四川省成都市铁路中学2012年七年级(上)期中数学试题(含答案)
- 格式:doc
- 大小:206.50 KB
- 文档页数:7
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-的相反数是()A. B. C. D. 22.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A. 元B. 元C. 元D. 元3.若单项式-2x m-1y mn与7x3y2是同类项,则代数式m-n的值是()A. B. 2 C. D.4.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A. 圆柱B. 棱柱C. 圆锥D. 正方体5.数轴上到-4的距离等于5个单位长度的点表示的数是()A. 5或B. 1C.D. 1或6.若m、n满足|2m+3|+(n-2)4=0,则m n的值等于()A. B. C. D. 07.下列(1)=3a-2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A. 1B. 2C. 3D. 48.下列各组数据中,结果相等的是()A. 与B. 与C. 与D. 与9.下面是小丽同学做的合并同类项的题,其中正确的是()A. B. C. D.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A. B. C. D.二、填空题(本大题共8小题,共30.0分)11.比较大小:-3 ______ 2;-______ -;-π ______ -3.14.12.多项式是______ 次______ 项式.13.如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是______ 面.14.若方程3x+2a=12和方程2x-4=12的解相同,则a的值为______.15.当x=1时,代数式ax2+bx-1的值为3,则代数式-2a-b-2的值为______ .16.若3x|n|-(n-4)x-3是关于x的四次三项式,则n的值为______ .17.有理数a,b,c在数轴上的位置如图所示,则化简:|a-b|-|c-a|-|b+c|= ______ .18.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为______ .三、计算题(本大题共3小题,共14.0分)19.(1)-4-28-(-29)+(-24)(2)2×(-3)2-×(-22)+6(3)-(-+)÷(-2)(4)-14+(1-0.5)××[2-(-3)2].20.(1)2ax2-3ax2-7ax2(2)-(-2x2y)-(+3xy2)-2(-5x2y+2xy2)21.先化简,后求值:-3(-x2+xy)+2y2-2(2y2-xy),其中x=,y=-1.四、解答题(本大题共6小题,共36.0分)22.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.23.小明在对代数式2x2+ax-y+6-2bx2+3x-5y+1化简后,没有含x的项,请求出代数式(a-b)2的值.24.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)()若月日古镇的游客人数为万人,则月日的游客人数为万人;七天内游客人数最大的是10月______ 日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?25.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是______ 、______ 、______ .(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.26.(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是______ ;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.答案和解析1.【答案】C【解析】解:由相反数的意义得:-的相反数是.故选:C.根据相反数的意义解答即可.本题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.【答案】B【解析】解:175亿=175********=1.75×1010,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:由题意,得m-1=3,mn=2,解得m=4,n=,m-n=4-=,故选:C.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用相同且相同字母的指数也相同得出m-1=3,mn=2是解题关键.4.【答案】C【解析】解:A、圆柱的轴截面是长方形,不符合题意;B、棱柱的轴截面是长方形,不符合题意;C、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D、正方体的轴截面是正方形,不符合题意;故选C.用一个平面截一个几何体得到的面叫做几何体的截面.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.5.【答案】D【解析】解:设该点表示的数为x,由题意可得|x-(-4)|=5,∴x+4=5或x+4=-5,解得x=1或x=-9,即该点表示的数是1或-9,故选D.设该点表示的数为x,由距离的定义可得到关于x的方程,可求得答案.本题主要考查数轴上两点间的距离,掌握数轴上两点间的距离公式是解题的关键.6.【答案】A【解析】解:由题意得,2m+3=0,n-2=0,解得m=-,n=2,所以,m n=(-)2=.故选A.根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】B【解析】解:(1)=3a-2、(3)3s+4=s是一元一次方程,故选:B.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.【答案】D【解析】解:A、(-1)4=1,-14=-1,1≠-1,故错误;B、-|-3|=-3,-(-3)=3,-3≠3,故错误;C、,,,故错误;D、,,相等,正确.故选:D.根据有理数的乘方,逐一计算,即可解答.本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.9.