指数函数的图像及性质
- 格式:doc
- 大小:263.50 KB
- 文档页数:3
指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。
指数函数的性质有:
1.在y 轴上的截距为1。
2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。
如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。
3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。
对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。
对数函数的性质有:
1.在y 轴上的截距为0。
2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。
如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。
3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。
幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。
幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。
2.当n<0 时,幂函数的图像是一条向右开口的曲线。
3.当n=0 时,幂函数的图像是一条水平直线。
4.幂函数的图像在y 轴上的截距为1。
5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。
如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。
6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。
指数函数图像及性质
指数函数图像的特征就是“J”形的曲线,它可用来表示水平和垂直运动的加速度和内能释放。
指数函数可以表示非常多种物理或生物学现象。
指数函数图像具有以下性质:
1. 指数函数图像以指数增长和指数衰减。
即曲线是从左向右张开的,以及从右向左收缩的。
2. 一般情况下,指数函数图像会通过坐标原点(0,0),如果不是,则说明指数函数图像是一条平行曲线。
3. 在每一个定义域,指数函数图像的斜率最大值为1,但是随着x的增加,它的斜率越来越小,趋近于0。
4. 在不同的定义域,指数函数图像的形状也有所不同,一般数学家会把它们分成“快速增长函数”和“减速函数”,其中前者的最大斜率大于1而后者的最大斜率小于1。
5. 对于指数函数图像,从右向左看斜率是负值,而从左向右看又会变成正值。
6. 有时候,指数函数图像会拐到右上或者右下方,这时候说明指数函数正在发挥它的作用。
7. 指数函数的绝对值有三种情况,即增加,减少和突然增加,这种情况受到外部因素的影响。
8. 指数函数图像在平行于y轴的负半轴上,其值会无限接近0,而在平行于y轴的正半轴上,其值会无限增长。
第四章:鬲函数、指数函数与对数函数第二节:指数函数的图像与性质【知识讲解】指数函数定义:一般地,函数〔.>0且awl〕叫做指数函数,其中x是自变量,函数定义域是R.特别注意:指数函数中对常数.的要求是不等于1的正实数.指数函数的图像与性质指数函数y =优在底数a > 1及Ova v 1这两种情况下的图象和性质:注意:〔1〕注意指数函数〕,= "〔“ >0且.工1〕与暴函数y = £.〕的区别〔2〕函数/〔幻=与g〔x〕=〔'〕'的图像关于了轴对称〔.> 0且"W 1〕.a〔3〕指数函数/〔%〕,对任意实数x,y都有f@+y〕 = f〔x〕f〔y〕〔4〕指数函数的图像是以x轴为渐进线值得注意的几个问题〔1〕会根据复合函数的单调性特征“同增异减〞,判断形如〕,=.小〕〔4>0且4W1〕函数的单调性: 〔2〕会根据〕'=优〔4 > 0且“ W 1〕的单调性求形如y = /叫xeD, y = f〔a x\xeD的值域:〔3〕解题时注意“分类讨论〞、“数形结合〞、“换元〞等思想方法的应用.题型1.指数函数定义例1、关于x的以下各函数中,指数函数是:〔〕① y = 3-t② y = 〔a + 1〕' > -1,且a * 0〕③ y = x~y④y = 4 ⑤y = ⑥y =例2,以下函数中, 哪些是指数函数?(2) y = x2:(3) y = -x;(5) y = 2-* (6) y = -2x例3、函数〕,=〔.2-34 + 3,/是指数函数,求.的值.题型2,定义域值域例3、设函数/〔x 〕 = x - 4的定义域是{0,—2,—3,4,5},求函数尸〔x 〕 = ——的定义域.21 — 1例4、91—10・3〞+940,求函数y = (l)~4例1.求函数的定义域与值域:〔1〕汽=卜?严 7 _八3«」〔2〕%=〔—〕. 4的定义域与值域4〔;〕*+2的最大值与最小值.例2,求函数〕,=题型3.图像例1、设a,"c,d都是不等于1的正数,y = = = 在同一坐标系中的图像如下图那么的大小顺序是〔〕A.ci <b<c <dB.a <h<d <cCh <a<d <c D.h <a <c <d例2、〔1〕画出函数y= 3、-1的图像,并指出攵为何值时,方程3〞一1 =左无解?有一解?有二解?〔2〕设函数/〔x〕 = 2i—l,xeR;1〕分别作出函数y = f〔国〕和y = \f〔x〕\的图像.2〕求实数〃的取值范围,使得方程/〔国〕=〃与|/〔x〕|=a都有且仅有两个实数解.例3. (1)作出函数),=2回与y = 2卜r的图像⑵ 设函数/'(X)=2TT-〃7,假设方程/(x) = 0的有实数根,求实数〃?的取值范围.例4.方程2511-4乂5*" + 2〃7-1有实数解,求实数〃?的范围例5、某地区的绿化面积每年平均比上一年增长10.