高速PCB设计中终端匹配电阻的放置解析
- 格式:doc
- 大小:39.50 KB
- 文档页数:5
高速PCB设计中终端匹配电阻的放置胡为东1(西安电子科技大学电子工程学院西安 710071)摘要:本文简要的总结了在高速数字设计中串联终端匹配和并联终端匹配的优缺点,并对这两种匹配方式的终端匹配电阻处于不同位置时的匹配效果做了相应的仿真和深入的分析,得出了串联终端匹配电阻对位置的要求没有终端匹配电阻严格这一结论,给出了一些关于终端匹配电阻摆放位置的建议。
为在PCB设计中如何放置终端匹配电阻提供了理论和实践上的指导。
关键词:并联终端匹配串联终端匹配放置Termination Placement in High-SpeedPCB DesignHU Wei-dong(Electronic Engineering of Xidian University . Xi’an 710071)Abstract: This paper gives the advantages and disadvantages of the parallel and series termination in high-speed digital design. Proper simulation and deep analysis are done as terminations are located in different points. A conclusion is got that series terminated circuits are much less affected by placement compromises than parallel terminated circuits , and some suggestions are made on where termination should be located. A theoretic and practical direction is given on how to place the termination in high-speed PCB design.key words: Parallel Termination Series Termination Placement1胡为东,男,1979年11月出生,西安电子科技大学硕士研究生。
PCB阻抗原理深度剖析及实际应用PCN阻抗原理及知识应用01深度好文,建议分享收藏!我们做电子设计,遇到高速电路时会遇到很多问题,也会有很多新名词,比如:过冲,下冲,时延,阻抗,反射等,经过我的反复思考与研究,得到一些心得,跟大家一起分享。
随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。
印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音低的传输信号。
在高速数字电路的PCB设计上,我们设计的产品不管是用到DDR2,还是DDR3内存,不管是PCIE差分还是SATA传输,都用到了高速PCB设计技术,而我们所设计的PCB用了阻抗控制技术后,基本上没有出现是PCB问题跑不通的情况。
要理解高速信号的设计知识,先要从一些基础电子知识说起。
01基础知识导体中的自由电子在电场的作用下定向移动形成电流。
电流方向只是物理学中约定俗成的一个规定,物理上规定电流的方向是正电荷的定向移动的方向或者负电荷的定向移动的反方向。
电流的速度不是电子运动速度,而是电场的速度。
图1:PA6000功率分析仪的电磁抗扰度测试图2:定向移动的电子02电场的传播速度与介质有关电信号的传播速度是与导体周围的介质介电常数有关的,电信号在真空中(指导体周围比较大的范围内都是真空)的传播速度是光速3*10^8 m/s,换算为30 cm/ns 。
在其它的介质中,它的传输速度是不一样的,如果相对介电系数是 Er ,则传播速度为 30/Er^0.5。
例如,在水中,水的相对介电系数是80,所以,传播速度约是真空中的1/9 ,即:30/80^0.5 = 3.35 cm/ns。
在PCB中,FR4的相对介电系数约为4,所以,传播速度是真空中的一半,即:30/4^0.5 = 15 cm/ns。
03传输线的特征阻抗是什么传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。
谈谈嵌入式系统PCB 设计中的阻抗般配与0 欧电阻1、阻抗般配阻抗般配是指信号源也许传输线跟负载之间的一种合适的搭配方式。
依照接入方式阻抗般配有串行和并行两种方式;依照信号源频率阻抗般配可分为低频和高频两种。
〔1〕高频信号一般使用串行阻抗般配。
串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB 走线宽度和长度成反比。
在嵌入式系统中,一般频率大于20M 的信号PCB走线长度大于5cm时都要加串行般配电阻,比方系统中的时钟信号、数据和地址总线信号等。
串行般配电阻的作用有两个:◆ 减少高频噪声以及边沿过冲。
若是一个信号的边沿特别陡峭,那么含有大量的高频成分,将会辐射搅乱,其他,也简单产生过冲。
串通电阻与信号线的分布电容以及负载输入电容等形成一个 RC电路,这样就会降低信号边沿的陡峭程度。
