人教A版高中数学必修四河北省容城学教案角的概念的推广任意角
- 格式:doc
- 大小:102.02 KB
- 文档页数:5
第四章三角函数第一教时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。
5.1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒ )0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和4.例一 (P5 略)五、小结: 1︒ 角的概念的推广用“旋转”定义角 角的范围的扩大2︒“象限角”与“终边相同的角”六、作业: P7 练习1、2、3、4习题1.4 1。
角的概念的推广:任意角的概念.教学目标:1.使学生理解任意角的概念,掌握角的加减运算及其几何意义.2.学会在平面内建立适当的坐标系来讨论任意角的方法。
3.培养学生观察、思考研究问题的能力.4.向学生渗透数形结合的思想.教学重点:任意角的概念。
教学难点:正、负角的定义及角的运算.教具和教学手段:三角板、教学方法:启发点拨、讲练结合.教学过程:一、引入新课在初中我们已经接触过角,同学们想想你日常生活中所接触的哪些图形是角?再联想一下角的定义是什么?它有几部分组成?谁能在黑板上画出一个角.教师结合同学的回答及作图给予补充和总结:角可以看成是由一定点引两条射线所构成的图形,或看作射线绕其端点旋转而成的图形,当时不考虑旋转方向,不论从旋转到还是从旋转到,它们旋转的绝对量都是一样的,而且旋转的绝对量不超过一个周角,但在我们生活中往往还会遇到其他的角,例如在体操中有“转体”720°(即转体2周),转体3周这样的动作名称,又如用钳子拧螺丝,可以顺时针方向拧,也可以逆时针方向拧,这就是说角度可以不限于0°~360°范围,而且还可以有两种方向的角,由此,我们应该对角的概念加以推广.(板书课题:角的概念的推广.)二、新课(一)角的概念在平面内,一条射线绕着它的端点旋转有两个相反的转向:顺时针方向和逆时针方向.习惯上,我们把按逆时针方向旋转而成的角叫做正角;按顺时针方向旋转而成的角叫做负角.当射线没有旋转时,我们也把它看成一个角,叫做零角。
在引入以上这些角之后,对于角的表示方法与初中有哪些不同呢?请大家注意.角的画法:用带箭头的弧来表示角的旋转的方向和旋转的绝对量.角的边:旋转前的射线叫做角的始边;旋转终止时的射线叫做角的终边.记法:射线绕端点旋转到位置所成的角记作∠;射线绕点旋转到位置所成的角记作∠(如图2)(∠与∠是不同的角)教师请两位同学板演450°和—630°,其余同学在练习本上画(教师巡视,纠正).(二)角的计算在初中平面几何中我们对于角的计算,就是把角的绝对旋转量相加或相减,但现在考虑了旋转的方向,引入了正、负角之后,角的加减法怎样运算呢?用图形怎样表示呢?让我们以90°-30°为例来说明这件事(教师可先让同学思考,尝试后,最后教师纠正或板演).∠=∠+∠=90°+(-30°)=60°在完成以上作图(图3)后,教师引导同学总结下列步骤:1.射线作90°旋转到位置,形成∠=90°,2.射线再作-30°旋转到位置,形成∠=-30°,3.∠即为所求,有∠=90°+(-30°)=60°.教师强调:任意两角的加减法都看成代数和,按如上步骤完成作图,此法对多个角的和也适用,即有各角和的旋转量等于各角旋转量的和.为及时巩固以上内容,教师可布置以下练习,若时间不够,可只让同学口述作图步骤:(1)30°+45°;(2)90°+(-60°);(3)60°-180°;(4)-60°+270°三、例题讲解例1写出与下列各角终边相同的角的集合,在坐标轴上画出其图形.(1)45°; (2)135°; (3)240°; (4)330°.此题不难,可让学生说解题思路,教师板演(1)、(2)(略)例2画出终边在坐标轴轴上的角及其对应的角度.四、课文小结1.(本节是概念课,教师应帮助引导学生系统归纳本节的有关概念,理清脉络,可画出本节的知识结构图)知识结构图:2.与角始边、终边相同的角的集合为:{|=+·360°,},强调以下几点:(1)是任意整数; (2)是任意角(包括正角,负角,零角);(3)与·360°之间用“+”号连接,—·360°应看成+(—)·360°;(4)终边相同的角不一定相等,有无数多个,它们相差360°的整数倍.3.关于象限角的概念,可对几下概念引导学生加以辩别:(1)“0°~90°间的角”,“第一象限的角”,“锐角”,“小于90°的角”.(2)“第一或第二象限的角”和“终边在轴上方的角”.五、课外作业1.问答题:锐角是第一象限的角吗?第一象限的角是否一定为锐角?再分别就直角、钝角来回答这两个问题.2.作图题:已知角的顶点与直角坐标系的原点重合,始边与轴的正半轴重合,作出下列各角,并指出它们是哪个象限的角.(1)420°; (2)-75°; (3)855°; (4)-510°.六、板书设计七、课后小记:1.个别同学对“与角始边终边相同的角的集合”写不准确,或不规范2.少数同学对于负角的变形有困难.。
1.2.1任意角的三角函数(1)教学目的:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为,,a b a sinA cosA tanAc c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r==>,那么(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;(4)比值xy叫做α的余切,记作cotα,即cotxyα=;说明:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=无意义;同理当()k k Zαπ=∈时,yx=αcot无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、xy分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