【答案】B【解析】解:A、2a与3b不是同类项,不能合并.错误;B、ab-ba=0.正确;C、5a3-4a3=a3.错误;D、-a-a=-2a.错误.故选B.本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.10.【答案】D【解析】解:所得几何体的主视图的面积是2×3×3=18cm2.故选D.易得此几何体为圆柱,主视图为长方形,面积=底面直径×高.本题考查了圆柱的计算,解决本题的难点是得到所得几何体的主视图的形状.11.【答案】<;>;<【解析】解:-3<2,∵|-|=,|-|=,∴->-,-π<-3.14,故答案为:<,>,<.根据正数都大于负数,两个负数比较大小,其绝对值大的反而小比较即可.本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键,正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.【答案】三;三【解析】解:多项式是三次三项式,故答案为:三,三.根据多项式的定义,即可解答.本题考查了多项式,解决本题的关键是熟记多项式的次数、项数的定义.13.【答案】B【解析】解:由图可知A对应-1,B对应2,C对应0.∵-1的相反数为1,2的相反数为-2,0的相反数为0,∴A=1,B=-2,C=0,∴添入正方形A、B、C内的三个数中最小的是B面.故答案为:B.本题可根据图形的折叠性,对图形进行分析,可知A对应-1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.本题考查的是专题:正方体相对两个面上的文字,相反数的概念,两数互为相反数,和为0,本题如果学生想象不出来图形,可用手边的纸剪出上述图形,再根据纸片折出正方体,然后判断A、B、C所对应的数.14.【答案】-6【解析】解:解方程2x-4=12,得:x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得:a=-6.故答案为:-6.本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.本题考查同解方程的知识,比较简单,解决本题的关键是理解方程解的定义,注意细心运算.15.【答案】-10【解析】解:将x=1代入得:a+-1=3,∴a+=4.等式两边同时乘以-2得:-2a-b=-8.∴-2a-b-2=-8-2=-10.故答案为:-10.将x=1代入可求得a+=4,然后等式两边同时乘以-2得:-2a-b=-8,最后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质对等式进行适当变形是解题的关键.16.【答案】-4【解析】解:∵3x|n|-(n-4)x-3是关于x的四次三项式,∴|n|=4且n≠4,∴n=-4,故答案为-4.根据题意得|n|=4且n≠4,得出n的值即可.本题考查了多项式,掌握多项式的定义是解题的关键.17.【答案】-2c【解析】解:由数轴得a<-1<b<0<1<c,∴|a-b|-|c-a|-|b+c|=b-a-c+a-b-c=-2c,故答案为-2c.根据数轴得出a-b,c-a,b+c的符号,再去绝对值即可.本题考查了整式的加减,掌握数轴、绝对值以及合并同类项的法则是解题的关键.18.【答案】69【解析】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14,或8,9,10,11,12,13,且每个相对面上的两个数之和相等,13+10=23,12+11=23,9+14=23,故只可能为9,10,11,12,13,14,其和为69.故答案为:69.由平面图形的折叠及立体图形的表面展开图的特点解题,根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14或8,9,10,11,12,13,然后分析符合题意的一组数即可.本题主要考查整数问题的综合运用和几何体的展开图的知识点,解答本题的关键是对几何图形的观察能力和空间想象能力,此题难度不大.19.【答案】解:(1)-4-28-(-29)+(-24)=-32+29-24=-3-24=-27(2)2×(-3)2-×(-22)+6=2×9-×(-4)+6=18+1+6=25(3)-(-+)÷(-2)=-(-)÷(-2)=-=0(4)-14+(1-0.5)××[2-(-3)2]=-1+××[2-9]=-1+×(-7)=-1-=-2【解析】(1)首先计算除法,然后从左向右依次计算即可.(2)首先计算乘方和乘法,然后从左向右依次计算即可.(3)首先计算小括号里面的加法,然后计算除法和减法即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和加法即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.【答案】解:(1)原式=(2-3-7)ax2=-8ax2;(2)原式=2x2y-3xy2+10x2y-4xy2=12x2y-7xy2.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21.【答案】解:原式=x2-2xy+2y2-4y2+2xy=x2-2y2,当x=,y=-1时,原式=-2=-1.【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:如图所示:【解析】左视图有3列,每列小正方数形数目分别为3,2,1,俯视图有3列,每列小正方形数目分别为1,1,2.再根据小正方形的位置可画出图形.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.【答案】解:原式=(2-2b)x2+(a+3)x-6y+5,由代数式的值与字母x的取值无关,得到2-2b=0,a+3=0,解得:a=-3,b=1,则(a-b)2=16.【解析】代数式合并后,根据其值与x取值无关,确定出a与b的值,即可求出所求式子的值.本题考查了多项式的知识,解答本题的关键是理解题目中字母x的取值无关的意思.24.【答案】a+0.6;3【解析】解:(1)由题意可得,10月1日游客为:a+0.6,10月2日游客为:a+0.6+0.8=a+1.4,10月3日游客为:a+1.4+0.4=a+1.8,10月4日游客为:a+1.8-0.4=a+1.4,10月5日游客为:a+1.4-0.8=a+0.6,10月6日游客为:a+0.6+0.2=a+0.8,10月7日游客为:a+0.8-0.8=a,故答案为:(a+0.6),3;(2)∵9月30日游客人数0.3万人,∴2014年黄金周7天游客总数为0.3+1.4+0.3+0.6+0.3+1.8+0.3+1.4+0.3+0.6+0.3+0.8+0.3=8.7万人,∴2014年“十一”黄金周比2013年同期游客总数增长的百分率是.