◆ 减少高频反射以及自激振荡。
当信号的频率很高时,那么信号的波长就很短,当波长短得跟传输线长度可以比较时,反射信号叠加在原信号大将会改变原信号的形状。
若是传输线的特色阻抗跟负载阻抗不相等〔即不般配〕时,在负载端就会产生反射,造成自激振荡。
PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。
〔 2〕并行阻抗般配又叫“终端阻抗般配〞,一般用在输入 / 输出接口端,主要指与传输电缆的阻抗般配。
比方, LVDS与 RS422/485 使用 5 类双绞线的输入端般配电阻为 100~120Ω;视频信号使用同轴电缆的般配电阻为 75Ω或 50Ω、使用篇平电缆为 300Ω。
并行般配电阻的阻值与传输电缆的介质有关,与长度没关,其主要作用也是防范信号反射、减少自激振荡。
值得一提的是,阻抗般配可以提高系统的 EMI 性能。
其他,解决阻抗般配除了使用串 / 并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、 CAN总线等。
2、0 欧电阻的作用(1〕最简单的是做跳线用,若是某段线路不用,直接不焊接该电阻即可〔不影响外观〕。
环测威官网:/阻抗控制技术在高速数字电路设计中非常重要,其中必须采用有效的方法来确保高速PCB 的优异性能。
PCB上高速电路传输线的阻抗计算及阻抗控制•传输线上的等效模型图1显示了传输线对PCB的等效影响,这是一种包括串联和多电容,电阻和电感(RLGC 模型)的结构。
串联电阻的典型值在0.25至0.55欧姆/英尺的范围内,并且多个电阻器的电阻值通常保持相当高。
随着PCB传输线中增加的寄生电阻,电容和电感,传输线上的总阻抗被称为特征阻抗(Z 0)。
在线直径大,线接近电源/接地或介电常数高的条件下,特征阻抗值相对较小。
图3示出了具有长度dz的传输线的等效模型,基于该模型,传输线的特征阻抗可以推导为公式:。
在这个公式中,L“传感线”是指传输线上每个单位长度的电感,而C是指传输线上每个单位长度的电容。
环测威官网:/在上面的公式中,Z 0表示阻抗(欧姆),W表示线的宽度(英寸),T表示线的粗细(英寸),H表示到地面的距离(英寸),是指衬底的相对介电常数,t PD是指延迟时间(ps / inch)。
•传输线的阻抗控制布局规则基于上述分析,阻抗和信号的单位延迟与信号频率无关,但与电路板结构,电路板材料的相对介电常数和布线的物理属性有关。
这一结论对于理解高速PCB和高速PCB设计非常重要。
而且,外层信号传输线的传输速度比内层传输速度快得多,因此关键线布局的排列必须考虑这些因素。
阻抗控制是实现信号传输的重要前提。
但是,根据传输线的电路板结构和阻抗计算公式,阻抗仅取决于PCB材料和PCB层结构,同一线路的线宽和布线特性不变。
因此,线路的阻抗在PCB的不同层上不会改变,这在高速电路设计中是不允许的。
本文设计了一种高密度高速PCB,板上大多数信号都有阻抗要求。
例如,CPCI信号线的阻抗应为650欧姆,差分信号为100欧姆,其他信号均为50欧姆。
根据PCB布线空间,必须使用至少十层布线,并确定16层PCB设计方案。
由于电路板的整体厚度不能超过2mm,因此在堆叠方面存在一些困难,需要考虑以下问题:1)。
高速PCB设计新手入门及进阶教程(上)高速PCB设计指南之一----PCB布局,布线,高速设计第一篇PCB布线在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。
一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。
并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
PCB设计之阻抗控制的走线细节举例1.走线的宽度和间距:走线的宽度和间距会直接影响走线的阻抗。
通常情况下,走线的宽度越宽,阻抗越低。
为了控制阻抗,可以在设计软件中使用特定的规则来指定走线的宽度和间距。
例如,对于常见的50欧姆的阻抗控制要求,可以将规则设置为适当的走线宽度和间距。
2.层数的选择:在高速信号传输中,层数的选择也会影响阻抗。
较高的层数可提供更多的走线空间,有助于降低阻抗。
因此,为了阻抗控制,可以选择适当的层数。
在多层PCB设计中,内层走线的间距和宽度也需要综合考虑,以保持阻抗的一致性。
3.地平面的设计:在PCB设计中,地平面的设计是控制阻抗的关键。
地平面应尽可能地平整,并且与走线保持一定的距离。
这样可以减少地平面与走线之间的互电容和互电感,从而提高阻抗的一致性。
为了实现这一点,可以在地平面上设置一些小孔,用于连接不同地层,从而提高地层的连贯性。
4.走线的形状和拐角:走线的形状和拐角也会影响阻抗。
通常情况下,直线和圆弧形的走线对阻抗控制较好,而直角拐弯较差。
在需要进行90度拐角的情况下,可以使用斜角拐弯来减小阻抗的变化。
此外,走线的形状和转角也会对电磁兼容性(EMC)产生影响,在设计时需要综合考虑。
5.信号层和电源/地层的分离:为了阻抗控制,信号层和电源/地层应尽可能地分离。
这样可以减少信号层与电源/地层之间的互电容和互电感,从而提高阻抗的一致性。
在多层PCB设计中,可以选择在信号层之间插入电源/地层,建立一个电源平面或地平面来提供均匀的分布。
