青藏铁路西格二线混凝土冻融试验研究
- 格式:pdf
- 大小:424.66 KB
- 文档页数:4
一、研究科学意义和国家需求青藏高原是世界上面积最大、海拔最高的高原,地理位置独特,自然环境恶劣,地质条件复杂,素有“世界屋脊”、“地球第三极”之称。
青藏铁路格拉段将穿越约547km多年冻土地段,全线线路海拔高程大于4000m地段约960km,在唐古拉山越岭地段,线路最高海拔为5072m,为世界铁路海拔之最。
“高原”和“冻土”问题是本线的两大难题,其特殊性和复杂性在世界上独一无二。
在青藏高原多年冻土地区建设铁路是从未实践过的新的技术领域,随着几十年来自然条件和气候的变化、科学技术的飞速发展、科研成果和工程实践经验的积累,我们对自然和冻土的认识也在不断的加深。
七十年代以前我们认为高原冻土是发育的,而目前现状是随着全球气温升高,高原冻土呈退缩趋势;七十年代以前研究重点侧重于冻土腹部地带的高含冰量冻土,但青藏公路整治的情况表明,冻土区边缘地带及高温冻土地带各类工程病害多于低温冻土地带;过去确定一个路基临界高度来涵盖全线,现在看来必须按不同地温分区、土质及气候条件来考虑路基合理高度;现代科学技术水平的发展及新材料、新工艺的不断出现,为防治各类工程冻害提供了新的手段,有必要对其进行应用研究。
所以青藏线格拉段的修建仍带有很强的探索性、科研性,为了尽快取得高原多年冻土区铁路设计、施工经验,先行试验段的建设具有不可替代的重要意义。
“高原多年冻土区试验工程”也充分体现了我们在高原多年冻土区的设计思想,是设计原则的检验,其各阶段的观测结果将分别是指导、调整设计和施工的依据,实现青藏线格拉段铁路的动态设计和施工。
二、立项科学依据青藏铁路修筑的两大关键问题:高原和冻土。
青藏铁路成功的关键在于路基工程,而路基工程的关键在冻土,冻土作为一个极为重要的关键因素,必须进行深入的研究,以此来保证青藏铁路工程的顺利实施和正常高速运营。
青藏铁路路基稳定性要求。
冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰,水分产生迁移并具有相变变化特征,因此,冻土具有流变性,其长期强度远低于瞬时强度特征,并具有融化下沉性和冻胀性。
青藏铁路线路基沉降(冻胀)病害治理研究与技术分析单位:甘肃兴陇工程监理咨询有限公司姓名:乔正正摘要:本文通过青藏西格二线部分线路发生路基沉降和季节性冻害地段路基沉降(冻胀)病害的治理,进行科学合理的分析,对于路基填料不密实及排水不畅等原因,导致路基沉降及冬季冻胀现象,已影响了铁路的正常行车,既要做好排水又要改善土质机理,怎样科学合理的应用注浆技术来治理路基沉降(冻胀)病害下文详细的进行了介绍,为今后路基沉降(冻胀)病害处理提供依据。
关键词:路基沉降(冻胀)病害注浆加固技术分析一、工程概况青藏西格二线部分线路发生路基沉降和季节性冻害地段,地处青藏高原东北部,铁路线路穿越青海湖北岸滨海平原、冲积平原、冰原台地,平均海拔3220米。
年平均降水量376mm,降水分布不均,大部分集中在7-9月。
年平均气温-0.6℃,最冷月1月平均气温为-20.6℃;最热月7月平均气温为16.6℃。
最大冻结深度1.8米,地下水位大于10米。
地质地表多为黏土、粉质黏土、沙质黄土以及淤泥质粉质黏土以及细沙。
青海湖~刚察段,黏土厚度一般1~12米,粉质黏土1~3米;刚察~江河段,地表除分布有黏土、粉土外,主要分布有0.5~8米的沙质黄土,局部地段还分布有0.5~2.5米的淤泥质粉质黏土。