(1)根据表格中的数据可以解答本题;(2)根据(1)中的答案和表格中的数据可以解答本题.本题考查列代数式、正数和负数,解题的关键是明确题意,列出相应的代数式,明确正数和负数在题目中的实际意义.25.【答案】x+3;x+24;x+27【解析】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.(1)观察数列的排列方式即可得出:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.根据最小的数为x结合正方形的性质即可得出其它三个数;(2)根据(1)将此四个数相加,令其等于96即可得出关于x的一元一次方程,解之即可求出x的值,由x不是正整数即可得出这四个数之和不能等于96;(3)根据(1)将此四个数相加,令其等于3282即可得出关于x的一元一次方程,解之即可求出x的值,由x为正整数即可得出结论.本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数列的排列用含x的代数式表示其它三个数;(2)根据四个数之和为96列出关于x 的一元一次方程;(3)根据四个数之和为3282列出关于x的一元一次方程.26.【答案】解:(1)20×15=300(元).答:如果小华只买15张,则购买贺卡共花去300元钱.(2)设小华所花的费用为y元,根据题意可知:当0<x≤20时,y=20x;当x>20时,y=0.75×20x=15x.∴小华所花的费用y=.(3)∵20×20=400(元),21×15=315(元),315<360<400,∴若购买贺卡花去360元,则小华此次购买贺卡张数可能多于21也可能少于20,∴当y=360时,有20x=360或15x=360,解得:x=18或x=24.答:如果小华此次购买共花去360元,请问购买贺卡可能为18或24张.【解析】(1)根据总价=单价×数量,列式计算即可;(2)设小华所花的费用为y元,分0<x≤20和x>20两种情况找出y关于x的代数式,此题得解;(3)先求出购买20和21张贺卡的总钱数,将其与360元进行比较即可得出小华此次购买贺卡张数可能多于21也可能少于20,将y=360代入(2)的关系式中即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据总价=单价×数量列式计算;(2)分0<x≤20和x>20两种情况找出y关于x的代数式;(3)将y=360代入(2)的结果中找出关于x的一元一次方程.27.【答案】(1)17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n-1)+1.由数表可知:每一行的数字个数与所在的行数相等,偶数行第一个数可表示n(n-1)+1,奇数行第一个数可表示n(n+1),即(),为偶数(),为奇数.【解析】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n-1)+1.由数表可知:每一行的数字个数与所在的行数相等,偶数行最后一个数可表示n(n+1),奇数行第一个数可表示n(n+1),由此规律分析得出答案即可.此题考查数字的变化规律,找出数字之间的运算规律与符号规律,利用规律解决问题.。
最近成都铁路中学数学七试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.-2的相反数是()A.2 B.1/2 C.-1/2 D.-22、有下列各数:8,-6.7,0,-80,-1/7,-(-4),-|-3|,-(+62),其中属于非负整数的共有( )A、1个B、2个C、3个D、4个3.若|x|=|4|,那么x=()A.﹣4B.4C.4或﹣4D.不能确定4.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10105、若4/x表示一个整数,则整数x可取的值共有().A. 8个B. 4个C. 3个D. 2个6.在代数式13ab、3xy、a+1、3ax2y2、1-y、4x、x2+xy+y2中,单项式有……()A.3个B.4个C.5个D.6个7.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差…………………………………………………………()A. 0.2 kgB. 0.4 kgC. 25.2 kgD. 50.4 kg8.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2013次跳后它停的点所对应的数为……………………………………………………………………………………()A.1 B.2 C.3 D.59、已知线段AB=6,在直线AB上取一点C,使BC=2,则线段AC的的()A.2B.4 C.8 D.8或410.已知等式3m=2n+5,则下列等式中不成立的是()A.3m﹣5=2n B.3m+1=2n+6 C.3m+2=2n+2 D.3m﹣10=2n﹣5第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.若-a=5,则a=,若a2=9 ,则a=.12、A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则地势最高的与地势最低的相差__________米.13.数轴上点M表示有理数-3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为__________.14.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为.(结果保留π)15.大于1的正整数的三次方都可以分解为若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19.按此规律,若m3分解后,最后一个奇数为109,则m的值为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算题(1)23﹣37+3﹣52;(2);(3);(4).17.计算(1))(-12)-5+(-14)-(-39);(2)(3)18.