6.终端匹配:终端匹配是一种常用的阻抗控制技术。
通过在信号线的起始和终止位置添加合适的电阻、电容等元件,可以达到匹配信号线的阻抗。
例如,可以在信号线的终止位置添加电阻,以匹配信号线和负载之间的阻抗。
终端匹配可以在设计中通过网络分析软件来实现。
综上所述,PCB设计中的走线细节对于阻抗控制至关重要。
通过选择适当的走线宽度和间距、层数、设计合理的地平面、走线的形状和拐角以及合理的终端匹配,可以实现阻抗的一致性,提高信号传输的质量和稳定性。
高速PCB设计时端接串阻的阻值如何确定作者:一博科技。
尊重原创,转载请注明出处。
小伙伴们,有木有发现匹配最好的串联端接电阻的阻值不是50ohm,而是30ohm,如下图。
这是为什么呢?对高速数字电路设计有一定了解的人就知道,其实驱动器本身有内阻,做串联端接匹配时,串联电阻的阻值和驱动内阻加起来大致等于传输线阻抗就可以了,即R_(D)+R_T≈Z_0。
这个时候,有童鞋可能就要跳起来了,MR'S,你说的倒是容易,我也知道驱动内阻RD加串联电阻等于传输线阻抗这个公式,大家都知道,soeasy啊,问题在于,传输线阻抗可以很轻松的在datasheet找到,可是驱动器内阻上哪儿去找,datasheet上又没有?下图是一个简单的驱动电路。
当驱动器持续输出高电平时,PMOS管导通,NMOS关闭,电流流经PMOS输出,这个时候电流感受到的驱动内阻RD是PMOS管的导通电阻RP;反之,当电流持续输出低电平时,电流感受到的驱动内阻RD就是NMOS管的导通电阻RN。
一般情况下,PMOS管的导通电阻RP比NMOS管的导通电阻RN要大,这是它们的工艺所决定的,从上一篇(2)中,我们可以知道,输出高电平时,其RC时间常数会大,上升沿更缓。
有时候,我们看到信号的上升沿比下降沿要更缓一些,就是这个原因啦。
下面,我们来看一下怎样得到驱动内阻的阻值?先使用仿真工具搭建两个简单的电路,如下:以XilinxV7芯片DDR2驱动为例,在图a的驱动端中加入上升沿驱动(PMOS导通),通过50ohm电阻下拉到地,通过电阻分压的原理,即V_meas=50/(50+R_P)×V_CC,可以求的RP的值。
在图b中驱动端加入下降沿驱动(NMOS导通),通过50ohm电阻上拉到VCC,通过电阻分压的原理,即V_meas=R_N/(50+R_N)×V_CC,可以求得RN的值。
下图是仿真得到的波形:通过计算可以得到,RP=12.1ohm,RN=10.8ohm,两个阻抗值相差不大,选取任何一个值来计算端接电阻,都可以。
高速PCB设计的基本常识(一)、电子系统设计所面临的挑战随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。
目前约50% 的设计的时钟频率超过50MHz,将近2020的设计主频超过12020z。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到12020z时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。
只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。
信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。
反之,反射信号将在信号改变状态之后到达驱动端。
如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。
下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。
但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。
匹配电阻串联与并联信号完整性问题的真正起因是不断缩减的信号上升和下降的时间,使得PCB板上的每一条布线由理想的导线转变成为复杂的传输线。
如今传输线效应已经成为制约高速信号数字系统能否正常工作最关键的因素。
高速PCB互联信号线构成了传输线, PCB信号线如果有阻抗不匹配的地方就会出现信号的反射。
在典型的数字系统中,驱动器的输出阻抗Zs通常小于PCB信号线的特征阻抗Z0。
而PCB信号线互联信号线的Z0也总是小于接收器的输入阻抗ZL.这种阻抗的不匹配就会导致设计系统中信号反射的出现,并可能引起错误的触发从而导致最终数据的错误1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。
串联匹配不要求信号驱动器具有很大的电流驱动能力。
串联终端匹配后的信号传输具有以下特点:A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播;B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。
C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。
传输线的特性阻抗是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。
而且特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。
