(Ⅱ)知AE ⊥D 1F ,又AD ∩AE=A ,∴ D 1F ⊥面AED .又∵ D 1F 面A 1FD 1,∴ 面AED ⊥面A 1FD 1. (Ⅳ)连结GE,GD 1.∵FG ∥A 1D 1, ∴FG ∥面A 1ED 1, ∵AA 1=2, 面积S △A 1GE=S □ABB 1A 1-2S △A 1AG--S △GBE=23 又GE A F GFD A E ED A F V V V 1111121---== FG S GE A ⋅=13112233111=⋅⋅=∴-ED A F V [方法二]:(向量法)解析:设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,则D (0,0,0),A (2,0,0),F (0,1,0),E (2,2,1),A 1(2,0,2),D 1(0,0,2), (I) ∵ )0,0,2(=DA ,)2,1,0(1-=F D ,得⋅DA 01=F D ,∴ AD ⊥D 1F; (II)又)1,2,0(=,得||||cos 11F D AE ⋅=θ0||||1=⋅=F D AE∴ AE 与D 1F 所成的角为90° (III) 由题意:)0,0,2(11=A D ,设平面AED 的法向量为)1,,(111y x n =,设平面A 1FD 1的法向量为)1,,(222y x n =,由⎪⎩⎪⎨⎧=⋅=⋅0011n n DA ⎪⎩⎪⎨⎧-==⇒21011y x )1,21,0(1-=⇒n 由⎪⎩⎪⎨⎧=⋅=⋅0021121n A D n F D ⎩⎨⎧==⇒2022y x )1,2,0(2=⇒n得|cos |2121=θ0||||21=⋅=n n∴ 面AED ⊥面A 1FD 1.(Ⅳ)∵AA 1=2,)1,1,2(---=,平面A 1FD 1的法向量为)1,2,0(2=nF D D A S FD A 1112111⋅⋅= 5=, ∴E 到平面A 1FD 1的距离||22n d =53=,15533111=⋅⋅=∴-ED A F V 例4、(2002年)本题主要考查线面关系、二面角和函数极值等基础知识,同时考查空间想象能力和推理论证能力.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直. 点M 在AC 上移动,点N 在BF 上移动,若CM=BN=)20(<<a a .(Ⅰ)求MN 的长; (Ⅱ)当a 为何值时,MN 的长最小; (Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小. [方法一]:(几何法)解:(Ⅰ)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ , 依题意可得 MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形, ∴ MN=PQ. 由已知,CM=BN=a ,CB=AB=BE=1, ∴ AC=BF=2, 21,21a BQ a CP == 即 2a BQ CP == 2222)2()21()1(a a BQ CP PQ MN +-=+-==∴)20(21)22(2<<+-=a a .(Ⅱ)由(Ⅰ),,21)22(2+-=a MN ∴ 当.22,22==MN a 时 ABC D EFM NPQ EF ABCD xyz A 1B 1C 1D 1E即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为.22(Ⅲ)取MN 的中点G ,连结AG 、BG , ∵ AM=AN ,BM=BN ,G 为MN 的中点,∴ AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角,又AG=BG=46,所以,由余弦定理有.31464621)46()46(c o s 22-=⋅⋅-+=α 故所求二面角)31arccos(-=α.[方法二]:(向量法) 解析:如图,建立空间直角坐标系B-xyz ,则A (1,0,0),C (0,0,1),E (0,1,0),F (1,1,0), (I )CA a BC CM BC BM 2+=+= )1,0,1(2)1,0,0(-+=a )21,0,2(aa -= a 2=)0,2,2(aa = -=∴)12,2,0(-=aa ,)20(122<<+-=a a a(II )由(I)知:122+-=a a 21222+⎪⎪⎭⎫ ⎝⎛-=a 所以当22=a 时,MN 的长最小,此时MN=22. (III )由(II )知,当MN 的长最小时,22=a ,此时M 、N 分别是AC 、BF 的中点.取MN 的中点G ,连结AG 、BG ,易证∠AGB 为二面角A-MN-B 的平面角.