先化简,再求值5(3a2b-ab2)-4(-ab2+3a2b),其中a=12、b=-13.19.小明用172元钱买了语文和数学的辅导书,共10本,语文辅导书的单价为18元,数学辅导书的单价为10元.求小明所买的语文辅导书有多少本?20.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12 根跳绳需元.小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.21.如图,已知A、B、C是数轴上三点,点C表示的数为8,BC=6,AB=14.(1)写出数轴上点A表示的数________,B表示的数_________;(2)动点P、Q分别从A、C同时出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,到达原点O立即掉头,按原来的速度运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,P、Q两点到点A 停止运动,设运动时间为t(t>0)秒.①当0<t≤3时,求数轴上点P、Q表示的数(用含t的式子表示);②t为何值时,点O为线段PQ的中点.22.附加题:如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是__________,A,B两点间的距离是__________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是__________,A,B两点间的距离为__________;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是__________,A、B两点间的距离是__________;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?23.已知数轴上有A,B,C三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出....多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.AB C0 10-24-10。
成都市2012年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)1l .分解因式:25x x - =________.12.如图,将 ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos45((1)π+-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b -÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.11.732≈)18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1-,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B 的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分I0分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;KG=KD·GE,试判断AC与EF的位置关系,并说明理由;(2)若2(3) 在(2)的条件下,若sinE=35,AK=FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P P M M M M ⋅ 是否为定值,并写出探究过程.(附:扫描版)A卷1-5 ACDBA 6-10 BDCBC11、x(x-5) 12、70° 13、39、40 14、2 15、2,21<≤x16、a-b 17、11.9米 18、xy x y 4,22-=+-= B(2,-2) 19、50,320,61 20、(1)CQ=BP,BE=EC,C B ∠=∠,SAS (2)C B CEQ BPE ∠=∠∠=∠,,故相似 a PQ a AQ a AP a AB a BE CE BP CQ BE 25,23,2,3,223,====== B 卷21、6(简单的代数运算)22、68π(圆锥圆柱展开图求面积)23、73(先求出a 的取值,再求符合条件的a ) 24、11+-m m (k 的几何意义,线段比的转化,面积的几种求法) 25、20,13412+(MN 最短就是AB 一半,最长就是AB 中点到C 距离)26、(1)v=9421+-x (2))8828(94212≤≤+-=x x x p x 取88时,有最大值4400 27、(1)KGE OGA OAG AKC EKG ∠=∠-=∠-=∠=∠009090 所以KE=GE(2)EF AC C E KGD KEG KGD KGGE KD KG 平行相似∴∠=∠=∠∴∆∆∴= (3).3305,=∆AB ACH 3353533,===∆∆BG AG KG AGB AHK ,,相似 31),(,2==+=∆∆AG BG FG FB AB FB FB FG GFB AFG 相似,8305=FG 28、(1)m=415,41521412++-=x x y (2)715,415,211=⎪⎭⎫ ⎝⎛S E .43115105,415,31122+=⎪⎭⎫ ⎝⎛-+S E (3)定值1。
四川省成都市七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 3a2−a2=3B. a2⋅a3=a6 C. (a2)3=a6 D. a6÷a2=a32.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−13.化简5a⋅(2a2−ab),结果正确的是()A. −10a3−5abB. 10a3−5a2bC. −10a2+5a2bD. −10a3+5a2b4.下列各式中能用平方差公式计算的是()A. (a+3b)(3a−b)B. (3a−b)(3a−b)C. (3a−b)(−3a+b)D. (3a−b)(3a+b)5.下列各组线段中,能组成三角形的是()A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,66.已知a+b=3,ab=32,则(a+b)2的值等于()A. 6B. 7C. 8D. 97.