可以通过特殊的仪器来测量在TTL和CMOS的输出阻抗会随电平大小的变化而变化,因此在TTL或CMOS电路中,不可能十分准确的做到阻抗完全匹配,只能折衷考虑。
串联匹配是最常用的终端匹配方法,它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。
高速PCB设计中的阻抗匹配阻抗匹配阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。
反之则在传输中有能量损失。
在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。
PCB走线什么时候需要做阻抗匹配?不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。
导线延时一般取值为150ps/inch。
特征阻抗信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。
由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。
特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。
特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。
特征阻抗可以使用软件计算。
高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。
一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。
常见阻抗匹配的方式1、串联终端匹配在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。
匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。
常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。
因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。
链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。
串联匹配是最常用的终端匹配方法。
高速PCB布板常见问题高速PCB 布板布板常见常见常见问题问题1.讲座中讲到为了减少寄生电容的影响,要去除运放焊盘下面的地层,这个底层是指地平面吗?如果是的话,如何去除那个焊盘下面的地呢?是的。
焊盘下面的地也要去掉。
2.对于高速AD 采样电路,有模拟和数字电路混合在一起,如何避免地反弹噪声对采样的影响?一般要分割AGND,DGND,然后选择在合适的地方一点接地。
3.在很多的书上看到模拟和数字地和电源的问题,在实际的设计中,我们怎样处理,比如模拟和数字的供电是否需要两个稳压的芯片单独输出,模拟地和数字地最后怎样连接在一起等?一般来说不需要两个单独的稳压芯片,中间加一磁珠就可以了,要尽量避免数字部分的噪声耦合到模拟部分。
对于低速精密系统来说,一般采用模拟地与数字地单点接地的方法,具体可以参考评估板;对于高速而言,为了最小的电流回路,一般不具体分模拟地与数字地,也就是只采用一个地平面。
4.1、如何减少数字信号对模拟信号的干扰?尤其是模拟小信号,如:微安电流脉冲。
2、在多通道模拟输出中,如何减少通道与通道之间的串扰?以及实现通道的高阻状态,即未接通通道不被干扰的问题?1.一般情况,通过分开模拟地和数字地,还有分开模拟电源以及数字电源,可以减少数字对模拟信号的干扰。
2。
一般情况下,未接通道是否高阻由片子本身决定,多通道系统中,尽量减少通道间平行走线的长度并用地将其隔开都能减少通道间的串扰。
5.对电源分割,能不能提供一些指导性建议你好,对于电源分割,你可以参考/doc/417482798.html,/en/DCcList/0,3090,760%255F%255F62,00.html中的High SpeedDesign Techniques里面的章节。
谢谢6.What problem in digital GND and analogGND connecting together?如果一点共地做的不是很好,会影响信噪比和系统的性能。
探析高速PCB设计中不同频率电路的阻抗匹配及途径摘要:在能量传输过程中,最常见是阻抗匹配。
进行数据传输的线路阻抗需要在数值上与负载阻抗基本一致,由此在传输过程中阻止反射作用的发生,此时主要由负载吸收产生的一切能量。
否则,预示着能量在传输中发生了损失。
高速PCB 设计工作中,信号的质量好坏直接与阻抗匹配相关。
本文以高速 PCB 设计中存在的阻抗匹配问题为研究对象,通过分析高速 PCB 阻抗的产生原理,分别介绍了高频电路、低频电路中阻抗匹配的原则,论述了阻抗匹配常采用的串联或者并联电阻的手段。
最后,以具体实例分析了高频电路中阻抗匹配时选用串联或者并联匹配需要注意的适用原则,即串联匹配要靠近源端,而并联匹配则需要靠近负载。
关键词:高速PCB;阻抗匹配;频率一、阻抗匹配产生首先,选择直流电压源中负载方面的内容。