1.1.1 角的概念的推广-任意角教学目标知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.情感与态度目标提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AO例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°;⑵ 120°;⑶ 240°;⑷ 300°;⑸ 420°;⑹ 480°;答:分别为1、2、3、4、1、2象限角.3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 °,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴ k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,2α各是第几象限角?解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角又k ·180°+90°<2α<k ·180°+135°(k ∈Z) .当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) ,此时,2α属于第二象限角当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,此时,2α属于第四象限角因此2α属于第二或第四象限角.1.1.2弧度制(一) 教学目标 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程 一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角 所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=r r③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. r l4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式ll r ra a=??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度.例2.把rad53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(.例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2)315316,666p p pp -=-+\-是第二象限角.ORl.,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lRR R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业: ①阅读教材P6 –P8;②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三) 教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图 1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
《任意角》教学设计教学目标1、知识与技能目标理解任意角的概念(包括正角、负角、零角) 与象限角的概念.2、过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标提高学生的推理能力;培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学方法数学实验数学实验是计算机技术和数学、软件引入教学后出现的新事物。
数学实验的目的是提高学生学习数学的积极性,提高学生对数学的应用意识并培养学生用所学的数学知识和计算机技术去认识问题和解决实际问题的能力。
不同于传统的数学学习方式,它强调以学生动手为主的数学学习方式。
教学过程课前:结合学案,学生进行预习课上:一、介绍数学实验的过程二、利用多媒体展示本节课需要解决的五大问题1、对比角的两种定义,阐述各自的特点?2、为什么要对角的概念进行推广?3、如何把角的概念推广到任意角?4、在直角坐标系中,所有的角都是象限角吗?锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?第二象限的角一定比第一象限的角大吗?5、终边相同的角有无数个,在0°~360°范围内与已知角β终边相同的角有几个?所有与角α终边相同的角,连同角α在内所构成的集合S可以怎样表示?三、学生们分组利用计算机软件进行实验,结合昨天的预习寻求五大问题的答案四、学生们上台展示自己的研究成果五、教师点评并作总结,得到五大问题的答案六、例题讲解七、课堂练习八、小结九、布置作业课后:教学反思。
1.1 任意角-人教A版必修四教案一、教学目标1.了解角的概念、度数、弧度制。
2.学会用角度和弧度来表示任意角,并能够在不同单位之间进行转换。
3.掌握圆周角的性质和计算方法。
二、教学重点1.角的概念、度数、弧度制。
2.圆周角的定义和计算方法。
三、教学难点1.角度和弧度的相互转换。
2.圆周角和弧角的关系。
四、教学方法讲授法、示范法、探究法五、教学过程1. 角的概念及度数1.引入概念:什么是角?角有哪些特点?2.教师讲解角的度数概念及符号。
3.通过掌握正、负角的概念,进一步了解角的度数。
4.练习:求解几组角的度数。
2. 角的弧度制1.引入概念:什么是弧度制?2.讲解弧度制概念及与角度的换算公式。
3.探究:用弧度制表示任意角。
4.练习:进行角度和弧度的相互转换。
3. 圆周角的定义1.引入概念:什么是圆周角?2.讲解圆周角的定义。
3.通过练习探究:圆周角的性质。