∵点)21,0,21(M ,点)0,21,21(N ,∴点)41,41,21(G∴)41,41,21(--=,)41,41,21(---=,ABCDEFMNGA B CDEFMNGyxz∴31,cos -=<GB GA ,∴故所求二面角)31arccos(-=α= π-31arccos例5、(2002年)本题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2, D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角;(Ⅱ)求点A 1到平面AED 的距离.[方法一]:(几何法)(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影, 即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC 、DE ,.3,1,2312.,,,,,11=∴==⋅=∈∴∆∴⊥FD EF FD FD FG EF EFD DF G ADB G CDEF ABC DC B A CC E D 中在直角三角形的重心是为矩形平面又的中点分别是.32arcsin.323136sin .3,321,22,2.36321,21所成的角是与平面于是ABD B A EB EG EBG EB B A AB CD FC EG ED ∴=⋅==∠∴===∴===⨯==(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又 AB A ED 1平面⊥∴,设A 1到平面AED 的距离为h , 则ED S h S AB A AED ⋅=⋅∆∆1 .2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AE A 又 .362.36226221的距离为到平面即AED A h =⨯=∴[方法二]:(向量法)(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平ABD所成的A 1ABA B 1角.如图所示建立坐标系,坐标原点为C ,设CA=2a ,则A(2a ,0,0),B(0,2a ,0),D(0,0,1))1,32,32(),1,,(),2,0,2(1a a G a a E a A )1,2,0(),32,3,3(a a a -==∴,032322=+-=⋅∴a ,解之得1=a.37arccos .372131323/14cos ).31,34,32(),2,2,2(1111所成角是与平面ABD B A BG A BA ∴=⋅==∠∴-=-=∴(Ⅱ)由(Ⅰ)有A(2,0,0),A 1(2,0,2),E(1,1,1),D(0,0,1),.,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AED ED E AA ED ED AA 平面又平面⊂⊥⇒⎪⎭⎪⎬⎫=--⋅=⋅=--⋅-=⋅E AA AED 1平面平面⊥⇒∵)0,1,1(=2=3=22=24121111=⋅==∆∆AB A A S S AB A AE A 又,.2621=⋅=∆ED AE S AED由E AA D AED A V V 11--=,ED S h S AB A AED ⋅=⋅⇒∆∆1, 得.3622622=⨯=h .3621的距离为到平面即AED A例6、(2003年).本题主要考查线面关系和四棱柱等基础知识,同时考查空间想象能力和推理能力.已知正四棱柱ABCD —A 1B 1C 1D 1,AB=1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(I )证明EF 为BD 1与CC 1的公垂线; (II )求点D 1到面BDE 的距离. [方法一]:(几何法)(I )证明:取BD 中点M ,连结MC ,FM , ∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D , 又EC=21CC 1,且EC ⊥MC ,y∴四边形EFMC 是矩形 ∴EF ⊥CC 1 又CM ⊥面DBD 1 ∴EF ⊥面DBD 1∵BD 1⊂面DBD 1, ∴EF ⊥BD 1 ,故EF 为BD 1与CC 1的公垂线. (II )解析:连结ED 1,有D BE D D BD E V V --=11由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d , 则S △DBC ·d=S △DBD 1·EF. ∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S 33223222=⨯=∴d ,故点D 1到平面BDE 的距离为332.[方法二]:(向量法)(I )证明:如图建立空间直角坐标系C-xyz ,得B (0,1,0),D (1,0,0),D 1(1,0,2),F )1,21,21(,C 1(0,0,2),E (0,0,1) )2,0,0(),0,21,21(1==∴CC EF ,)2,1,1(1-=BD0,011=⋅=⋅∴BD CC即EF ⊥CC 1,EF ⊥BD 1 故EF 是CC 1与BD 1的公垂线.