第7章图像分割区域新
- 格式:ppt
- 大小:3.97 MB
- 文档页数:99
第7章图象分割与区域提取图像分割就是将图像中不同性质的区域分开,将相同性质且相邻的像素分在同一区域,以便提取感兴趣的目标区域,识别图像的背景和主体,分析其颜色、纹理、形状、位置、大小等特征。
如果把图像看成是像素的集合,则图像分割可用数学方法做如下定义:令集合R代表整个图像区域,对R的分割可看作将R分成若干个满足以下5个条件的非空的子集(子区域)R1, R2, …, Rn:(1);(2) 对所有的i和j,,有;(3) 对i = 1, 2,…, n,有P(Ri ) = TRUE;(4) 对,有;(5) 对i = 1, 2, …, n,Ri是连通的区域。
其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,是空集。
图像分割所依据的像素的性质可以是多方面的,如颜色(灰度)、纹理、位置、变换等方面的性质。
在人们识别图像中的物体时,对图像的区域分割和物体的形状判断,综合利用了像素的各种性质、物体形状的先验知识和逻辑推理等,包括分析像素的颜色和邻域位置关系,检测与判断物体的边缘,利用形状模板对边缘轮廓连接,物体的结构、组成和空间关系等。
人类复杂的心理活动计算机很难模拟,因此图像分割一直是图像处理、图像分析和计算机视觉等领域经典的研究难题之一。
目前,图像分割的方法主要有三类:基于边缘的图像分割、基于像素聚类的图像分割和基于区域的图像分割。
基于边缘的分割是利用对象与背景的明显边缘来提取对象的边缘轮廓,由闭合边缘线围成的区域就是对象的轮廓区域。
基于边缘的分割方法有微分算子、边缘拟合、边界跟踪等,比较适合于分割边缘明显的图像,如卡通图、图形等。
这类方法定位准确,但对噪声敏感,提取的边缘线常常不能闭合。
基于像素聚类的分割是利用图像中像素的共性(如颜色、邻域内的纹理特性、分形维数等)进行聚类,形成具有形似性质的像素聚类区域。
同一对象的像素应该聚类为同一区域,从而实现对象的区域分割。
这类方法应该是图像区域分割的理想方法,但实现的困难在于如何选择像素的性质,有时难以对对象的像素性质进行抽象和描述。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
图像的量化等级反映了采样的质量,数字图像的量化级数随图像的内容及处理的目的差别而不同,低的量化级数只满足于处理简单的线条而对于图像,若线条不明显时,则会产生伪轮廓。