线路完工交付使用后,由于路基填料不密实及排水不畅等原因,导致路基沉降及冬季冻胀现象。
已影响了铁路的正常行车,给铁路运营安全带来了隐患。
二、病害状况图1线路路基沉降图2路基局部沉降1、路基基床表面排水不畅路基局部沉降路基整体沉降冻害地段路基表面排水不畅的问题是比较突出的,具体表现在绝大多数调查断面基床土体含水量高,部分断面基床表面有积水。
①道碴边坡外侧普遍存在土垅,阻挡了道床横向排水。
在道床边坡,普遍明显有一高10~40cm的土垄,距轨枕头20~40cm。
②路肩普遍高于道床底面,整个道床部分形成一积水凹槽,部分路段既有路基改造时将原污染板结道床回填用作基床,形成道碴积水槽。
第34卷 第2期 农 业 工 程 学 报 V ol.34 No.22018年 1月 Transactions of the Chinese Society of Agricultural Engineering Jan. 2018 169青藏高原地区混凝土冻融环境量化方法李雪峰,付 智,王华牢(交通运输部公路科学研究院,北京 100088)摘 要:对青藏高原地区混凝土冻融环境进行合理量化是高原抗冻混凝土设计所面临的首要问题。
该文通过对处于同一冻融环境作用等级下的平原与高原地区大气及地表温度特征进行比较,发现相较于平原地区,高原地区因太阳辐射强度大,具有年正负温交替次数更多、温度日较差更大且日最低温更低的环境温度特征。
通过将地表温度近似代替混凝土结构物表面温度,结合青藏高原1971-2003年20个地区的典型气象年数据,建立了与最冷月平均气温及年太阳辐照量相关的青藏高原地区混凝土年均冻融循环次数确定方法。
利用该方法对青藏高原主要地区混凝土年均冻融循环次数进行估算,结果表明,青藏高原地区混凝土年均冻融循环次数主要集中在150次以上,部分地区甚至大于200次,因此,高原地区应加强对混凝土进行抗冻耐久性设计。
最后,该文给出青藏高原地区混凝土结构物抗冻设计等级推荐值。
该研究可为青藏高原地区混凝土抗冻耐久性设计提供参考。
关键词:混凝土;温度;太阳辐射;青藏高原;冻融环境;最冷月平均气温;抗冻设计等级 doi :10.11975/j.issn.1002-6819.2018.02.023中图分类号:TU528 文献标志码:A 文章编号:1002-6819(2018)-02-0169-07李雪峰,付 智,王华牢. 青藏高原地区混凝土冻融环境量化方法[J]. 农业工程学报,2018,34(2):169-175. doi :10.11975/j.issn.1002-6819.2018.02.023 Li Xuefeng, Fu Zhi, Wang Hualao. Quantitative method for freezing-thawing environment of concrete in Qinghai-Tibet plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 169-175. (in Chinese with English abstract) doi :10.11975/j.issn.1002-6819.2018.02.023 0 引 言青藏高原地区平均海拔4 000 m ,由于大气透明度高,年太阳总辐射值高达5 850~7 950 MJ/m 2,从而导致高原地区频繁出现昼夜正负温交替变化[1-5]。