(II )由(Ⅰ)可知)0,1,1(-=,)1,0,1(-=,)2,0,0(1=DD 设平面BDE 的法向量为)1,,(y x =, 由⎪⎩⎪⎨⎧=⋅=⋅00⎩⎨⎧==⇒⎩⎨⎧=+-=+-⇒11010y x x y x )1,1,1(=⇒===⇒3|2|1d 332,故点D 1到平面BDE 的距离为332.例7、(2003年)本题主要考查线面关系、面面关系和正四棱柱的基本知识,同时考查空间想象能力、逻辑思维能力和运算能力.如图,ABCD —A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点. (Ⅰ)证明BD 1∥平面C 1DE ; (Ⅱ)求面C 1DE 与面CDE 所成的二面角θ. [方法一]:(几何法)(Ⅰ)证明:记D 1C 与DC 1的交点为O ,连结OE.∵O 是CD 1的中点,E 是BC 的中点,∴EO ∥BD 1.∵BD 1⊄平面C 1DE ,EO ⊂平面C 1DE , ∴BD 1∥平面C 1DE.(Ⅱ)解:过C 作CH ⊥DE 于H ,连结C 1H.在正四棱柱ABCD —A 1B 1C 1D 1中,C 1C ⊥平面ABCD ,∴∠C 1H ⊥DE , ∴∠C 1HC 是面C 1DE 与面CDE 所成二面角的平面角. ∵DC=2,CC 1=1,CE=1, ∴52121222=+⨯=⋅=DE CE CD CH ,∴25521tan 11===∠CH C C HC C ,即面C 1DE 与面CDE 所成的二面角为arctan25 [方法二]:(向量法)解析:如图所示,以D 为坐标原点建立坐标系,则D (0,0,0),A (2,0,0), B (2,2,0),C (0,2,0), D 1(0,0,1),C 1(0,2,1),E (1,2,0),(Ⅰ)证明:∵ )1,2,2(1--=BD ,)0,2,1(=DE ,)1,0,1(1-=E C , ∴ )0,2,1(1=+E C DE )1,0,1(-+=(2,2,-1) ∵)1,2,2(1--=BD =[-(2,2,-1)]= -(C 1+), 又∵ BD 1⊄平面C 1DE , ∴ BD 1∥平面C 1DE(Ⅱ)解:由题意知,)0,2,1(=DE ,)1,2,0(1=DC ,平面CDE 的法向量)1,0,0(1=DD ,设平面C 1DE 的法向量为)1,,(y x =,由⎪⎩⎪⎨⎧=⋅=⋅001DC n DE ⎩⎨⎧=+-=+⇒01202y y x ⎪⎩⎪⎨⎧-==⇒121x y )1,21,1(-=⇒AB C Dxyz A 1B 1C 1D 1E得=cos θ32231100=⨯++=,∴ 面C 1DE 与面CDE 所成的二面角θ=arccos 32.例8、(2004年春)本题主要考查线线关系、线面关系和棱锥等基本知识,同时考查空间想象能力、逻辑思维能力和运算能力.如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (I )求证BC ⊥SC ;(II )求面ASD 与面BSC 所成二面角的大小;(III )设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.图1 [方法一]:(几何法)(I )证法一:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC. ∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC.证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC. ∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D , ∴BC ⊥平面SDC ,∴BC ⊥SC.(II )解法一:∵SD ⊥底面ABCD ,且ABCD 为正方形, ∴可把四棱锥S —ABCD 补形为长方体A 1B 1C 1S —ABCD ,如图2面ASD 与面BSC 所成的二面角就是面ADSA 1与面BCSA 1所成的二面角, ∵SC ⊥BC ,BC//A 1S , ∴SC ⊥A 1S ,又SD ⊥A 1S ,∴∠CSD 为所求二面角的平面角.在Rt △SCB 中,由勾股定理得SC=2,在Rt △SDC 中, 由勾股定理得SD=1.∴∠CSD=45°.即面ASD 与面BSC 所成的二面角为45°. 解法二:如图3,过点S 作直线,//AD l l ∴在面ASD 上,ACDM S∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角. (以下同解法一)(III )解法一:如图3, ∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形. 