下列乘法公式的运用,不正确的是()A. (2a+b)(2a−b)=4a2−b2B. (−2a+3)(3+2a)=9−4a2C. (3−2x)2=4x2+9−12xD. (−1−3x)2=9x2−6x+18.如图,直线l与直线a、b相交,且a//b,∠1=50°,则∠2的度数是()A. 130°B. 50°C. 100°D. 120°9.如图,点E在AD延长线上,下列条件中不能判定BC//AD的是()A. ∠1=∠2B. ∠C=∠CDEC. ∠3=∠4D. ∠C+∠ADC=180°10.如图,直线a//b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为()A. 45°B. 35°C. 30°D. 25°二、填空题(本大题共9小题,共32.0分)11.若a m=2,a n=4,则a m+n=______.12.已知m+2n=2,m−2n=2,则m2−4n2=______.13.x2−4x+k是完全平方式,则k=______.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=______.15.已知:3m=2,9n=5,则33m−2n=______.16.若a−b=2,则a2−b2−4b=______.17.已知a2−2(k−1)ab+9b2是一个完全平方式,那么k=______ .18.设a,b,c为△ABC的三边,化简|a−b+c|−|a+b−c|−|a−b−c|=______.19.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是______ .三、计算题(本大题共1小题,共10.0分)20.计算:(1)(−12)0+|3−π|+(13)−2.(2)(x+3)(x−3)−(x−2)2.四、解答题(本大题共8小题,共74.0分)21.计算:(1)(a+3)2−(a+2)(a−1);(2)(15x2y−10xy2)÷5xy.22.如图,直线AB//CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.23.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG//AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG//AB(______)24.如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=3.5cm,BD=4.5cm.(1)说明△AED≌△ACD的理由;(2)求线段BC的长.25.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.26.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n−p)(2m−n+p)27.已知:AB//CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.28.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到C(D不与B、C重合),连接AD,作∠ADE=30°,DE交线段AC于E.(1)在点D的运动过程中,若∠BDA=100°,求∠DEC的大小;(2)在点D的运动过程中,若AB=DC,请证明△ABD≌△DCE;(3)若BC=6cm,点D的运动速度是1cm/s,运动时间为t(s).在点D的运动过程中,是否存在这样的t,使得△ADE的形状是直角三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、3a2−a2=2a2,故此选项错误;B、a2⋅a3=a5,故此选项错误;C、(a2)3=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10−2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:5a⋅(2a2−ab)=10a3−5a2b.故选B.4.【答案】D【解析】解:A、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B、原式=(3a−b)2,故本选项错误;C、原式=−(3a−b)2,故本选项错误;D、符合平方差公式,故本选项正确.故选D.根据平方差公式对各选项进行逐一计算即可.本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.【答案】B【解析】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选:B.三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.6.【答案】D【解析】解:∵a+b=3,∴(a+b)2=32=9.故选:D.利用整体代入的方法计算.本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2= a2±2ab+b2.7.【答案】D【解析】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2;B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2;C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1+3x)2=1+6x+9x2,所以D选项错误.故选:D.A选项运用了平方差公式,计算正确;B选项运用了平方差公式,计算正确;C选项运用了完全平方公式,计算正确;D选项运用了完全平方公式(−1−3x)2=(1+3x)2=1+6x+9x2,所以原题计算错误.本题主要考查了平方差公式和完全平方公式,解决此类问题要熟知两个公式的形式:平方差是两数的和与两数的差的乘积等于两数的平方差,完全平方公式是两数的和或差的平方等于两数的平方和加上或减去这两数的乘积的2倍(首平方,尾平方,2倍在中央,符号看前方).8.【答案】B【解析】解:如图,∠3=∠1=50°,∵a//b,∴∠2=∠3=50°.故选:B.根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.9.【答案】A【解析】【分析】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【解答】解:A、∵∠1=∠2,∴AB//CD,本选项符合题意;B、∵∠C=∠CDE,∴BC//AD,本选项不符合题意;C、∵∠3=∠4,∴BC//AD,本选项不符合题意;D、∵∠C+∠ADC=180°,∴AD//BC,本选项不符合题意.