高寒高海拔地区混凝土抗冻性试验论述龚鸽【摘要】本篇文章通过对青海地区气候的研究,对其地区的混凝土相关抗冻性进行一系列的调查研究,总结出了提混凝土抗冻性的相关措施.一般情况下,高寒高海拔地区的气候偏于干燥,昼夜性和季节性的温差过大以及长期积雪等特点使得混凝土的抗冻性能必须逐步提高.笔者根据长期的数据和文献调查,进行分析,力图将混凝土的抗冻性能提升.【期刊名称】《四川水泥》【年(卷),期】2015(000)011【总页数】1页(P58)【关键词】高寒高海拔地区;混凝土抗冻性;试验【作者】龚鸽【作者单位】中铁二十局集团第一工程有限公司,江苏苏州 215151【正文语种】中文【中图分类】G322由于我国土地广阔,而且高寒高海拔地区所占地域颇多,所以混凝土在桥梁,隧道工程的建筑中难免会出现破坏的问题。
其中在高寒高海拔等地区的影响最为明显,混凝土建筑物被损害的程度更加夸张。
1 目前国内外对混凝土抗冻性研究的现状目前世界各个领域对混凝土抗冻性的研究试验都颇感兴趣,凸显出了混凝土的抗冻性能目前存在的问题过多,需要逐一的解决。
并且国内外的各种机构都对混凝土的性能开展了相关的学术研究,试图提高混凝土的抗冻性能以及其它方面的性能。
1.1 目前国外研究的现状在二十世纪四十年代期间,早有国外的相关机构就针对混凝土抗冻方面的性能开展了研究试验,总结出来的理论主要有静水的压力学说,其中在冻结的过程中,低温可以通过混凝土建筑物的四面八方进行渗透,形成之后再封闭混凝土建筑物。
随着温度的持续降低,会持续扩大冰冻的影响范围,从而导致混凝土建筑物会产生过量的细纹,并逐步的遭受损坏。
因此要对混凝土建筑物中孔间距系数进行优化,增强混凝土的抗冻性能。
在之后长期的研究实验中又不断有新的发现,水在水泥浆体的流动中是跟随着冷冻源的移动而移动,于是渗透压力论学说又随之产生。
由于负温度状态下的水是首先冻结的,从而增大了溶液的浓度,使得浓度差在毛细孔和凝胶孔内溶液两者之间越增越大,在扩散的同时,渗透压也随之生成。
青藏铁路高原多年冻土区低温混凝土施工技术作者:赵明来源:《科学与财富》2017年第25期摘要:青藏高原属于高寒地区,在高原冻土以及严寒的气候条件下进行混凝土的施工工作,作业的难度是相当大的,并且对技术的要求相当的高。
该地区的工艺和内地的相比较有较大的不同,本篇文章主要针对的是低温条件下喷射混凝土的施工和灌注混凝土的施工问题进行阐释。
关键词:青藏铁路;冻土;低温混凝土;施工素有“世界屋脊”之称的青藏高原的腹地段位则是从青藏铁路到拉萨段,该路段的第五标段中长4.537km线下主体的工程任务均由我公司负责。
该地区大部分为冻土区,地形起伏大、植被的覆盖率较低,海拔较高,并且主要的地形地貌以古冰川作用及寒冷、风化地貌的形态为主。
空气稀薄、气压低、温度低。
除此之外还有恶劣的施工环境等自然条件的制约,因此,本文将对该问题给出相应的解决措施。
一、施工过程当中所要遵循的原则根据相关规定所显示:多年冻土的定性为冻结状态持续在两年或者两年以上的土。
当温度升高时候便会融化,称为冻融。
冻土施工的要点就是减少冻融的发生,否则就会导致坍塌、滑坡、塌方、沉陷、混凝土掉块等问题的出现。
所以,冻土在施工的过程当中不仅仅要克服低温对施工的影响还要克服上述问题。
在开工之前就要做好各项准备工作,首先建立工地的实验室,其次再对原材料进行加工。
即对原材料的加热、运输以及保温还有混凝土入模温度、混凝土的保温保湿工作等。