又M 是斜边SA 的中点, ∴DM ⊥SA.∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影. 由三垂线定理得DM ⊥SB. ∴异面直线DM 与SB 所成的角为90°. 解法二:如图4,取AB 中点P ,连结MP ,DP.在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP , 又,25)21(1,222=+==DP DM ∴在△DMP 中,有DP 2=MP 2+DM 2, ︒=∠∴90DMP 即异面直线DM 与SB 所成的角为90°. [方法二]:(向量法)解析:如图所示,以D 为坐标原点建立直角坐标系, 则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0), M (21,0,21), ∵ SB=3,DB=2,SD=1,∴ S (0,0,1),(I )证明:∵ )0,0,1(-=,)1,1,0(-=)0,0,1(-=⋅)1,1,0(-⋅=0 ∴ ⊥,即BC ⊥SC .(II )设二面角的平面角为θ,由题意可知平面ASD 的一个法向量为)0,1,0(=DC ,设平面BSC 的法向量为)1,,(y x =,由⎪⎩⎪⎨⎧=⋅=⋅00⎩⎨⎧=-=-⇒001x y ⎩⎨⎧==⇒01x y )1,1,0(=⇒,A BC DMSxyz得=θcos 2221010=⨯++=,∴ 面ASD 与面BSC 所成的二面角为45°. (III )设异面直线DM 与SB 所成角为α,∵ )21,0,21(=DM ,SB=(-1,-1,1),得=cos α0322|21021|=⨯++-=∴ 异面直线DM 与SB 所成角为90°.。
高考数学试题中立体几何的命题趋势及解题模式研究海南华侨中学 黄玲玲纵向观察近几年高考数学试题中对立体几何的考查,空间向量的内容普遍在中学开设和广泛应用,考生对于传统立体几何难题——异面直线成角、直线与平面成角、二面角和点到平面的距离的求解等,由于有了空间向量这个撒手锏,在心理上已经不畏惧了,似乎立体几何问题一下子由较难问题变为中档偏易问题.但可谓魔高一尺,道高一丈,近几年立体问题似乎又在变脸,空间向量这个撒手锏已经不是那么好使用了,空间直角坐标系不能很好地赋予到所给的图形上,即使能建立空间直角坐标系,总有点的坐标无着落处于未知状态.立体几何命题趋势近几年越来越在综合考查:空间想象能力,代数方程思想、平面解析几何或向量的方法,存在性的探究,回归长方体模型和长方体与外接球的关系,对传统的题目的图形进行视角变幻、图形的元素的增减变幻.横向观察每年全国十几份试题对立体几何考查的定位是不全相同,但对立体几何的考查的思路是相互影响的,如2008年的填空题和选择题有好几份试题对长方体的对角线与三度棱或三组面的关系、长方体与它外接球的关系进行了考查,也有好几份试题把代数思想的考查与考查空间想象力综合在一起.只有认真研究高考数学试题中立体几何命题趋势,才能把握立体几何的命题脉络,看准命题的走向,研究可能出现的试题的解题模式.做到未雨绸缪才能决胜变幻莫测的考场,基于此,本文谈一谈高考数学试题中立体几何命题的趋势与其解题模式研究.立体几何的命题趋势1. 函数与方程的思想、平面解析几何或向量的方法在立体几何命题中,常常考查通过设未知数,利用方程与函数的思想,能把未知数解出来,这样才能找到关键的元素——点的位置,线段的长度,利用函数与方程的思想解题能起到四两拔千斤的作用.如2008年全国理科一卷第18题:四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C ADE --的大小.【解析】:本题解答为了突出函数与方程的思想、平面解析几何或向量的方法,采用公理体系的方法解答,设AB AC =m =,由于侧面ABC ⊥底面BCDE ,因此作等腰△ABC 的中垂线AF ,由平面与平面垂直的性质定理知,直线AF ⊥平面BCDE ,连结FD ,要证明AD CE ⊥,由三垂线定理知,只需证明FD CE ⊥,利用平面几何的知识证明FD CE ⊥,是好想不好表述,如果改用平面解析几何知识来证明1DF CE k k =-或平面向量知识来证明0DF CE =,是好想又好表述.在求某平面内的线段与线段的垂直和夹角,点到直线的距离,除了传统的平面几何和三角知识外,改用平面解析或平面向量用为一种运算的手段和求解的方法也是很好的.不难证明平面ABC ⊥平面ABE ,用C K A B ⊥于K ,则C E K ∠是CE 与平面ABE 所成的角,可以算出CK =AB CK BC AF ==,得2m =,取AC 的中点N ,则BN ⊥平面ADC ,作矩形EBNH ,则N C D H 也为矩形,设CH AD G =,由AD CE ⊥,EH AD ⊥得EGC ∠是二面角C AD E --的平面角,23AC CD CG AD ==,GH =,GE =3=,CE =定理,cos EGC ∠=,即二面角C AD E --的大小为π-. 