故选:A.10.【答案】C【解析】解:∵a//b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11.【答案】8【解析】解:a m+n=a m⋅a n=2×4=8,故答案为:8.因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.12.【答案】4【解析】解:∵m+2n=2,m−2n=2,∴m2−4n2=(m+2n)(m−2n)=2×2=4.故答案为:4.原式利用平方差公式分解,把各自的值代入计算即可求出值.本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.13.【答案】4【解析】解:∵x2−4x+k是完全平方式,∴k=22=4,故答案为:4利用完全平方公式的结构特征判断即可求出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】130°【解析】【分析】本题考查了两直线平行,内错角相等,同旁内角互补的性质,以及翻折变换的性质,熟记各性质是解题的关键.据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.【解答】解:长方形纸片ABCD的边AD//BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°−2∠3=180°−2×65°=50°,又∵AD//BC,∴∠2=180°−∠1=180°−50°=130°.故答案为:130°.15.【答案】85【解析】解:∵3m=2,9n=32n=5,∴33m−2n=(3m)3÷32n=23÷5=85.故答案为:85.直接利用同底数幂的除法运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.16.【答案】4 【解析】解:∵a−b=2∴原式=(a+b)(a−b)−4b=2(a+b)−4b=2a−2b=2(a−b)=4故答案为:4先将多项式因式分解,然后再代入求值.本题考查因式分解,涉及平方差公式,代入求值等知识.17.【答案】4或−2【解析】解:∵a2−2(k−1)ab+9b2=a2±6ab+(3b)2,∴−2(k−1)=±6,解得k=4或−2,故答案为:4或−2.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.【答案】a−3b+c【解析】解:∵a,b,c为△ABC的三边,∴a−b+c>0,a+b−c>0,a−b−c<0,∴|a−b+c|−|a+b−c|−|a−b−c|=a−b+c−(a+b−c)+(a−b−c)=a−b+c−a−b+c+a−b−c=a−3b+c.故答案为:a−3b+c.直接利用三角形三边关系进而化简得出答案.此题主要考查了三角形三边关系以及绝对值的性质,正确化简绝对值是解题关键.19.【答案】①②③④【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF//AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△BDF中,{∠C=∠CBFCD=BD∠EDC=∠FDB,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.20.【答案】解:(1)原式=1+π−3+9=7+π.(2)原式=x2−9−(x2−4x+4)=x2−9−x2+4x−4=4x−13.【解析】(1)利用零指数幂、负整数指数幂法则,绝对值的意义计算即可得到结果;(2)根据平方差公式和完全平方公式计算即可得到结果.本题考查了实数和整式的运算,平方差公式和完全平方公式,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)(a+3)2−(a+2)(a−1)=(a2+6a+9)−(a2−a+2a−2)=a2+6a+9−a2+a−2a+2=5a+11;(2)(15x2y−10xy2)÷5xy=3x−2y.【解析】(1)先根据完全平方公式和多项式乘以多项式法则算乘法,再合并同类项即可;(2)根据多项式除以单项式法则求出即可.本题考查了完全平方公式,多项式乘以多项式法则,多项式除以单项式法则,整式的混合运算等知识点,能正确根据知识点进行化简是解此题的关键.22.【答案】解:∵AB//CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【解析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.23.【答案】已知AD同位角相等,两直线平行∠3两直线平行,同位角相等∠2=∠3等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG//AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.24.【答案】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD;在△ADE和△ADC中,{AE=AC∠EAD=∠CAD AD=AD,∴△ADE≌△ADC(SAS);(2)解:由(1)知,△ADE≌△ADC,∴DE=DC(全等三角形的对应边相等),∴BC=BD+DC=BD+DE=4.5+3.5=8(cm).【解析】(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.25.【答案】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,AD=BE,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.【解析】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS);(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,AD=BE,可得BE=BF,从而可求出∠BEF的度数.26.