课时分层作业25 指数函数的概念、图象和性质
- 格式:doc
- 大小:145.50 KB
- 文档页数:5
初中数学知识归纳指数函数的性质与像指数函数是初中数学中一个重要的概念和知识点,它在数学和现实生活中有着广泛的应用。
本文将对指数函数的性质和像进行归纳总结,帮助初中学生更好地理解和掌握这一知识。
一、指数函数的定义和表示方式指数函数是以底数为常数且指数为自变量的函数,一般表示为f(x)= a^x,其中a为底数,x为指数。
指数函数的定义域为全体实数,值域为正实数。
二、指数函数的图像特点1. 当底数a大于1时,指数函数呈现增长的趋势;当0<a<1时,指数函数呈现递减的趋势。
2. 当指数x为正整数时,指数函数的值随着x的增大而增大;当指数x为负整数时,指数函数的值随着x的减小而增大。
3. 当指数x为零时,指数函数的值始终为1。
4. 指数函数的图像经过点(0, 1),且对称于y轴。
三、指数函数的性质1. 指数函数的定义域为全体实数,值域为正实数。
2. 指数函数的性质与底数有关:a)当0<a<1时,指数函数为递减函数;b)当a=1时,指数函数恒为1;c)当a>1时,指数函数为递增函数。
3. 指数函数的性质与指数有关:a)当指数为正数时,函数为增长函数;b)当指数为负数时,函数为递减函数;c)当指数为零时,函数恒为1。
4. 指数函数具有指数运算的性质:a)指数函数的乘方规则:a^m * a^n = a^(m+n);b)指数函数的除法规则:a^m / a^n = a^(m-n);c)指数函数的幂指法则:(a^m)^n = a^(m*n)。
四、指数函数的像指数函数的像指的是函数的值域,即所有可能的函数输出值的集合。
由于指数函数的定义域为全体实数,值域为正实数,因此其像为全体正实数。
五、指数函数的应用指数函数在现实生活中有广泛的应用。
例如,金融领域中的复利计算、物质的衰变过程的描述、人口增长的预测等都可以使用指数函数进行建模和计算。
总结:指数函数是以底数为常数且指数为自变量的函数,其图像特点、性质和像都与底数和指数相关。
专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。
指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log Na x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②l og 1aa =,③lo g Na a N =,④lo g N a aN =。
指数函数的概念与性质指数函数是高中数学中的一个重要概念,它在各个学科中都有广泛的应用。
本文将介绍指数函数的概念,并详细讨论其性质和特点。
一、指数函数的概念指数函数是以底数为常数且指数为变量的函数,通常以f(x) = a^x 的形式表示,其中a为底数,x为指数,a为正数且不等于1。
指数函数是一种具有指数增长或指数衰减特征的函数,其增长速度非常快。
当x增大时,函数值也会迅速增大;当x减小时,函数值会迅速减小。
在实际应用中,指数函数常用于描述人口增长、金融投资、物质衰变等现象。
它具有十分重要的意义。
二、指数函数的性质1. 定义域和值域对于指数函数f(x) = a^x,其定义域为全体实数集R,即指数可以是任意实数。
值域的范围与底数a有关:- 当a>1时,函数的值域为(0, +∞),即正实数集;- 当0<a<1时,函数的值域为(0, 1),即(0, 1)之间的正实数集。
2. 奇偶性指数函数的奇偶性与底数有关:- 当底数a为正数时,指数函数为奇函数,即f(-x) = 1/(a^x) = 1/f(x)。
图像关于原点对称;- 当底数a为负数时,指数函数为偶函数,即f(-x) = a^x = f(x)。
图像关于y轴对称。
3. 单调性当底数a>1时,指数函数是递增函数,即对于任意的x₁ < x₂,有a^(x₁) < a^(x₂);当0<a<1时,指数函数是递减函数,即对于任意的x₁ < x₂,有a^(x₁) > a^(x₂)。
4. 极限性质当x趋向于无穷大时,指数函数具有如下极限性质:- 当a>1时,a^x的极限为正无穷大,即lim(x→+∞) a^x = +∞;- 当0<a<1时,a^x的极限为0,即lim(x→+∞) a^x = 0。
5. 图像特点指数函数的图像特点与底数a的大小有关:- 当0<a<1时,函数的图像在x轴上方,随着x的增大而逐渐趋近于x轴;- 当a>1时,函数的图像在x轴下方,随着x的增大而迅速上升;- 当a=1时,指数函数退化为常数函数,即f(x) = 1。
指数函数的图像和性质指数函数是高中数学中的重要概念,是实数范围内的一类特殊函数。
指数函数的图像和性质对于深入理解数学和应用到实际问题中都有很大帮助。
在本文中,我们将讨论指数函数的图像和性质,以便读者能够更好地理解这一概念。
一、指数函数的定义指数函数是形如y=a^x的函数,其中a为常数且a>0,x为自变量,y为因变量。
其中,a被称为底数,x被称为指数,a和x可以是正数、负数或零。
在指数函数中,底数为正数时,函数值随着指数的增大而变得非常大,函数图像呈指数增长趋势。
底数为1时,函数值始终为1。
底数为小于1的正数时,函数值随着指数的增大而逐渐变小,函数图像呈指数衰减趋势。
底数为负数时,函数图像具有各种特殊性质,需要进行特殊的讨论。
因此,在指数函数的图像和性质中,底数的符号和大小都是重要的因素。
二、指数函数的图像为了更好地理解指数函数的图像,我们可以分别讨论不同底数的指数函数。
1.底数a>1的指数函数当底数a>1时,指数函数呈现指数增长趋势。
例如,y=2^x的函数图像如下所示:(插入一张y=2^x的函数图像)当x等于0时,函数值为1。
随着x的增大,函数的值也增大,但增长速度越来越快。
当x趋近于正无穷小和负无穷时,函数值逐渐趋近于0。
2.底数a=1的指数函数当底数为1时,函数值始终为1,函数图像是一条直线。
例如,y=1^x的函数图像如下所示:(插入一张y=1^x的函数图像)3.底数0<a<1的指数函数当底数0<a<1时,指数函数呈现指数衰减趋势。
例如,y=(1/2)^x的函数图像如下所示:(插入一张y=(1/2)^x的函数图像)当x等于0时,函数值为1。
随着x的增大,函数的值也减小,但衰减速度越来越慢。
当x趋近于正无穷时,函数值逐渐趋近于0。
4.底数a<0的指数函数当底数为负数时,函数图像具有各种特殊性质,需要进行特殊的讨论。