再如2008年海南、宁夏理科试题第18题,如图,已知点P 在正方体''''ABCD A B C D -的对角线'BD上,060PDA ∠=(Ⅰ)求DP 与'CC 所成角的大小;(Ⅱ)求DP 与平面''AA D D 所成角的大小.如果考虑设未知数,利用向量的知识来解题问题就迎刃而解了.【解析】利用空间几何知识和空间向量知识都能很简捷解答本题,关键是算出点P 到三个平面AD '、DC '和DB 的距离关系,一旦这个问题解决了,其他问题就迎刃而解了.特别用空间几何知识解题,要想到长方体的模型作用.本题属于考查线面、线线成角的基本概念,同量考查了空间想象能力,属于基础题. 如图,以D 为空间直角坐标系原点,以DA 为单位长建立空间直角坐标系D xyz -,∵点P 在正方体ABCD A B C D ''''-的对角线BD '上,∴设(),,P a a x ,又∵()1,0,0DA =,(),,DP a a x =,∴DA DP a =,2DP a =1DA =,∴1cos 2PDA ∠==,解之x =,即(),DP a a =. (Ⅰ)∵()0,0,1CC '=,∴2D P C C a'=,22DP a a ==,1CC '=,∴2cos ,DP CC '==,∴,45DP CC '=, 即DP 与CC '所成的角为45;(Ⅱ)∵平面ADD A ''的法向量为()0,1,0n =,设DP 与平面ADD A ''成角为α, 则1sin 22DP na a DP n α===,∴PDS ∠=30, 即DP 与平面ADD A ''所成的角为30.2. 存在性与探究性问题山东理科第20题是一道可以改成存在性和探究性的题。
校本课题研究: 2012级高考立体几何命题新动向蔡永禄有效的高分备考,必须准确把握高考的最新动向.最新动向的把握是建立在对新课标思想的深入理解、对最新考纲的深入研究和对近年高考试题细致归纳总结基础上的.本文就是在深入研究的基础上,力图揭示立体几何高考命题新动向,为高效备考支招.一、立体几何命题特点立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体.通过研究近年各地高考试卷,不难发现有关立体几何的命题较稳定,难易适中,体现出“一小一大”的特点.即1~2道小题,一道大题,占17~22分,小题灵活多变且有一定的难度,其中常有组合体问题和开放型试题;而解答题大多属中档题,其中,在几何体中考查直线与平面的平行与垂直、空间角与距离的计算等.高考命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展.二、客观题命题规律第一类:点、线、面位置关系的问题直线与平面的位置关系是研究立体几何的核心,主要考查对相关定义、定理的深刻理解,以及对符号语言、图形语言、文字语言三者之间进行转换的能力,以选择题、填空题的形式出现居多,多为判断命题真假、判断充要关系、探求动点轨迹等.第二类:与球有关的组合体问题球与简单多面体的组合体问题,较好地体现了对空间感的考查,在客观题中一直是考查的热点.三、解答题命题规律第一类:以多面体或旋转体为载体, 证明线线、线面及面面的平行与垂直等位置关系或计算空间角和距离证明线、面之间的位置关系常需经过多次转换才能获得解决.这类试题以判断、证明、计算为主要形式来着重考查空间想象能力、逻辑思维能力和计算能力.第二类:空间位置关系(特别是平行与垂直)及其逆向问题或探索性问题逆向问题往往是在条件中已知线面的一些位置关系或已知空间量的大小,要证明或探索另外一些线面的位置关系是否成立.这类问题的一般解决方法是:假设存在,然后运用条件推理计算,若求出,且没有矛盾,则存在,问题解决;若导出矛盾,则否定假设,说明不存在,导出矛盾的过程就是说明理由的过程.这类给考生留有较大探索余地的试题,近年来已成为高考试题的一个新亮点第三类:与函数、三角函数、不等式、导数相关的最值问题与函数、导数、三角函数、不等式结合是立体几何考查的一个新热点,必须密切关注.四、备考策略1.依据考纲,深挖教材,狠抓基础,控制难点,突出重点,形成体系在备考过程中,首先要针对高考要求,结合自己的实际,夯实基础.准确理解和把握空间几何体的结构特征,把握它们的内涵和外延,明确定理的内容、作用等,把知识网络化、系统化.对于重点内容要熟练掌握:如直线与直线,直线与平面,平面与平面的平行、垂直的判定与性质定理,并善于对它们之间位置关系的判定进行相互转化,各种空间角及距离的求解,空间向量的应用等.2.两类方法,两点注意,规范训练,过程落实,不断积累,总结规律几何法(1)求角的问题时,注意紧扣定义,将空间角(异面直线所成角、线面角、二面角)转化为平面上两相交直线所成的角来处理,并可以归纳为:求角先找角,三角形中去解决.