【答案】(1)a2−b2;(2)a−b;a+b;(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2【解析】解:(1)由图可得,阴影部分的面积=a2−b2;故答案为:a2−b2;(2)由图可得,矩形的宽是a−b,长是a+b,面积是(a+b)(a−b);故答案为:a−b,a+b,(a+b)(a−b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a−b)=a2−b2;故答案为:(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.27.【答案】解:(1)①∵AB//CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM//FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°−2∠1,∴∠MEF=∠EFN∴EM//FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB//CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.【解析】(1)根据平行线的性质和判定解答即可;(2)利用角平分线的定义和平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质和判定解答.28.【答案】解:(1)∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BDA=100°,∠ADE=30°,∴∠EDC=180°−100°−30°=50°,∴∠DEC=180°−50°−30°=100°;(2)∵∠C=30°,∴∠CED+∠CDE=150°,∵∠ADE=30°,∴∠ADB+∠CDE=150°,∴∠CED=∠ADB,在△ABD和△DCE中,{∠ADB=∠DEC∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(3)存在,∵AB=AC,∠B=30°,∴∠BAC=120°,∵BC=6cm,点D的运动速度是1cm/s,运动时间为t(s),∴BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,∴∠BAD=∠B=30°,∴AD=BD=t,∵∠C=30°,∴CD=2AD,即6−t=2t,∴t=2;②如图2,当∠AED=90°时,则∠DAE=60°,∴AD平分∠BAC,∴BD=CD,即t=6−t,∴t=3,综上所述,当t=2或3时,△ADE的形状是直角三角形.【解析】(1)根据等腰三角形的性质得到∠C=∠B=30°,根据已知条件得到∠EDC=180°−100°−30°=50°,于是得到∠DEC=180°−50°−30°=100°;(2)根据三角形的内角和和平角的定义得到∠CED=∠ADB根据全等三角形的判定定理即可得到结论;(3)根据三角形的内角和得到∠BAC=120°,求得BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,根据直角三角形的性质列方程求得t的值;②如图2,当∠AED=90°时,则∠DAE=60°,根据等腰三角形的性质列方程求得t的值.本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,三角形的内角和,正确的作出图形是解题的关键.。
七年级上学期期中考试数学试题及答案一、选择题1.如图,由 6 个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是2.下列说法中,正确的是A.在数轴上表示 - a 的点一定在原点的左边B.有理数 a 的倒数是 12C.一个数的相反数一定小于或等于这个数D.如果a a =-那么 a 是负数或零3.有理数 a 、b 在数轴上的位置如图所示,那么下列式子中成立的是A. a >bB. a <bC. ab >0D. a b>04.在代数式4a ,0,m ,x + y ,1x ,2x y π+中,整式共有() A.3 个B.6 个C.5 个D.4 个5.下列判断正确的是A. 3a 2bc 与 b ca 2 不是同类项B. 25m n 和2a b +都是单项式C.单项式 - x 3 y 2 的次数是 3,系数是-1D. 3x 2 - y + 2 x y 2 是三次三项式6.下列去括号正确的是A.a +(b -c)=a +b +cB.a -(b -c)=a -b -cC.a -(-b +c)=a -b -cD.a -(-b -c)=a +b +c7.下列说法中正确的是A.角是由两条射线组成的图形B.两点之间的线段叫做两点之间的距离C.如果线段A B=BC,那么B叫做线段A C的中点D.两点确定一条直线8.下列说法不正确的是A.若x=y则x+a =y +aB.若x=y则x-b =y -bC.若x=y则a x =ayD.若x=y则x y b b =9.如图,点A位于点O的第9题第10题A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上10.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,则下列判断错误的是A.∠AOD=∠BOCB.∠AOB=148°C.∠AOB+∠DOC=180°D.若∠DOC变小,则∠AOB变大二、填空题1l.有资料显示,被称为“地球之肺”的森林正以毎年15000000公顷的速度从地球上消失, 将15000000用科学记数法表示为.12.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是.第12题第13题13.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC的度数为.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是.16.下列方程中:(1)3x +6y =1;(2)y2 -3y- 4 =0;(3)x2 +2x=1;(4)3x- 2 =4x+1.其中是一元一次方程的是(填写序号即可)17.已知点A、B、C三点在一条直线上,线段A B=6cm,线段B C=8cm,则线段A C的长度为.18.一家商店把一种旅游鞋按成本价a 元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是元(用含a的式子表示).三、解答题19.计算:(1)(-20)+(+3)-(-5)-(+ 7) (2)(-3)⨯(-4)- 48 ÷6-(3)151(12)()236-⨯--(4)-14 +(-2)3⨯(-0.5)-15--20.合并同类项:(1)3a2-2a +4a2 - 7a (2)(x2 +5y)-12(4x2 -3y-1)21.化简求值:2(2x-3y)-(3x+2y +1)其中x= 2,y = 0.5.22.解方程:(1)4(x+0.5)+x = 7 (2)2121 34x x-+=-四、解答题23.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的正方形,问: (1)这个窗户的外框总长为;(2)这个窗户的面积为;(3)当a= 4 时,求这个窗户的面积。