例如,y=(-2)^x的函数图像如下所示:(插入一张y=(-2)^x的函数图像)可以看出,当x为奇数时,函数值为负数,当x为偶数时,函数值为正数。
初中数学知识归纳指数函数的性质和像初中数学知识归纳之指数函数的性质和像一、指数函数的定义和基本性质指数函数是数学中一类特殊的函数,其定义为f(x) = a^x,其中a为正实数且不等于1。
指数函数的主要性质如下:1. 定义域:指数函数的定义域为全体实数。
2. 值域:当a>1时,指数函数的值域为(0, +∞),即正实数集;当0<a<1时,指数函数的值域为(0, 1),即开区间(0, 1)的正实数集。
3. 单调性:当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
4. 与坐标轴的关系:当a>1时,指数函数与x轴交于(0, 1)点且渐近于x轴;当0<a<1时,指数函数在x轴的右侧趋近于0。
5. 奇偶性:指数函数都是奇函数,即f(-x) = 1/f(x)。
6. 连续性:指数函数在其定义域内是连续的。
二、指数函数的性质1. 初值性:当x=0时,指数函数f(x) = a^x的值为1,即f(0) = 1。
2. 指数函数的值比较:当a>1时,若0<x<y,则有a^x<a^y;当0<a<1时,若0<x<y,则有a^x>a^y。
3. 指数函数的乘法性质:a^x * a^y = a^(x+y),即指数函数的底数相同时,幂的乘法等于底数不变,指数相加。
4. 指数函数的除法性质:a^x / a^y = a^(x-y),即指数函数的底数相同时,幂的除法等于底数不变,指数相减。
5. 指数函数的幂次性质:(a^x)^y = a^(xy),即指数函数的指数的乘方等于底数不变,指数相乘。
6. 指数函数的根指性质:(a^x)^(1/x) = a,即指数函数的幂次根指等于底数不变。
三、指数函数的图像指数函数的图像与底数a的大小有关:1. 当a>1时,指数函数的图像呈现递增的指数曲线,随着x的增加,函数值迅速增加。
指数函数及其性质要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩x x时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了.要点诠释:(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。
(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。
当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。
当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。
(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。
要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数?(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫ ⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域例2.求下列函数的定义域、值域.(1)313x xy =+;(2)y=4x -2x+1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x>1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x xx x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域:(1)2-12x y =(2)y =(3)y =0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x-1≥0,即2x≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u;[2]利用复合函数单调性判断方法求单调区间; [3]求值域.设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)x x f x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)xxf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数;当0<a<1时,外层函数y=a u在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。
专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D.2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x ;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________. [解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x,x <0,画出图象,可知选C.4.函数y =a-|x |(0<a <1)的图象是( )A B C D[解析]y =a -|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数, 当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m<n<1,所以y=m x与y=n x都是减函数,故排除A、B,作直线x=1与两个曲线相交,交点在下面的是函数y=m x的图象,故选C.8.若a>1,-1<b<0,则函数y=a x+b的图象一定在()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限[解析]A,∵a>1,且-1<b<0,故其图象如图所示.]9.