若是当余弦值为负值时,异面直线所成角、线面角应取锐角;(2)线面平行与垂直相关的问题,注意转化的思想方法:面面平行(垂直)转化为线面平行(垂直),再转化为线线平行(垂直);(3)在求距离时,即求位于有关点集上任两点间的距离的最小值,可转化为求线段的长度的最小值,而寻求垂足落点的位置是求距离问题的关键.对于距离可归纳为:距离多是垂线段,放到三角形中去计算,若是垂直难作出,等积等高来转化;(4)在计算体积时,要从多方位、多角度看问题,要注意用“换底法”来求其体积,并注意“割补法”的运用,而“等体积法”则是求解立体几何问题的特殊方法,用它可求点到平面的距离,异面直线间的距离,多面体的内切球的半径等.向量法把证明与计算问题都在一定条件下转化为空间向量的计算问题,使复杂问题程序化、公式化.利用空间向量坐标解决立体几何问题的关键是找准位置建立适当的空间直角坐标系或基底,难点是在坐标系中表示已知点(或向量)的坐标,通过向量的坐标运算,实现几何问题代数化.向量法和坐标法解决立体几何问题,为立体几何问题的解决建立了新的角度,是新课标的倡导重点.向量的知识体系可以从向量法和坐标法中体现出来,要从整体上加深理解.3.加强数学思想、方法的训练贯穿于立体几何中的化归思想、分类讨论思想、数形结合思想以及立体几何特有的平移法、模型法、反证法、翻折法、割补法和等积变换法等都极大地丰富了中学数学的思想和方法.由于高考数学加强了对能力的考查,所以在立体几何的备考过程中,应重视空间想象能力、逻辑思维能力、化归转化能力的培养,坚持培养识图、用图的能力,做题时应多画、多看、多想.。
专题四高考立体几何命题动向高考命题分析立体几何主要包括柱、锥、台、球及其简单组合体的结构特征、三视图,点、直线、平面的位置关系等.高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间中点、线、面位置关系的判断及空间角等几何量的计算,既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.一般来说,选择题、填空题大多考查概念辨析,位置关系探究,空间几何量的简单计算求解等,考查画图、识图、用图的能力;解答题多以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直的探究,关注对条件和结论不完备情形下开放性问题的探究.高考命题特点立体几何在高考中占据重要的地位,通过分析近几年的高考情况,可以发现对立体几何问题的考查已经突破了传统的框架,在命题风格上,正逐步由封闭性向灵活性、开放性转变.因此,如何进一步把握复习的重点,提高复习效率,从而快速地突破立体几何难点是高考复习过程中必须认真考虑的问题.近几年高考对立体几何的考查特点主要表现在以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变:除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查空间角、空间距离、面积、体积等知识,其解题思路也都是“作证——求”,强调作图、证明和计算相结合.(2)从内容上来看,主要考查:①直线和平面的各种位置关系的判定和性质,这类试题一般难度不大,多为选择题和填空题;②计算角的问题,试题中常见的是异面直线所成的角,直线与平面所成的角;③求距离,试题中常见的是点与点之间的距离,点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离,要特别注意解决此类问题的转化方法;④求简单几何体的侧面积和表面积问题,解此类问题时除套用特殊几何体的侧面积和表面积公式外,还可将侧面展开,转化为求平面图形的面积问题;⑤体积问题,要注意解题技巧,如等积变换、割补思想的应用;⑥三视图,要能辨认空间几何体的三视图,高考中三视图常与表面积、体积相结合.(3)从能力上来看,着重考查空间想象能力,即对空间几何体的观察分析和抽象的能力,要求“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术.高考动向透视空间几何体的结构、三视图、直观图本部分在新课标高考中的考查重点是以三视图为命题背景来研究空间几何体的结构特点和求解几何体的表面积和体积.备考中,要熟悉一些典型的几何体(如三棱柱、长(正)方体、三棱锥等)的三视图.近年的新课标高考的命题重点和热点依然是以选择题、填空题的方式考查以下两个方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积.【示例1】►(2010·广东)如图,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC ,且3AA ′=32BB ′=CC ′=AB ,则多面体ABCA ′B ′C ′的正视图(也称主视图)是( ).解析画三视图时,由内到外CC′为虚线,且虚线所在直线应垂直平分AB,故选D.