任意电压器件内部都会存在内阻因素,所以在实际工作中常把电压源看作为一个理想的电压源串联一个电阻r的组合样式。
电压源的负载电阻定为R,电动势定义为U,电源的内阻定义为r,在此基础上就可以运算获得电阻R上通过的电流值,即I=U/(R+r)。
当电源的负载电阻R值变小时,其输出电流变大。
负载R上的电压可以表示为UO=IR=U[1+(R/ r)]。
可以得出,如果负载电阻R变大,那么其输出电压值UO就会变高。
那么,电阻R上消耗的功率为:对于已经给定的信号源,其内阻r是固定的,其负载电阻R可以根据需要自行选择。
(R-r)(R-r)/R中,如果R=r,(R-r)(R-r)/R能够获得最小值0,此时负载电阻R获得的最大输出功率为Pmax=UU/(4r)。
换句话说,在数值上,如果负载电阻和信号源内阻基本一致,那么在此负载上可以得到最大的输出功率。
上述结论在低频电路与高频电路中一样可以应用。
二、不同频率电路中的阻抗匹配2.1低频电路中的阻抗匹配处于低频电路时,通常不会对传输线互相匹配问题考虑过多,一般只权衡负载和信号源间的实际情况。
高速PCB设计中终端匹配电阻的放置胡为东1(西安电子科技大学电子工程学院西安 710071)摘要:本文简要的总结了在高速数字设计中串联终端匹配和并联终端匹配的优缺点,并对这两种匹配方式的终端匹配电阻处于不同位置时的匹配效果做了相应的仿真和深入的分析,得出了串联终端匹配电阻对位置的要求没有终端匹配电阻严格这一结论,给出了一些关于终端匹配电阻摆放位置的建议。
为在PCB设计中如何放置终端匹配电阻提供了理论和实践上的指导。
关键词:并联终端匹配串联终端匹配放置Termination Placement in High-SpeedPCB DesignHU Wei-dong(Electronic Engineering of Xidian University . Xi’an 710071)Abstract: This paper gives the advantages and disadvantages of the parallel and series termination in high-speed digital design. Proper simulation and deep analysis are done as terminations are located in different points. Aconclusion is got that series terminated circuits are much less affected by placement compromises than parallelterminated circuits , and some suggestions are made on where termination should be located. A theoretic andpractical direction is given on how to place the termination in high-speed PCB design.key words: Parallel Termination Series Termination Placement 胡为东,男,1979年11月出生,西安电子科技大学硕士研究生。
pcb阻抗匹配总结
PCB阻抗匹配总结。
在PCB设计中,阻抗匹配是一个非常重要的概念。
阻抗匹配是
指在电路中确保信号传输的阻抗与信号源和负载的阻抗相匹配,以
避免信号反射和损耗,从而确保信号的高质量传输。
在PCB设计中,阻抗匹配通常是指确保传输线的特性阻抗与信号源和负载的阻抗相
匹配。
阻抗匹配对于高速数字信号和高频模拟信号的传输非常重要。
如果传输线的阻抗与信号源和负载的阻抗不匹配,就会导致信号反
射和损耗,从而影响信号的稳定性和传输质量。
因此,在PCB设计中,需要特别注意阻抗匹配的问题。
为了实现阻抗匹配,设计师通常需要考虑以下几个方面:
1. 选择合适的传输线类型,不同类型的传输线具有不同的特性
阻抗,如微带线、同轴线等。
设计师需要根据具体的应用需求选择
合适的传输线类型。
2. 控制传输线的宽度和间距,传输线的宽度和间距会影响其特性阻抗,设计师需要通过合理的设计来控制传输线的特性阻抗。
3. 使用阻抗匹配元件,在一些特殊情况下,设计师可以使用阻抗匹配元件来实现阻抗匹配,如阻抗变压器、阻抗匹配电路等。
总的来说,阻抗匹配在PCB设计中起着至关重要的作用。
设计师需要在设计过程中充分考虑阻抗匹配的问题,以确保信号的稳定传输和高质量的性能。
通过合理的选择传输线类型、控制传输线的宽度和间距以及使用阻抗匹配元件,可以有效地实现阻抗匹配,提高PCB设计的质量和可靠性。
PCB堆栈设计中的阻抗匹配技术在PCB(Printed Circuit Board)堆栈设计中,阻抗匹配技术是非常重要的一环。
阻抗匹配指的是将信号线的特征阻抗与传输线上的特性阻抗匹配,以确保信号的有效传输和减少信号反射。
正确的阻抗匹配可以提高信号的传输速率和可靠性,降低噪声,减少串扰,提高整体系统的性能。
首先,要了解信号线的特性阻抗和传输线的特性阻抗。
在PCB设计中,信号线通常采用微带线或者同轴电缆,这两种传输线的特性阻抗是通过线宽、线距和介质常数等参数决定的。