除此之外,还要因地制宜,根据当地的实际情况来确定合适的施工季节和具体的施工措施。
二、喷射混凝土高原严寒气候条件下的喷射混凝土与内陆地区的的喷射混凝土施工相比较而言:高原地区存在着以下困难:首先是气温较低,有可能导致输水管及喷头注水冻结,造成无法喷射的现状,从而延误工期。
其次是喷射到岩壁上难以在短时间内凝固,容易导致成片的混凝土出现脱落现象;由于温度低岩面表层难以粘上混凝土,所以,易受到冻害。
在我公司全体员工的共同努力下攻坚克难多次试验之后总结出来如下的具体措施:⑴低温对工程的影响需要减低,在搅拌混凝土的地点搭设保温棚,对原材料先进行预热,其次用热水对混凝土进行搅拌。
青藏铁路工程有关冻土问题及土工合成材料应用情况的介绍铁道第一勘察设计院李成摘要大量的工程实践表明,冻土区筑路遇到的主要问题是冻胀和融沉,在季节冻土区主要问题是冻胀,而在多年冻土区主要问题是融沉。
以保护多年冻土为原则,是多年冻土区工程措施中应用最为广泛的一种方法,它不但克服了冻土的融化下沉,而且充分利用了冻土强度高于融土的特性。
本文在阐明对青藏高原多年冻土环境认识的基础上,简要地介绍了保护多年冻土的几种工程方法,并对土工合成材料在青藏铁路的应用情况作了简要的介绍。
关键词铁路工程多年冻土土工合成材料应用1.概况青藏高原是世界上面积最大、海拔最高的高原,素有“世界屋脊”、“地球第三极”之称。
青藏线格尔木至拉萨段铁路全长约1100km,其中要穿越550km的多年冻土地段,全线线路海拔高程大于4000m地段约965km,在唐古拉山越岭地段,铁路最高海拔为5072m,为世界铁路海拔之最高。
“高原”和“冻土”问题是修建青藏铁路的两大难题。
铁路通过地区大部分为高原腹地,具有独特的冰缘干寒气候特征,寒冷、干旱,急风暴雨、雷电等变化剧烈无常,四季不明,空气稀薄、气压低,冻结期9月至次年4、5月。
昆仑山、可可西里、风火山、唐古拉等山区,年平均气温在-6℃以下,青藏高原腹地高平原区,年平均气温为-4~-4.5℃。
该地区具有年较差小,而日较差大的特点,年内日平均较差10~ 19℃,极端日较差35℃。
铁路沿线大气透明度良好,云量少,太阳直射强,总辐射量大,日照时数较大,为全国辐射量最大的地区,由于高原风大,地表所获辐射量的98.8%通过湍流交换以感热或潜热的形式向大气逸散,用于土壤增温和冻土融化的热量仅占 1.2%,使得高原上近地表气温并没有显著升高,而地下土层处于低温状态。
自1956年铁道第一勘察设计院对青藏线进行踏勘考察开始,格尔木至拉萨段的勘测设计、科学研究断断续续,至今已40多年。
其间对“高原”和“冻土”问题也进行了大量的科学研究和试验工作,创造了比较好的前期工作基础。
青藏铁路高原冻土区混凝土耐久性试验方法标准汇编青藏铁路混凝土耐久性试验中心二○○二年八月本标准手册是按照《青藏铁路高原冻土去混凝土耐久性技术条件》(科技基函[2002]56号文发布实施)的要求编辑的,能有效方便的指导青藏铁路各施工单位和各质量监督检查部门开展混凝土试验工作。
保证青藏铁路高原冻土地区桥涵、隧道、轨枕、电杆、房屋建筑、路基支挡用混凝土的施工质量。
本手册共八篇十二章。
手册编辑单位:青藏铁路混凝土耐久性试验中心手册编写人员:谢永江黄丹仲新华张勇杨富民前言 (1)目录 (2)第一章抗冻性能试验方法(快冻法) (3)第二章抗渗性能试验方法 (6)第三章钢筋锈蚀试验方法(硬化砂浆法) (7)第四章混凝土抗氯离子渗透性能试验方法 (9)第五章水泥抗硫酸盐侵蚀快速试验方法 (16)第六章混凝土用骨料碱活性试验方法(快速砂浆棒法) (19)第七章水泥胶砂耐磨性试验方法 (25)第八章混凝土抗裂性能试验方法 (22)第一章抗冻性能试验方法(快冻法)第1.1条本方法适用于在水中经快速冻融来测定混凝土的抗冻性能。