答案 D三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化.空间几何体的计算问题本部分是新课标高考考查的重点内容,常以几何体的表面积和体积的计算以及几何体的外接球、内切球的知识为主要命题点进行考查.在备考中要牢记一些典型几何体的表面积和体积的计算公式,以及几何体的棱长与它的内切球、外接球的半径之间的转换关系.【示例2】►(2011·辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥SABC的体积为().A.3 3 B.2 3 C. 3 D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在△SAD和△SBD中,由已知条件可得AD=BD=33x,又因为SC为直径,所以∠SBC=∠SAC=90°,所以∠DCB=∠DCA=60°,在△BDC中,BD=3(4-x),所以33x=3(4-x),所以x=3,AD=BD=3,所以△ABD为正三角形,所以V=13S△ABD×4= 3.故选C.答案 C本题考查空间想象能力、逻辑推理能力和运算能力.本题的难点在于对三棱锥SABC 的结构特征的分析判断,其中的体积分割法是求解体积问题时经常使用的方法.【训练】 (2011·陕西)如图,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥DABC 的表面积.(1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥BD ,又DB ∩DC =D ,∴AD ⊥平面BDC ,∵AD ⊂平面ABD ,∴平面ABD ⊥平面BDC .(2)解 由(1)知,DA ⊥DB ,DC ⊥DA ,∵DB =DA =DC =1,DB ⊥DC ,∴AB =BC =CA =2,从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin 60°=32,∴三棱锥DABC 的表面积S =12×3+32=3+32.空间的线面位置关系对于直线与平面的位置关系,高考中主要考查平面的基本性质,考查空间的线线、线面和面面的平行关系与垂直关系的判定并运用平行、垂直的判定定理与性质进行推理论证,一般会以选择题或解答题的形式进行考查.解题的策略:结合图形进行平行与垂直的推理证明,由线线平行或垂直推证出线面平行或垂直,再由线面平行或垂直证明面面平行或垂直.如果是选择题还可以依据条件举出反例否定.【示例3】►(2011·扬州模拟)在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,P A ⊥平面ABCD ,P A =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面P AD ;(2)平面P AD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定点N 的位置;若不存在,请说明理由.(1)证明如图,取PD 中点E ,连接EM 、AE ,∴EM 綉12CD ,而AB 綉12CD ,∴EM 綉AB .∴四边形ABME 是平行四边形.∴BM ∥AE .∵AE ⊂平面ADP ,BM ⊄平面ADP ,∴BM ∥平面P AD .(2)解 ∵P A ⊥平面ABCD ,∴P A ⊥AB .而AB ⊥AD ,P A ∩AD =A ,∴AB ⊥平面P AD ,∴AB ⊥PD .∵P A =AD ,E 是PD 的中点,∴PD ⊥AE .AB ∩AD =A .∴PD ⊥平面ABME .作MN ⊥BE ,交AE 于点N .∴MN ⊥平面PBD .易知△BME ∽△MEN .而BM =AE =2,EM =12CD =1,由EN EM =EM BM ,得EN =(EM )2BM =12=22,∴AN =22. 即点N 为AE 的中点.在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知图形通过计算证明线线垂直,也可以根据已知的垂直关系证明线线垂直,其中要特别重视平面与平面垂直的性质定理.空间角的计算高考中立体几何的计算主要有两个方面,即空间几何体的表面积、体积的计算,空间角与距离的计算,其中空间角的计算是高考考查考生逻辑推理能力、空间想象能力和运算求解能力的重点.这类试题如果是在选择题或者填空题中出现,则考查简单的空间角的计算,如果是在解答题中出现,则往往是试题的一个组成部分.【示例4】►(2011·湖南)如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,点C在AB上,且∠CAB=30°,D为AC的中点.(1)证明:AC⊥平面POD;(2)求直线OC和平面P AC所成角的正弦值.