而信号线的特性阻抗是为了匹配传输线的特性阻抗而设计的,通常通过控制线宽、线距和堆叠层厚度等参数来实现。
其次,在PCB堆栈设计中,需要考虑不同信号线之间的阻抗匹配。
在设计多层PCB时,不同信号线可能会通过相同的地层或者电源层,这样就会造成信号线之间的相互影响。
为了避免信号互相干扰或者交叉耦合,需要在PCB堆栈设计中合理安排信号线的走线路径和堆叠层顺序,以减小信号线之间的串扰影响。
此外,还需要考虑器件的布局和连接方式对阻抗匹配的影响。
在PCB设计中,布局合理的器件可以减少信号线的走线长度,降低信号传输过程中的损耗和信号衰减,有助于提高信号的稳定性和传输速率。
同时,正确选择连接方式(如差分传输线、屏蔽传输线等)也可以提升系统的抗干扰能力和抗串扰能力,改善系统的整体性能。
总的来说,在PCB堆栈设计中,阻抗匹配技术是至关重要的一环。
通过合理设计信号线的特性阻抗、匹配传输线的特性阻抗、考虑信号线之间的阻抗匹配、注意器件布局和连接方式等方面,可以有效提升整个系统的性能和可靠性,确保信号的正常传输和稳定工作。
通过不断学习和实践,工程师们可以不断提升自己的阻抗匹配技术水平,为PCB设计和电子系统的性能优化贡献自己的力量。
rgmii pcb设计规则RGMII(Reduced Gigabit Media Independent Interface)是一种常用于以太网物理层接口的标准,用于将以太网MAC层与PHY层之间的数据传输。
在设计RGMII PCB时,需要遵循一些规则和准则,以确保电路板的性能和可靠性。
本文将介绍一些常见的RGMII PCB 设计规则。
1. 时钟信号布线规则:在RGMII接口中,时钟信号是非常重要的,因为它用于同步数据传输。
时钟信号应该被视为差分信号,严格控制时钟和信号线的长度,以保持信号的完整性。
时钟线应该尽量短,并使用相同的长度进行布线,以确保两个时钟边沿的到达时间一致。
2. 线长匹配规则:在RGMII接口中,数据和时钟线应该尽量匹配长度,以确保数据传输的稳定性。
在布线过程中,可以使用层间交叉和微调来调整线长,以确保所有信号线的长度相等或非常接近。
3. 差分对布局规则:在RGMII接口中,数据线和时钟线都是差分信号对。
为了减少信号的串扰和噪声干扰,应将差分信号对保持在一起,并且在布局时应遵循相同的规则。
同时,差分对之间应保持足够的间距,以避免相互之间的干扰。
4. 地线布局规则:在RGMII接口中,地线的布局非常重要。
地线应该尽量短,而且应该与信号线和时钟线保持相等的长度。
地线需要提供充足的回流路径,以确保信号的可靠传输和抑制噪声。
5. 终端电阻规则:在RGMII接口中,终端电阻的布置和选择对信号完整性至关重要。
终端电阻应与信号线和时钟线匹配,并且应正确选择阻值。
通常,常用的终端电阻阻值为50欧姆。
6. 层间堆叠规则:在RGMII PCB设计中,可以使用多层布线来优化信号传输和阻抗控制。
可以将信号线和电源线放置在内层,地线放置在外层,以提供良好的屏蔽和抗干扰能力。
7. 电源和地平面规则:在RGMII PCB设计中,应提供充足的电源和地平面,以确保信号的稳定性和抗干扰能力。
电源和地平面应铺设整个电路板,并使用足够的电源和地连接。
高速PCB设计中终端匹配电阻的放置
胡为东1
(西安电子科技大学电子工程学院西安 710071)
摘要:本文简要的总结了在高速数字设计中串联终端匹配和并联终端匹配的优缺点,并对这两种匹配方式的终端匹配电阻处于不同位置时的匹配效果做了相应的仿真和深入的分析,得出了串联终端匹配电阻对位置的要求没有终端匹配电阻严格这一结论,给出了一些关于终端匹配电阻摆放位置的建议。
为在PCB设计中如何放置终端匹配电阻提供了理论和实践上的指导。
关键词:并联终端匹配串联终端匹配放置
Termination Placement in High-Speed
PCB Design
HU Wei-dong
(Electronic Engineering of Xidian University . Xi’an 710071)
Abstract: This paper gives the advantages and disadvantages of the parallel and series termination in high-speed digital design. Proper simulation and deep analysis are done as terminations are located in different points. Aconclusion is got that series terminated circuits are much less affected by placement compromises than parallelterminated circuits , and some suggestions are made on where termination should be located. A theoretic andpractical direction is given on how to place the termination in high-speed PCB design.