4. 圆周角的计算方法1.讲解圆周角的计算方法。
2.讲解圆周角的补角和余角。
3.练习:利用公式计算圆周角。
5. 任意角的计算1.引入概念:什么是任意角?2.讲解任意角的概念。
3.通过练习探究:任意角的性质和计算方法。
4.练习:利用公式计算任意角。
六、教学反思本节课我采用了讲授法、示范法和探究法相结合的方式进行教学,让学生通过解题和练习的方式来掌握角度和弧度的概念,并进行相互转换和计算。
在教学过程中,学生积极参与,上课气氛活跃,但也发现部分学生对弧度概念和圆周角的理解还不够深入,下一节课需要进一步加强复习和练习。
1.2.1任意角的三角函数(二) 教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:正弦、余弦、正切线的概念。
教学难点:正弦、余弦、正切线的利用。
教学过程: 一、复习引入: 1. 三角函数的定义 2. 诱导公式)Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ练习1..____________tan600o的值是 D 3.D 3.C 33.B 33.A --练习2. .________,0cos sin 在则若θθθ> B第二、四象限第一、四象限第一、三象限 第一、二象限.D .C .B .A练习3.____0sin20cos 的终边在则若 θθ<>θ,且 C第二象限 第四象限 第三象限 第一象限.D .C .B .A二、讲解新课:当角的终边上一点(,)P x y1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x;过点角α由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α====我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
河北省唐山市开滦第二中学高中数学 任意角学案 新人教A 版必修4【学习目标】理解任意角以及象限角的概念【重点难点】掌握所有与α角终边相同的角(包括α角)的表示方法;【学习内容】问题情境导学实例(1)当钟表慢了(或快了),我们会将分针按某个方向转动,把时间校正准确。
(2)在体操或跳水比赛中,运动员作出转体两周、向前翻腾两周半等动作。
一、角的概念的推广?想一想1:实例(1)中调整时间的过程中,分针转动的角度的有何不同?填一填1:我们规定,按____时针方向旋转形成的角叫做正角,按____时针方向旋转形成的角叫做负角,如果一条射线没做任何旋转,我们称它形成了一个____角。
思考1:实例(2)中的运动员转体多少度?二、象限角?想一想2:把角的顶点与原点重合,角的始边与x 轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?填一填2:在直角坐标系中研究角时,如果顶点与________重合,角的始边与________ 重合,那么角的终边在第几象限,我们就说这个角是第几象限角。
如果角的终边在________上,就认为这个角不属于任何象限。
思考2:(1)锐角、第一象限角、小于o 90的角三者有何不同?三、终边相同的角的表示?想一想3:在直角坐标系中,标出o o o 330,390,30-角的终边,你有什么发现?它们有怎样的数量关系?:填一填3:所有与角α终边相同的角,连同角α在内,可构成一个集合_______ __即任一与角α终边相同的角,都可以表示成_______ __的和。
思考3:(1)在o 360-~o 360内与o2013 终边相同的角是多少度?课堂互动探究类型一、终边相同的角及象限角例1:在0360︒︒~范围内,找出与下列角终边相同的角,并判断它是第几象限角(1)o 420 (2)o 1020 (3)95012'︒-例2:(1)写出终边在y 轴上的角的集合(2)写出终边在x 轴上的角的集合变式训练1-1:(1)与角o10030终边相同的角中,求满足下列条件的角。
4.1 角的概念推广(一)教学目的:1.掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义2. 掌握所有与α角终边相同的角(包括α角)的表示方法3.体会运动变化观点,深刻理解推广后的角的概念;教学重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.教学难点:终边相同的角的表示.授课类型:新授课教学过程:一、复习引入:1.复习:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形这种概念的优点是形象、直观、容易理解,但它是从图形形状来定义角,因此角的范围是]360,0[00,这种定义称为静态定义,其弊端在于“狭隘”2.生活中很多实例会不在改范围]360,0[00体操运动员转体720º,跳水运动员向内、向外转体1080º经过1小时时针、分针、秒针转了多少度?这些例子不仅不在范围]360,0[00,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(运动)二、讲解新课:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O 叫做角α的顶点.突出“旋转” 注意:“顶点”“始边”“终边”⑵.“正角”与“负角”“0角”⑶意义用“旋转”定义角之后,角的范围大大地扩大了1︒ 角有正负之分 如:α=210︒ β=-150︒ γ=660︒2︒ 角可以任意大实例:体操动作:旋转2周(360︒×2=720︒) 3周(360︒×3=1080︒)3︒ 还有零角 一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒、390︒、-330︒是第Ⅰ象限角,300︒、-60︒是第Ⅳ象限角,585︒、1180︒是第Ⅲ象限角,-2000︒是第Ⅱ象限角等3.