若函数y=a x+b-1(a>0,且a≠1)的图象经过第二、三、四象限,则一定有() A.0<a<1,且b>0 B.a>1,且b>0C.0<a<1,且b<0D.a>1,且b<0[解析]函数y=a x+b-1(a>0,且a≠1)的图象是由函数y=a x的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a∈(0,1).若经过第二、三、四象限,则需将函数y=a x(0<a<1)的图象向下平移至少大于1个单位长度,即b-1<-1⇒b<0.故选C.10.若函数y=a x+m-1(a>0)的图象经过第一、第三和第四象限,则()A.a>1 B.a>1,且m<0C.0<a<1,且m>0 D.0<a<1[解析]选B,y=a x(a>0)的图象在第一、二象限内,欲使y=a x+m-1的图象经过第一、三、四象限,必须将y=a x向下移动.当0<a<1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a>1时,图象向下移动才可能经过第一、三、四象限.当a>1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m-1<-1,所以m<0,故选B.11.函数f(x)=a x与g(x)=-x+a的图象大致是()[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )[解析]由函数f (x )=(x -a )(x -b )(其中a >b )的图象可知0<a <1,b <-1,所以函数g (x )=a x +b 是减函数,排除选项C 、D ;又因为函数图象过点(0,1+b )(1+b <0),故选A.14.如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系为( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c [解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x =1,在第一象限内直线x =1与各曲线的交点的纵坐标即各指数函数的底数,则1<d <c ,b <a <1,从而可知a ,b ,c ,d 与1的大小关系为b <a <1<d <c . 解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c ,d 的大小,由①②比较a ,b 的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x 轴.15.方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.[解析]作出y =|2x -1|的图象,如图,要使直线y =a 与图象的交点只有一个,∴a ≥1或a =0.16.函数y =a x -3+3(a >0,且a ≠1)的图象过定点________.[解析]因为指数函数y =a x (a >0,且a ≠1)的图象过定点(0,1),所以在函数y =a x -3+3中,令x -3=0, 得x =3,此时y =1+3=4,即函数y =a x -3+3的图象过定点(3,4). 17.函数y =2a x +3+2(a >0,且a ≠1)的图象过定点________. [解析] 令x +3=0得x =-3,此时y =2a 0+2=2+2=4. 即函数y =2a x +3+2(a >0,且a ≠1)的图象过定点(-3,4).18.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解,即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4.所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫13(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}. (2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x ≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x 的定义域为[0,+∞). 5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( ) A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( )A .[0,1)∪(1,+∞)B .(1,+∞)C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1.7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B.8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16,即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x (x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞ [解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x ≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12.12.函数y =⎝⎛⎭⎫1222x x -+的值域是________.[解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1;当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x3x +1的值域是________. [解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。
课时分层作业(二十五)指数函数的概念、
图象和性质
(建议用时:40分钟)
一、选择题
1.若函数y=(a2-4a+4)a x是指数函数,则a的值是()
A.4B.1或3
C.3 D.1
C[由题意得
⎩⎪
⎨
⎪⎧a>0,
a≠1,
a2-4a+4=1,
解得a=3,故选C.]