毅,经过x年,绿化面积与原绿化面积之比为y,那么y=f(X) 的图像大致为( )例6、要使函数),=22+机的图像不经过第二象限的机的取值范围()B、rn < -1 C^ m < -2 D、m > -2例7、假设函数/(x) = "—3 + l) (〃>O且〃工1)的图像在第一、三、四象限,那么必有()A、Ovc/vl且Z?>0B、Ovavl且.vO C^且Z?vO D、且.>0题型4.性质:比拟大小、单调性、奇偶性例1、比拟以下各题中两个值的大小:(1) 1.72\1.73(2)0.8-.」.尸(4) 1.1〞与 L/3 ⑸0.5〞与ON (6) 0.7°s 与0.8°7例2.判断或讨论以下函数的奇偶性:⑴ /(x )=「1+6例3、函数/(x) = —(.>0且a +a (1)求/(幻的定义域和值域;(7)设.、b w R : 试比拟〃时与.好的大小.(3) Ohiowa (4) 1.7°\0.931(2) /(x) = a —2 2V + 1〔2〕讨论/〔x〕的奇偶性.〔3〕讨论/〔、〕的单调性.综合:复合函数、分类讨论例1、〔1〕求函数,,=d〕八2、的单调递增区间. 〔2〕求函数〕,=33+2"2的单调区间和值域(3)求函数y=- 的单调区间与值域.< 2 ;(4)函数),=3—+限+.*£火)的值域为R,,求常数a,〃,c满足的条件.例2,函数/“)= (/—1)]在R上是减函数,求实数.的取值范闱,例3、(1)假设函数),=4'一3・2〞+3的最小值为1,最大值为7,试确定x的取值范围.〔2〕设.是实常数,求函数y = 4*+4-,2a〔2、2-]〕的最小值.例4、求函数/〔X〕=,产二〃 > 0,.w 1〕在x e [0,1]的最值.a例5、函数/〔x〕 = a・Z/+c, xe[0,+s〕的值域为[―2,3〕,那么/〔x〕的一个可能的解析式为例6、定义:区间[彳〔*<4〕的长度为马―』,函数丁 = 2忖的定义域为伍力],值域为求区间口,勿的长度的最大值与最小值的差为例7.函数/'.〕= 3"一〔% + 1〕・3'+2,当xeR时,/〔x〕的值恒大于0,求实数攵的范围.例8.、假设函数/.〕=,产+24、一1〔“>0,4.1〕在[-1,1]上的最大值为14,求实数a的值.。
指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。
指
数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。
其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。
以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。
讲 义
教材与考点分析:
本节课学习的内容是了解指数函数的图像及性质,函数是数学研究的主要对象,也是考试必然会涉及的知识点,我们必须从简单的函数出发,学好每一类基本初等函数。
考点1:分数指数幂
我们规定分数指数幂的意义:
负分数指数幂的意义:
0的正分数指数幂等于0,0的负分数指数幂没有意义
考点2:有理数指数幂的运算性质
),,0,0())(3(,))(2(,
)1(Q s r b a b a ab a a a a a r r r rs s r s r s r ∈>>===⋅+
考点3:指数函数及其性质
a>1 0<a<1
图
象
图
像
特
征 图像分布在一、二象限,与轴相交,落在轴的上方。
都过点(0,1) 第一象限的点的纵坐标都大于1;第二象限的点的纵坐标都大于0且小于1。
第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1。
从左向右图像逐渐上升。
从左向右图像逐渐下降。
性
质
(1)定义域:R (2)值域:(0,+∞) (3)过定点(0,1),即x=0时,y=1 (4)x>0时,y>1;x<0时,0<y<1 (4)x>0时,0<y<1;x<0时,y>1. (5)在 R 上是增函数 (5)在R 上是减函数
练习 指数函数
第1题. 函数()x f x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( )
A.()()()f xy f x f y =
B.()()()f xy f x f y =+ C.()()()f x y f x f y += D.()()()f x y f x f y +=+
第2题. 若11()()23
x x <,则x 满足( ) A.0x > B.0x < C.0x ≤ D.0x ≥
第3题. 函数()x f x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =
B.()()()f xy f x f y =+ C.()()()f x y f x f y += D.()()()f x y f x f y +=+
第4题. 某工区绿化面积每年平均比上一年增长10.4%,经过x 年后的绿化面积成原绿化面积之比为y ,则()y f x =的图象大致为( )
第5题. 当0a >且1a ≠时,函数2()3x f x a -=-必过定点 .
第6题. 函数()y f x =的图象与2x y =的图象关于x 轴对称,则()f x 的表达式为 .
第7题. 当0x >时,函数()()21x
f x a =-的值总大于1,则实数a 的取值范围是 .
第8题. 求不等式2741(0x x a a a -->>,1)a ≠且中x 的取值范围.
第9题. 指数函数x
b y a ⎛⎫= ⎪⎝⎭
的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.
第10题. (1)已知12()3a a -+=,求33a a -+;
(2)
已知21x a =,求33x x
x x
a a a a --++; (3)已知31x a -+=,求2362a ax x ---+的值.。