终边相同的角⑴观察:390︒,-330︒角,它们的终边都与30︒角的终边相同⑵探究:终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和:390︒=30︒+360︒ )1(=k -330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒ )0(=k 1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k⑶结论:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360|αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和⑷注意以下四点:(1)Z k ∈ (2) α是任意角;(3)0360⋅k 与α之间是“+”号,如0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.三、讲解范例:例1 在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角 (1)120(2)640(3)95012'-︒︒-︒例2写出与下列各角终边相同的角的集合S ,并把S 中在︒︒-720~360间的角写出来:︒60⑴ ︒-21⑵ '︒14363⑶四、课堂练习:1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗?0°~90°的角是锐角吗?(答:锐角是第一象限角;第一象限角不一定是锐角;小于90°的角可能是零角或负角,故它不一定是锐角;0°~90°的角可能是零角,故它也不一定是锐角.)总结有关角的集合表示.锐角:{θ|0°<θ<90°},0°~90°的角:{θ|0°≤θ≤90°};小于90°角:{θ|θ<90°}.2.已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420°,(2)-75°,(3)855°,(4)-510°.是学习终边相同的角的表示法.严格区分“终边相同”和“角相等”;“轴线角”“象限角”和“区间角”;“小于90°的角”“第一象限角”“0°到90°的角”和“锐角”的不同意义.六、课后作业:1.下列命题中正确的是( ) A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β终边相同2.与120°角终边相同的角是( )A.-600°+k·360°,k∈ZB.-120°+k·360°,k∈ZC.120°+(2k+1)·180°,k∈ZD.660°+k·360°,k∈Z3.若角α与β终边相同,则一定有( )A.α+β=180°B.α+β=0°C.α-β=k·360°,k∈ZD.α+β=k·360°,k∈Z4.与1840°终边相同的最小正角为,与-1840°终边相同的最小正角是 .5.今天是星期一,100天后的那一天是星期,100天前的那一天是星期 .6.钟表经过4小时,时针与分针各转了 (填度).7.在直角坐标系中,作出下列各角(1)360° (2)720° (3)1080° (4)1440°8.已知A={锐角},B={0°到90°的角},C={第一象限角},D={小于90°的角}.求A∩B,A∪C,C∩D,A∪D.9.将下列各角表示为α+k·360°(k∈Ζ,0°≤α<360°)的形式,并判断角在第几象限.(1)560°24′(2)-560°24′(3)2903°15′(4)-2903°15′(5)3900°(6)-3900°。
1. 1.1任意角一、教材分析“任意角的三角函数”是本章教学内容的基本概念,它又是学好本章教学内容的关键。
它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广。
它又是下面学习平面向量、解析几何等内容的必要准备。
并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念。
二、教学目标1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重点难点1.判断已知角所在象限; 2.终边相同的角的书写。
四、学情分析 五、教学方法1.本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的课. 2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备七、课时安排:1课时 八、教学过程 (一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成 一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
第一章 三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境: “转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
1.1 任意角和弧度制1.1.1 任意角●三维目标1.知识与技能(1)理解任意角(正角、负角、零角)的概念、象限角与区间角的概念.(2)掌握终边相同角的表示方法,会用角的集合表示一些实际问题中的角.2.过程与方法借助于角、直角坐标系和单位圆等工具来引导学生了解任意角的概念,引导学生用数形结合的思想方法来认识问题.3.情感、态度与价值观(1)通过对角的概念的探究提高学生的推理能力.(2)通过本节学习和运用实践,培养学生应用意识,体会数学的应用价值.●重点、难点重点:任意角概念的理解;区间角的集合的书写.难点:终边相同角的集合的表示;区间角的集合的书写.●教学建议首先通过实际问题(拨手表、体操中的转体、齿轮旋转等)引出角的概念的推广问题,引发学生的认知冲突,然后用具体例子,将初中学过的角和概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在自己已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.