快冻法抗冻性能的指标可用能经受快速冻融循环的次数或耐久性系数来表示。
本方法特别适用于抗冻性要求高的混凝土。
第1.2条本试验采用100×100×400毫米的棱柱体试件。
混凝土试件每组3块,在试验过程中可连续使用,除制作冻融试件外,尚应制备同样形状尺寸,中心埋有热电偶的测温试件,制作测温试件所用混凝土的抗冻性能应高于冻融试件。
第1.3条快冻法测定混凝土抗冻性能试验所用设备应符合下列规定。
一、快速冻融装置能使试件静置在水中不动,依靠热交换液体的温度变化而连续、自动地按照本方法第1.4条第五款的要求进行冻融的装置。
满载运转时冻融箱内各点温度的极差不得超过2℃二、试件盒由1~2毫米厚的钢板制成。
其净截面尺寸应为110×110毫米,高度应比试件高出50~100毫米。
试件底部垫起后盒内水面应至少高出试件顶面5毫米。
浅析青藏铁路建设和冻土技术问题[摘要]:本文主要分析了青藏铁路建设的冻土问题,青藏铁路建设三大技术难题的核心就是冻土问题. 我国多年对冻土的研究为青藏铁路建设打下坚实的技术基础, 但是大规模的铁路建设实践给施工建设提出了大量深层次的冻土技术问题. 以青藏铁路建设为背景, 结合冻土区科研、设计、施工和建设管理工作的实践, 对青藏铁路建设的冻土技术问题进行了分析,对高原多年冻土区的建设具有一定的参考价值.[关键词]: 青藏铁路; 多年冻土; 技术措施; 建设管理1. 引言冻土是一种对温度极为敏感的土体介质。
冬季,冻土在负温状态下就像冰块,随温度的降低体积发生剧烈膨胀,顶推上层的路基、路面。
而在夏季,冻土随着温度升高而融化,体积缩小后使路基发生沉降,这种周期性变化往往很容易导致路基和路面塌陷、下沉、变形、破裂。
青藏铁路的多年冻土, 分布在铁路通过地区延长近550 km 的范围内. 冻土问题, 实质上是冻土区筑路技术问题, 是青藏铁路建设的三大技术难题( 高原、冻土、生态环境保护) 的核心问题.修建在多年冻土上面的铁路工程, 受多年冻土季节融化层的热学状态和力学性质周而复始变化的影响, 导致铁路建筑物发生冻胀融沉变形. 由于自然环境条件和冻土环境条件变化以及修建铁路的工程活动影响, 导致原来多年冻土季节融化层发生一系列复杂变化, 使这种冻胀融沉变形变得复杂化,因而使工程建筑物( 路基、桥梁涵洞基础) 的冻胀和融沉变形问题成为冻土区修建铁路的面临的主要技术难题. 我们所说的青藏铁路冻土区修建铁路的主要技术问题就在于此.2. 青藏铁路冻土区工程建设的技术基础20 世纪60 年代以来, 以中国科学院兰州冰川冻土研究所( 现中国科学院寒区旱区环境与工程研究所) 、铁道部高原研究所( 现中铁西北科学研究院) 和铁第一勘察设计院为主力的青藏高原冻土研究工作, 在野外地质调查工作基础上, 以风火山地区为试验基地, 陆续开展了高原气象、多年冻土地温场、冻土热学、冻土力学等冻土基本性质和参数的试验研究, 以及冻土地区路基、桥涵、房屋基础、给排水等工程项目研究.1974 -1978 年青藏铁路科学研究大会战和第二次勘测设计期间, 全面开展了冻土土建工程的研究工作, 在风火山地区修筑了厚层地下冰试验路基, 丰富了多年冻土区设计理论与计算方法, 积累了厚层地下冰地段铁路工程的设计、施工经验.20 世纪90 年代中期, 铁道部科技司先后批准立项的有关青藏线高原冻土修建铁路的前瞻性研究课题, 针对冻土环境条件改变而出现的冻土工程问题开展了深层次的研究; 中国科学院结合青藏公路改建进行了比较系统和深入的科学研究和工程实践.