key words: Parallel Termination Series Termination Placement 胡为东,男,1979年11月出生,西安电子科技大学硕士研究生。
主要研究方向:高速板卡和高速PCB 设计及仿真、信号完整性及电源完整性分析。
45-11
1引言
随着半导体工艺的快速发展,信号上升时间愈来愈短,导致信号完整性问题日益突出;另外,器件小型化趋势也日益明显,电路板的面积也越来越小,因此对PCB板的布局要求也日益严格。
这就要求高速PCB设计工程师严格的去考虑各种器件的放置问题,包括滤波电容、匹配电阻等,在提高系统的信号完整性的同时节省印制板面积。
本文利用Mentor公司的Hyperlynx仿真软件对简单并联终端匹配和串联终端匹配方式进行了仿真和分析,研究不同位置的匹配电阻对信号质量的影响。
2 并联终端匹配和串联终端匹配的优缺点
在高速数字设计中,电阻常被用来对传输线进行阻抗匹配,以消除传输线上的反射。
最典型简单的匹配方式有两种:简单并联终端匹配和串联终端匹配。
简单并
联终端匹配电阻与具有极高输入阻抗的接收端并联,并且接地或者电源,以消除接收端的反射,优缺点是能够比较精确的选择匹配电阻的阻值但是将消耗直流功率功耗。
串联源端匹配电阻与小输出阻抗的驱动器串联,以吸收接收端反射回来的信号,此方式的优缺点是不消耗功率但是由于许多驱动器都是非线性的,如TTL器件,其输出阻抗随着器件逻辑状态的变化而变化,从而导致匹配电阻的阻值难以确定。
故在要求低功耗的数字设计中,串联终端匹配方式更常用;并联终端匹配方式更多的使用在模拟电路设计中,以牺牲功耗来满足其高精度的要求。
本文将总结出串联终端匹配方式的另一优点即其匹配电阻在PCB板中对位置的要求没有简单并联终端匹配方式严格。
3匹配电阻位置的变化对信号波形的影响
3.1并联终端匹配情况-匹配电阻位于接收端之前
如图1a所示,我们构建了三组终端匹配的结构。
第一组结构中终端匹配电阻直接与接
收器相连(理想状态,图1a上);第二组结构中终端匹配电阻位于距离终端
0.5in.处(图1a中),即有0.5in.的传输线没有被匹配;第三组结构中终端匹配电阻位于终端1in.处(图1a下)。
驱动器和接收器模型选用Hyperlynx7.0自带的简易IBIS模型:CMOS,3.3V,FAST(该模型驱动波形的上升时间约为1.5ns)。
传输线特征阻抗为92.9欧姆,传输线总长为20in.(约为0.5m左右),总的延迟时间为2.975ns,线宽为6mil。
驱动信号的频率为100MHZ,
45-2
图1b为使用Hyperlynx7.0仿真工具得到的仿真波形,如图所示,有明显延迟的三组波形为接收端波形,其中幅值最低的为匹配电阻位于理想状态时的波形;幅值最高的为匹配电阻位于接收端前1in.处的波形;中间的为匹配电阻位于接收端前0.5in.处的波形。
测得三种情况下接收端电平最大幅值分别为3.4V,3.7V,
4.1V。
从图1b和表1中可以看出终端匹配电阻与接收端之间的距离每增加
100mil,信号过冲就将增加几十毫伏,可见,改变终端匹配电阻的位置的确会给信号质量带来很大的影响,原因是如果匹配电阻距离接收器很远,将有一段可被视为传输线的PCB连线得不到应有的阻抗匹配,从而导致信号在接收端产生反射现象,反射到驱动端的信号将再次反射回接收端,这样就会大大降低了接收端信号的质量。
因此在高速PCB设计中应设法使得这样一个分支长不超过100mil。
表1并联终端匹配电阻位于接收端不同位置时测得的接收端信号最高电压值100200300400500600700800900距离终端