【问题导思】将射线OA绕着点O旋转到OB位置,有几种旋转方向?【提示】有顺时针和逆时针两种旋转方向.1.定义角可以看成是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.分类正角、负角与零角正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:一条射线没有作任何旋转形成的角.【问题导思】把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?【提示】终边可能落在坐标轴上或四个象限内.在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:终边在第几象限就是第几象限角;轴线角:终边落在坐标轴上的角.30°,390°,750°,…,30°+k·360°(k∈Z)的角的终边有什么关系?【提示】相同.所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.例1①第一象限角一定不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中不正确的序号为________.【思路探究】解答本题可根据角的大小特征,位置特征进行判断.【自主解答】①-330°角是第一象限角,但它是负角,所以①不正确.②120°角是第二象限角,390°角是第一象限角,显然390°>120°,所以②不正确.③480°角是第二象限角,但它不是钝角,所以③不正确.④0°角是小于180°角,但它既不是钝角,也不是直角或锐角,故④不正确.【答案】①②③④1.解决此类问题关键在于正确理解象限角及锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若要说明结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.下列说法正确的是()A.锐角是第一象限角B.钝角比第三象限角小C.三角形的内角必为第一、二象限角D.小于90°的角都是锐角【解析】-100°是第三象限角,但-100°<90°,故B错;90°角是直角三角形的内角,但它既不在第一象限,也不在第二象限,故C错;-30°小于90°,不是锐角,故D错.【答案】 A例2(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.【思路探究】先求出β,判断角α所在的象限,用终边相同的角表示θ满足的不等关系,求出k和θ.【自主解答】(1)由2 010°除以360°,得商为5,余数为210°.∴取k=5,β=210°,α=5×360°+210°.又β=210°是第三象限角,∴α为第三象限角.(2)与2 010°终边相同的角:k·360°+2 010°(k∈Z).令-360°≤k·360°+2 010°<720°(k∈Z),解得-6712≤k<-3712(k∈Z).所以k=-6,-5,-4.将k的值代入k·360°+2 010°中,得角θ的值为-150°,210°,570°.1.把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是确定k .可以用观察法(α的绝对值较小)也可用除法.2.要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.若将例题中“角α=2 010°”,改为“α=-315°”,其他条件不变,结果如何? 【解】 (1)用-315°除以360°商为-1,余数为45°, ∴k =-1,β=45°, 因此α=-360°+45°, ∴α是第一象限角.(2)与-315°终边相同的角:k ·360°-315°(k ∈Z ), 令-360°≤k ·360°-315°<720°(k ∈Z ), 解得-18≤k <238(k ∈Z ),所以k =0,1,2.将k 值代入k ·360°-315°中, 得所求角为-315°,45°和405°.例3如图1-1-1,终边落在阴影部分(不包括边界)的角的集合是( )图1-1-1A .{α|k ·360°+30°<α<k ·360°+45°,k ∈Z }B .{α|k ·180°+150°<α<k ·180°+225°,k ∈Z }C .{α|k ·360°+150°<α<k ·360°+225°,k ∈Z }D .{α|k ·360°+30°<α<k ·180°+45°,k ∈Z }【思路探究】 找出0°~360°内阴影部分的角的集合――→+k ·360°(k ∈Z )适合题意的角的集合【自主解答】 在0°~360°内落在阴影部分角的范围为大于150°而小于225°,所以在终边落在阴影部分(不包括边界)的角的集合为{α|k ·360°+150°<α<k ·360°+225°,k ∈Z }.【答案】 C1.先在-360°~360°范围内确定区域角起止边界处角,再把端点处加上360°的整数倍即得.2.区域角的表示问题,遵循先从特殊再到一般的规律写出,即先选择一个合适的角度为360°区间,写出落在阴影部分的角的集合,然后再在端点处加上周角的整数倍表示终边落在阴影区域内的角的集合.注意结果尽量表示为一个连续区间.写出下图1-1-2中阴影部分(不含边界)表示的角的集合.图1-1-2【解】 在-180°~180°内落在阴影部分角集合为大于-45°小于45°,所以终边落在阴影部分(不含边界)的角集合为{α|-45°+k ·360°<α<45°+k ·360°,k ∈Z }.忽视象限角范围致误若α是第二象限角,试确定2α、α2是第几象限角.【错解】 由题意得90°<α<180°, 所以有180°<2α<360°, 45°<α2<90°.故有2α为第三象限角、第四象限角或终边在y 轴非正半轴上角,α2为第一象限角.