青藏铁路开工建设以前40 多年的研究和工程实践, 在区域冻土分布特征、冻土基本物理力学性质、冻土热物理性质、铁路选线、工程设计和施工技术等方面的研究和工程实践, 为今天青藏铁路建设打下坚实的技术基础. 作为这一阶段科学研究和工程实践集中体现的青藏高原多年冻土地区铁路勘测设计细则及其7 个技术性附件, 在青藏铁路建设初期发挥了重大作用.3.青藏铁路建设采用的冻土技术3.1冷却地基土体为核心的技术路线国内外研究和工程实践以及先期施工的青藏铁路试验工程说明, 多年冻土地区修建铁路的工程活动和工程设计的最终目的, 应该是避免多年冻土的温度升高, 防止多年冻土上限的下降, 采用的工程结构和工程措施, 从目的和效果上可以分为被动的保温、主动的降温两大类.曾经有一段时间的研究认为青藏高原气候是逐渐变冷的, 是有利于冻土生存和发展的, 因此人类工程活动对多年冻土的影响是比较容易恢复的, 相当一个阶段的试验研究和工程设计( 包括试验工程)都体现了被动防御的指导思想. 主要表现在, 路基工程主要依据路基最小临界高度和保温层调节路基高度, 或者依据保温层作为保护冻土的主要手段.全球性的气温升高和青藏高原冻土区气候转暖趋势引起我们对原有设计思想的反思, 尽管设计暂规从路基填土高度安全系数方面考虑了气温升高的因素在内, 但是这种被动抵御气温升高的设计思想是受冻土地温分区和区域气候条件局限的. 逐年变化的气温条件, 使冻土本身的热稳定性逐渐削弱,甚至于使高温不稳定冻土的热稳定性遭到彻底破坏, 同时发生的冻土区修建铁路的工程活动对冻土热稳定性的削弱和破坏, 这些都极大的影响了工程建筑物的稳定性.2001年先进行的青藏铁路冻土区试验工程的研究和分期提供的试验研究成果告诉我们, 被动防御思想指导下的被动保温工程措施不能保证气温升高背景条件下冻土的热稳定性, 主动增加地基土体冷量的工程结构形式和工程措施, 提高了它抵御外界环境变化影响的能力, 从而达到保护冻土热稳定性进而保证工程稳定的目标.冷却地基土体, 减少传入地基土体的热量,以保护冻土的热稳定性为核心, 达到保护路基工程和其他铁路工程结构物稳定的目的 . 这是青藏铁路冻土区工程建设过程逐渐形成和遵循的, 以主动降低地基土体温度为核心的一条技术路线3.2 路基主动降温措施3. 2. 1 片石气冷措施片石气冷路基是在路基垫层之上设置一定厚度和空隙度的片石层, 因片石层上下界面间存在温度梯度, 引起片石层内空气的对流, 热交换作用以对流为主导, 利用高原冻土区负积温量值大于正积温量值的气候特点, 加快了路基基底地层的散热, 取得降低地温、保护冻土的效果. 通过室内摸拟试验和试验段工程测试分析, 对青藏铁路应用片石气冷路基的有效性进行了深入研究, 探索出合理的结构形式、设计参数和施工工艺. 确定路基垫层厚度不小于 0. 3 m, 片石层厚度一般为 1. 2~ 1. 5 m, 块径0. 2~ 0. 4 m, 强度不小于 30 M Pa, 片石层上再铺厚度不小于 0. 3 m 的碎石层, 并加设一层土工布这一措施已在沿线117 km 的高温不稳定冻土区加以应用. 经 2~ 3 个冻融循环的观测分析表明, 路基基底地温降低, 地层冷储量增加, 冻土上限一般上升 0. 