(mil)
344034873543361736923787386539083953电压幅度
(mv)
电压变化
V(i+1)-V(i)100039673.2 并联终端匹配情况-匹配电阻位于接收端之后
当然在具体的PCB设计中,由于种种原因设计者也许无法将终端匹配电阻放置在接收端之前,那么只能将其放置在接收端之后。
在图2a中,上半部分为终端匹配电阻位于理想位置的情形(即直接与接收器相连),下半部分为终端匹配电阻位于接收器之后的情形,匹配电阻与接收器之间有一段1in.长的传输线。
图2b为图2a对应的仿真波形,可见,在
匹配电阻位于接收器之后时,接收端的波形非常接近匹配电阻位于理想位置的波形,只是波形的延迟更大,经测量得到这个延迟近似等于这个电阻与接收器之间的传输线的延迟。
因此可以得出结论,将终端匹配电阻放置在传输线之后几乎不会影响其匹配效果。
在实际的PCB设计中,完全可以采取这种做法以尽可能的使匹配电阻的位置接近理想的状态,这是一种很好的选择。
3.3 串联终端匹配情况
图3a构建了三种源端匹配结构,类似于终端匹配的情形,这三种结构分别为匹配电阻直接与接收器相连(理想情况);与接收器相距0.5in.;与接收器相距
1in.。
图3b为图3a
45-3
相对应的仿真波形。
从波形中可以看出,三种情况下的仿真波形变化不是太大,远没有终
端匹配那样剧烈。
测得三种情况下接收端电平最大幅值分别为:3.256V,
3.266V,3.366V。
从下表2也可以非常明显的看出源端匹配电阻的位置变化并不会给信号质量带来很大的影响。
表2串联终端匹配电阻位于驱动端不同位置时测得的接收端信号最高电压值距离终端
(mil)
325532543255325632663281329833193343电压幅度
(mv)
-1-1111015172124电压变化
V(i+1)-V(i)336623
从前面的分析可知,串联终端匹配电阻主要用于吸收从接收端反射回来的信号,由于接收端输入阻抗很大,可以视为开路,所以信号到达接收端时将产生全反射,反射回的信号能量大部分将被驱动端的匹配电阻和驱动器吸收,因而从驱动端二次反射回来的能量很少,故串联终端匹配电阻适当的远离接收端放置,不会严重的影响接收端的信号质量。
但对于并联终端匹配来说,如果匹配电阻远离接收端放置,接收端之前将有一段传输线得不到匹配,而且驱动端没有串联终端电阻不会吸收掉从接收端全反射回来的能量,因而信号将来回反射,使得接收端信号的质量大大降低。
这是串联终端匹配电阻对位置的要求没有并联终端匹配要求严格的部分原因。
4 结论
通过上文对并联终端匹配电阻和串联终端匹配电阻处于不同位置情形的仿真和分析研究,可以得出结论即串联终端匹配电阻对位置的要求没有并联终端匹配电阻严格,也就是在实际的PCB设计中,可以适当的将串联终端匹配电阻远离驱动器放置而不必担心这样做会给系统的信号完整性带来很大的问题。
另外,仿真结果
显示使用并联终端匹配方式时将匹配电阻放置在驱动器之后也不会对信号波形产生很大的影响。
参考文献
[1] Doug Brooks. Termination Placement in PCB. Design. Mentor Graphics Corporation
Technical Paper Series,2002
[2] Knack, Kella. Debunking High-Speed PCB Design Myths. ASIC & EDA[M] . Los Altos :
James C. Uh1 , July 1993.
45-4。