【错因分析】 致错原因是把α是第二象限角范围误认为是大于90°而小于180°,而应是{α|90°+k ·360°<α<180°+k ·360°,k ∈Z }才完整.【防范措施】 正确理解象限角的含义及范围是避免此类错误的关键. 【正解】 (1)由题意得90°+k ·360°<α<180°+k ·360°(k ∈Z ), ① ∴180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).故2α是第三或第四象限角或终边落在y 轴非正半轴上的角. (2)由①得45°+k ·180°<α2<90°+k ·180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),得45°+n ·360°<α2<90°+n ·360°(n ∈Z ),故α2是第一象限角. 当k 为奇数时,令k =2n +1(n ∈Z )得45°+180°+n ·360°<α2<90°+180°+n ·360°(n ∈Z ),即225°+n ·360°<α2<270°+n ·360°(n ∈Z ),故α2为第三象限角. 综上可知α2为第一或第三象限角.课堂小结1.理解任意角的概念要抓住四个要素:顶点、始边、终边和射线的旋转方向. 2.象限角的确定依赖于角的终边位置的确定,要注意对表达式中的k 进行分类讨论,以确定角的终边的位置.3.熟练掌握终边相同的角的公式及应用,明确象限角的概念与内涵是解题的依据.1.将射线OM 绕端点O 按逆时针方向旋转120°所得的角为( ) A .120° B .-120° C .60°D .240°【解析】 由于射线OM 绕O 逆时针旋转,故所得角为正角120°. 【答案】 A2.(2013·开封高一检测)下列各角中,与角330°的终边相同的角是( ) A .510° B .150° C .-150°D .-390°【解析】 与330°终边相同的角的集合为S ={β|β=330°+k ·360°,k ∈Z }, 当k =-2时,β=330°-720°=-390°,故选D. 【答案】 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________. 【解析】 -885°=-1080°+195°=(-3)×360°+195°.【答案】195°+(-3)×360°4.如果θ为小于360°的正角,θ的4倍角的终边与θ的终边重合,求θ的值.【解】依题意4θ=k·360°+θ,且0°<θ<360°,∴θ=k·120°.取k=1或k=2,∴θ=120°或θ=240°.一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=CC.A C D.A=B=C【解析】锐角大于0°小于90°,故C B,选项B正确.【答案】 B2.把-1 485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°【解析】B、C选项中α不在0°~360°范围内,A选项的结果不是-1 485°,只有D 正确.【答案】 D3.若α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角 D. 第四象限角【解析】可借助于取特殊值法,取α=120°,则180°-120°=60°.【答案】 A4.若α与β的终边互为反向延长线,则有()A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)·180°,k∈Z【解析】α与β的终边互为反向延长线,则两角的终边相差180°的奇数倍,可得α=β+(2k+1)·180°,k∈Z.【答案】 D5.以下命题正确的是()A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 【解析】 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴A B ,∴B 正确.又C 中,α为第一或第二象限角,或在y 轴的非负半轴上,∴C 不正确,显然D 不正确. 【答案】 B 二、填空题6.(2013·哈尔滨高一检测)与-2 002°终边相同的最小正角是________.【解析】 与-2 002°终边相同的角的集合为{β|β=-2 002°+k ·360°,k ∈Z },与-2 002°终边相同的最小正角是当k =6时,β=-2 002°+6×360°=158°.【答案】 158°7.若将时钟拨慢5分钟,则分针转了________度,时针转了________度.【解析】 拨慢时针为逆时针形成正角,分针每分钟转过的度数为360°60=6°,5分钟转过30°,时针每分钟转过的度数为30°60=0.5°,5分钟转过2.5°.【答案】 30 2.58.(2013·哈尔滨高一检测)在四个角-20°,-400°,-2 000°,600°中,第四象限的角的个数是________.【解析】 -20°是第四象限的角;-400°=-360°-40°,也是第四象限的角;-2000°=(-6)×360°+160°,是第二象限的角;600°=360°+240°,是第三象限的角.所以第四象限的角的个数是2个.【答案】 2个 三、解答题9.若角α的终边和函数y =-x 的图象重合,试写出角α的集合. 【解】 在0°~360°范围内所对应的两个角分别为135°和315°,∴终边为y =-x 的角的集合是{α|α=k ·360°+135°,k ∈Z }∪{α|α=k ·360°+315°,k ∈Z }={α|α=2k ·180°+135°,k ∈Z }∪{α|α=(2k +1)·180°+135°,k ∈Z } ={α|α=k ·180°+135°,k ∈Z }.10.在与530°终边相同的角中,求满足下列条件的角. (1)最大的负角;(2)最小的正角; (3)-720°到-360°的角.【解】 与530°终边相同的角为k ·360°+530°,k ∈Z .