5~ 1. 0 m, 路基沉降变形明显减小并基本趋于稳定. 具有主动降温、保护冻土的效果.3. 2. 2 碎石( 片石) 护坡措施在路基一侧或两侧堆填碎石或片石, 形成护坡或护道 . 碎石( 片石) 护坡空隙内的空气在一定温度梯度的作用下产生对流, 寒季碎石( 片石) 内空气对流换热作用强烈, 有利于地层散热, 暖季碎石( 片石) 内空气对流作用减弱, 对热量的传入产生屏蔽作用, 从而增强了地层寒季的散热, 减少了暖季的传热, 达到了降低地温、保护冻土的效果. 深入研究碎石( 片石) 护坡和护道的作用机理 , 确定了能够保持或抬高多年冻土上限的最佳厚度和粒径. 实测表明, 厚度1. 0~ 1. 5 m 的碎石( 片石) 护坡都具有很好的降温效果. 通过改变路基阴阳坡面上的护坡厚度, 可调节路基基底地温场的不均衡性,对解决多年冻土区路基阴阳坡差异造成的不均匀变形具有重要作用. 碎石护坡的厚度, 通常在阳坡面采用 1. 6 m, 阴坡面采用 0. 8 m.3. 2. 3 通风管措施在路基内横向埋设水平通风管, 冬季冷空气在管内对流, 增强了路基填土的散热强度, 降低基底地温, 提高冻土的稳定性. 现场试验研究表明, 通风管宜设置在路基下部, 距地表不小于 0. 7m, 其净距一般不超过 1. 0 m, 管径为0. 3~ 0. 4 m.通风管的降温效果受管径、风向及管内积雪、积沙的影响, 特别是夏季热空气在管内的对流对冻土有负面影响, 在使用上受到一定限制. 青藏铁路在部分路段修建了通风管路基.3. 2. 4 热棒措施热棒是利用管内介质的气液两相转换, 依靠冷凝器与蒸发器之间的温差, 通过对流循环来实现热量传导的系统.当大气温度低于冻土的地温,热棒自动开始工作, 当大气温度高于冻土地温, 热棒自动停止工作, 不会将大气中的热量带入地基.针对青藏铁路多年冻土特性, 选用了长 12 m、直径83 mm 的热棒, 测定其有效制冷影响范围为 1. 3~1. 5 m, 确定了合理布设方式.青藏铁路有 32 km 路基采用了热棒措施, 降低了基底地温, 冻土上限上升.4. 结论2001 年青藏铁路开工建设以来, 青藏铁路建设工作在我国冻土科学研究和工程技术人员过去40 年研究理论和实践经验的基础上, 对冻土技术问题的解决已经取得全面的实质性进展, 主要表现在以下4 个方面:( 1) 通过目前最先进的技术手段, 以先进的科学理论全面、准确的认识冻土.以上基础上用科学先进的技术路线、设计思想, 提出解决冻土问题的技术手段, 也就是有效的工程措施和工程结构.( 2) 以科学的手段验证工程措施和工程结构施工质量和长期工程效果, 用科学的理论预测所采用工程措施和工程结构的长期可靠性.( 3) 对今后长期运营可能发生的病害, 能够科学的预测, 并有应对技术措施和技术储备.( 4) 对这种结论的侧证表现在: 青藏铁路冻土区工程施工质量良好, 工程变形稳定, 工程设计逐步完善, 工程措施成效明显. 正在由科研人员参加建设的 冻土区工程长期监测系统 , 将为青藏铁路竣工验收时工程措施效果评估、为建设世界一流高原铁路目标的实现提供基础性数据支持. 同时为青藏铁路冻土区工程运营状态确定、病害预测和整治提供数据支持. 所有这些都为冻土技术问题的深入解决提供科学依据.参考文献[ 俞祁浩, 程国栋, 牛富俊. 自动温控通风路基在青藏铁路中的应用研究[ J] . 中国科学( D 辑) ,2003, 33( 增刊) : 160- 167. ][ 牛富俊, 程国栋, 俞祁浩. 