2.函数y=⎝
⎛
⎭
⎪
⎫1
2
x
(x≥8)的值域是()
A.R B.⎝
⎛
⎦
⎥
⎤
0,
1
256
C.⎝
⎛
⎦
⎥
⎤
-∞,
1
256D.⎣⎢
⎡
⎭
⎪
⎫
1
256,+∞
B[因为y=⎝
⎛
⎭
⎪
⎫1
2
x
在[8,+∞)上单调递减,所以0<
⎝
⎛
⎭
⎪
⎫1
2
x
≤
⎝
⎛
⎭
⎪
⎫1
2
8
=1
256.] 3.函数y=2x-1的定义域是()
A.(-∞,0) B.(-∞,0]
C.[0,+∞) D.(0,+∞)
C[由2x-1≥0得2x≥1,即x≥0,∴函数的定义域为[0,+∞),选C.] 4.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()
A.(0,1) B.(0,-1)
C.(-1,0) D.(1,0)
C[∵f(-1)=a-1+1-1=a0-1=0,∴函数必过点(-1,0).]
5.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )
A B C D
A [当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.]
二、填空题
6.函数f (x )=3x -1的定义域为________. [1,+∞) [由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+
∞).]
7.已知函数f (x )=a x +b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________.
7 [由已知得⎩⎪⎨⎪⎧
a -1+
b =5,a 0+b =4,解得⎩⎨⎧
a =12,
b =3,
所以f (x )=⎝ ⎛⎭
⎪⎫
12x
+3,所以f (-
2)=⎝ ⎛⎭
⎪
⎫12-2
+3=4+3=7.]
8.若函数f (x )=⎩⎨⎧
2x ,x <0,
-2-x
,x >0,则函数f (x )的值域是________. (-1,0)∪(0,1) [由x <0,得0<2x <1;由x >0, ∴-x <0,0<2-x <1, ∴-1<-2-x <0.
∴函数f (x )的值域为(-1,0)∪(0,1).] 三、解答题 9.已知函数f (x )=a x -1
(x ≥0)的图象经过点⎝ ⎛
⎭
⎪⎫2,12,其中a >0且a ≠1. (1)求a 的值;
(2)求函数y =f (x )(x ≥0)的值域. [解] (1)因为函数图象经过点⎝ ⎛⎭⎪⎫2,12, 所以a 2-1=12,则a =1
2. (2)由(1)知f (x )=⎝ ⎛⎭⎪
⎫
12x -1
(x ≥0),由x ≥0,得x -1≥-1.于是0<⎝ ⎛⎭
⎪
⎫
12x -1
≤⎝ ⎛⎭
⎪⎫12-1
=2,
所以函数的值域为(0,2].
10.已知f (x )=9x -2×3x +4,x ∈[-1,2]. (1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.
[解] (1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有1
3≤t ≤9,故t 的最大值为9,t 的最小值为13.
(2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且1
3
≤t ≤9,
故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.
11.函数y =a -|x |(0<a <1)的图象是( )
A B C D
A [y =a -|x |=⎝ ⎛⎭⎪⎫
1a |x |
,易知函数为偶函数,∵0<a <1,∴1a >1,故当x >0时,
函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.]
12.(多选题)若a >1,-1<b <0,则函数y =a x +b 的图象一定在( ) A .第一象限
B .第二象限
C.第三象限D.第四象限
ABC[∵a>1,且-1<b<0,故其图象如图所示.
故函数y=a x+b的图象一定过第一、二、三象限.]
13.若方程|2x-1|=a有唯一实数解,则a的取值范围是________.
{}
a|a≥1或a=0[作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,所以a≥1或a=0.]
14.函数f(x)=
3x
3x+1
的值域是________.
(0,1)[函数y=f(x)=
3x
3x+1
,即有3x=
-y
y-1
,由于3x>0,则
-y
y-1
>0,解得
0<y<1,值域为(0,1).]
15.已知函数f(x)=a x+b(a>0,a≠1).
(1)若f(x)的图象如图①所示,求a,b的取值范围;
(2)若f(x)的图象如图②所示,|f(x)|=m有且仅有一个实数解,求m的范围.
[解](1)由f(x)为减函数可知a的取值范围为(0,1),
又f(0)=1+b<0,所以b的取值范围为(-∞,-1).
(2)由图②可知,y=|f(x)|的图象如图所示.
由图象可知使|f(x)|=m有且仅有一解的m值为m=0或m≥3.。