(1)由-360°<k ·360°+530°<0°,且k ∈Z 可得k =-2,故所求的最大负角为-190°. (2)由0°<k ·360°+530°<360°且k ∈Z 可得k =-1, 故所求的最小正角为170°.(3)由-720°≤k ·360°+530°≤-360°且k ∈Z 得k =-3,故所求的角为-550°. 11.如图1-1-3所示.图1-1-3(1)分别写出终边落在OA ,OB 位置上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.【解】 (1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z }.终边落在OB 位置上的角的集合为 {β|β=-30°+k ·360°,k ∈Z }.(2)由题图可知,终边落在阴影部分(包括边界)角的集合是由大于或等于-30°而小于或等于135°范围内的所有与之终边相同的角组成的集合,故终边落在阴影部分(包括边界)的角的集合为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z }.【教师备课资源】 象限角的判断已知α是第一象限角,求2α,α2,α3所在的象限.【解】 ∵α是第一象限角, ∴k ·360°<α<k ·360°+90°,k ∈Z . ①2k ·360°<2α<2k ·360°+180°,k ∈Z ,则2α是第一或第二象限角,或是终边在y 轴的正半轴上的角. ②k ·180°<α2<k ·180°+45°,k ∈Z .当k 为偶数时,α2为第一象限角,当k 为奇数时,α2为第三象限角,∴α2为第一或第三象限角. ③k ·120°<α3<k ·120°+30°,k ∈Z .当k =3n (n ∈Z )时,n ·360°<α3<n ·360°+30°,n ∈Z ,∴α3是第一象限角;当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°,n ∈Z ,∴α3是第二象限角;当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°,n ∈Z ,∴α3是第三象限角;∴α3为第一或第二或第三象限角.1.解决此类问题,要先确定α的范围,进一步确定出nα或αn 的范围,再根据k 与n 的关系进行讨论.2.一般地,要确定αn 所在的象限,可以作出n 等分各个象限的从原点出发的射线,它们与坐标轴把圆周等分成4n 个区域,从x 轴的正半轴起,按逆时针方向把4n 个区域依次标上号码1、2、3、4,则标号是n 的区域就是α为第几象限时,αn的终边也可能落在区域.若α是第三象限角,则180°-α是第几象限角? 【解】 ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°,k ∈Z , -270°-k ·360°<-α<-180°-k ·360°,k ∈Z , -90°-k ·360°<180°-α<-k ·360°(k ∈Z ). ∴180°-α是第四象限角.。
1.1.1 角的概念的推广-任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
情感与态度目标
提高学生的推理能力;2.培养学生应用意识.
教学重点
任意角概念的理解;区间角的集合的书写.
教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:
③角的分类:
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.如图⑴⑵中的角分别属于第几象限角?
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形
负角:按顺时针方向旋转形成的角
边
顶
点 A
例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° ,
k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;
⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
B x
x
3
例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'.
答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;
例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.
例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:
③象限角;
④终边相同的角的表示法. 5.课后作业:
①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题
思考题:已知α角是第三象限角,则2α,2α
各是第几象限角? 解:α 角属于第三象限,
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形负角:按顺时针方向旋转形
∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)
因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.
又k ·180°+90°<2α
<k ·180°+135°(k ∈Z) .
当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α
<n ·360°+135°(n ∈Z) ,
此时,2α
属于第二象限角
当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α
<n ·360°+315°(n ∈Z) ,
此时,2α
属于第四象限角
因此2α
属于第二或第四象限角.。