多年冻土地区管道通风路基地温调控研究[ J] . 中国科学( D 辑) , 2003,33( 增刊) : 145- 152. ][ 马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却路基方法的研究[ J] . 冰川冻土, 2002, 24( 5) : 579- 587. ][ 程国栋. 用冷却路基的方法修建青藏铁路[ J] . 中国铁道科学, 2003, 24( 3) : 1- 4. ] [ 吴青柏, 程国栋, 马巍. 多年冻土变化对青藏铁路工程的影响[ J] . 中国科学( D 辑) , 2003, 33 ( 增刊) : 115- 122. ][ 中华人民共和国铁道部标准.青藏铁路高原多年冻土区工程设计暂行规定[ S] . 北京: 中华人民共和国铁道部, 2003. 1- 85. ][ 吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题[ J] . 冰川冻土, 1995,17( 4) : 350- 355. ][ 王志坚, 张鲁新. 青藏铁路建设过程中的冻土环境问题[ J] . 冰川冻土, 2002, 24( 5) : 588- 592. ]西南科技大学工程管理概论课程论文标题:浅析青藏铁路建设和冻土技术问题姓名:卿容秀学号:20113650班级:工管1101。
简述青藏铁路高原多年冻土区低温混凝土施工技术发表时间:2019-04-11T10:50:49.203Z 来源:《建筑细部》2018年第19期作者:钟其飞王强[导读] 青藏高原由于特殊的地势地貌以及所需的技术水平有限,使得青藏高原地区交通闭塞,高原人一直处于自给自足的农耕作业经济中。
1成都铁路局集团公司工程质量监督站四川成都 6100822中铁十八局集团隧道工程有限公司重庆 404100摘要:青藏高原由于特殊的地势地貌以及所需的技术水平有限,使得青藏高原地区交通闭塞,高原人一直处于自给自足的农耕作业经济中。
随着改革开放特别是进入社会主义新时代之后,经济科技的高速繁荣发展,为青藏铁路的建设开通奠定了坚实的物资以及技术基础,一项项技术难题的攻破,使得青藏铁路的开通不是梦,使得藏区人民迎接新的发展契机不是梦。
本文就修筑青藏铁路中面临的高原多年冻土区低温混凝土施工技术难题进行详细论述,仅供参考。
关键词:青藏铁路;多年冻土;混凝土施工技术前言:青藏铁路位于世界上海拔最高的青藏高腹地,而青藏高原一直被人们誉为世界屋脊,因此地理位置的特殊性使得铁路修筑过程中遇到了较大的挑战,所以该工程的修筑被誉为中国新世纪四大工程之一,铁路全长为一千九百多千米,分两个工期修筑完成,铁路起始从甘肃西宁到西藏拉萨。
它的修成代表着世界上线路最长,海拔最高的高原铁路在我国诞生,另一方面对促进我国西部内陆地区的发展有着重要的意义,西藏进入铁路时代,加强了与祖国内地的联系,被称为是幸福路,发展路。
一、青藏铁路修筑面临的冻土区低温混凝土施工技术难题由于地形的复杂多样性使得青藏铁路修筑中面临的多样化难题打破了我国铁路修筑的多项记录,穿越的澡泽、荒漠、湿地、雪山、隧道等形形色色问题。
其中面临的最大问题之一就是复杂的多年冻土地质结构问题,综合来看青藏铁路穿越的冻土区长达五百五十多公里,其中穿越较深冻土层的地区大约为四百多公里。
这种环境下的修筑铁路情况与内陆地区铁路的建筑情况相比其难度要复杂的多。