(1)证明如图,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)解由(1)知,AC⊥平面POD,又AC⊂平面P AC,所以平面POD⊥平面P AC.在平面POD中,如图,过O作OH⊥PD于H,则OH⊥平面P AC.连接CH,则CH是OC在平面P AC上的射影,所以∠OCH是直线OC和平面P AC所成的角.在Rt△ODA中,OD=OA·sin 30°=1 2.在Rt△POD中,OH=PO·ODPO2+OD2=2×122+14=23.在Rt△OHC中,sin∠OCH=OHOC=23.故直线OC和平面P AC所成角的正弦值为23.本题考查垂直关系的证明,线面角的求解及逻辑推理能力、空间想象能力和运算求解能力.试题的难点是第二问的线面角,其中作出线面角是解题的关键,作线面角就是找直线上的点在平面内的射影,一个根本的方法就是通过两个平面互相垂直的性质定理得出点在平面上的射影.空间距离的计算高考试题中直接考查距离求解的不多,但距离是立体几何的重要内容之一,在计算空间几何体的体积、空间角时,往往需要计算距离.距离问题的关键是“垂直”,通过作垂线把求解的距离问题纳入到一个具体的平面图形中进行计算.距离问题也与逻辑推理、空间想象密不可分,是立体几何考查逻辑推理能力和空间想象能力的深化.【示例5】►(2011·重庆)高为2的四棱锥SABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为().A.102 B.2+32 C.32 D. 2解析设题中的球的球心为O,球心O与顶点S在底面ABCD上的射影分别是O1,E,连接OA,OB,OC,OD,OS,则有OA=OB=OC=OD=OS=1,点O1是底面正方形ABCD的中心,OO1∥SE,且OO1=OA2-O1A2=12-⎝⎛⎭⎪⎫222=22,SE= 2.在直角梯形OO1ES中,作OF⊥SE于点F,则四边形OO1EF是矩形,EF=OO1=22,SF=SE-EF=2-22=22.在Rt△SOF中,OF2=OS2-SF 2=1-⎝ ⎛⎭⎪⎫222=12,即O 1E =22.在Rt △SO 1E 中,SO 1=O 1E 2+SE 2=⎝ ⎛⎭⎪⎫222+(2)2=102,选A. 答案 A本小题主要考查了考生的空间想象能力以及如何有效地利用已知条件恰当地将空间问题平面化,从而借助于平面几何知识解决相关问题.【训练】 (2011·北京)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由.(1)证明 因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,所以DE ∥平面BCP .(2)证明 因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE ∥PC ∥FG ,DG ∥AB ∥EF .所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)解 存在点Q 满足条件,理由如下:如图,连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM=QN =12EG ,所以Q 为满足条件的点.空间向量及其运算高考对空间向量的考查主要在立体几何的解答题中进行,试题的一般设计模式是先进行一个线面位置关系的证明,再设计一个求解空间角或距离的问题,第一个问题的意图是考查考生使用综合几何法进行逻辑推理的能力,对于空间角或距离的求解,虽然也可以使用综合几何法解决,但命题者的意图显然不是如此,其真正的意图是考查考生使用空间向量的方法解决立体几何问题的能力.【示例6】►(2011·湖北高考)如图,已知正三棱柱ABCA 1B 1C 1的各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角CAFE 的大小为θ,求tan θ的最小值.解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1).则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4). 又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4, 所以tan θ=λ2+163λ=13+163λ2.故0<λ≤4,得1λ≥14,即tan θ≥ 13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.本题考查空间垂直关系的证明和二面角的求解及函数思想.本题的空间几何体便于建立空间直角坐标系,而且对于要证明的线线垂直和要求解的二面角正切的最值,使用空间向量的方法有一定的优势.线线垂直就是直线的方向向量的数量积等于零,二面角的大小可以使用两个平面的法向量进行计算,便于建立函数关系式.。