铁一中七年级期中考试试卷*数学一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项符合题意)1、-5的绝对值为()A、-5B、5C、1/5D、-2、如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A、我B、爱C、西D、安3、用一个平面去截一个几何体,截面不可能是三角形的几何体是()A、圆柱B、圆锥C、三棱柱D、正方体4、2012年国庆期间约有5450000人次在西安旅游,5450000用科学数法表示为()A 、B、C 、D 、5、如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A、ab>0B、a-b>0C、a+b>0D、︱a︱-︱b︱>6、若A是3次多项式,B也是3次多项式,则3A+2B一定是()A、3次多项式B、6次多项式C、次数低于3的多项式D、次数不高于3的整式7、下列各组数中,值相等的是()A 、和B、和C、︱-(-3)︱和-︱-3︱D、-(-9)和-98、观察图表,依据表格中数据排列的规律,数2012在表格中出现的次数共有()次A、6B、8C、10D、无数多二、填空题(共6小题,每小题3分,计18分)9、某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午的温度是。
*10、已知a-3b=3,则的值是。
11、如图,在直角三角形ABC中,∠ACB=90º,以AC所在的直线为轴转一周所和的几何体是。
12、某商品每件成本a元,按成本增加20%定价,后因库存积压减价,按定价的90%出售,减价后每件商品盈利元。
(盈利=售价-成本)*13、在数轴上的三点A、B、C,点A、B对应的数分别是-1,4,点C到点B的距离为2,则点C到点A的距离是。
14、对实数a、b,定义运算☆如下:例如:3☆2=3²=9,计算【2☆1】×【(-4)☆2】= 。
三、解答题(共8小题,计58分,解答题应写出必要的解答过程)15、(本题满分6分)计算:①②16、(本题满分8分)先化简再求值:①(-4a²-2ab+7)-2(5ab-4a²+7),其中a=2,b=1/3*②已知的值。
D BAC1图3某某省某某铁中2011-2012学年七年级数学3月检测试题一、精心选一选(每小题3分,共30分) 1.下列运算正确的是( )A .235a b ab +=B .623a a a ÷=C .222()a b a b +=+D .325a a a =·2.如图1,下列四个图形中,∠1与∠2是对顶角的是( )12121212A. B. C . D .图13.如图2,∠1和∠2是一对( ) A .同位角 B .对顶角 C .内错角 D .同旁内角4.下列叙述中,正确的是( )A .单项式y x 2的系数是0,次数是3 B .a,π,0,2都是单项式 C .多项式12323++a b a 是六次三项式 D .2nm +是二次二项式 5.如图3,已知AB ∥CD ,∠A =70°,则∠1的度数是( ) A .70° B.100° C.110° D.130°54.310-⨯mm ,用小数表示这个数的结果为( )mmA.0.00043 B.0.000043 000043 7.已知34m=,35n=,213m n -+的值为( )A .2512 B .2587 C .512 D .2548.学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一X 半透明的纸得到的(如图(1)~(4) ):2题21图2图5A BC a b1 2 3 从图4中可知,小敏画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C.③④ D.①④ 9. ()()2b2若的积不含的一次项和二次项,则--+=x ax bx x a( )A.116 B.116- C.16 D.16- 10.已知:a b c 0++=,则()()()a bb c c a abc ++++的值为( )A .1-B .0C .1D . 3- 二、耐心填一填(每题3分,共15分) 11.计算:2(6)(3)-÷=ab ab . 12.∠1与∠2互余,∠1=630,则∠2=013.()01若有意义,则x 的取值范围是-x .14.如图5,已知a b ∥,170∠=,240∠=,则3∠=°14,则这个角等于° 三、细心算一算(共24分) 16.计算题(每小题6分,共24分)()0211(1).220111(3)4π---+---÷-()()233332(3).2a a a a ⋅+-+2342(4).(251520)(5)m m n m m +-÷-四、仔细想一想(共31分)17.(6分)先化简,再求值:2(2)(2)(2)4a b a b b a b a b b +-++-÷,其中12a =-,2b =.(2) . (x -1)(x+1)+( -x+1)(x-3)18.(7分)已知:222450a b a b ++-+=,先化简,再求()()2222--+a b a b 的值.19.(8分)推理填空:已知,如图6,BCE 、AFE 是直线,AB∥CD,∠1=∠2,∠3=∠4。
一、 精心选一选!(只有一个正确答案,每小题4分,计32分)1、下面几组数中,不相等的是 ( )A 、 -3和+(-3)B 、 -5和-(+5)C 、-7和-(-7)D 、+2和│-2│2、平面上有任意三点,过其中两点画直线,共可以画( )A 、1条B 、3条C 、1条或3条D 、无数条3、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A 、a+b >0B 、a +b <0C 、ab >0D 、│a │>│b │4、下列图形中,哪一个是正方体的展开图( )5、2002年11月23—29日在泉州销售8000万元即开型福利彩票(每张面额2元),特等奖100万元,结果中一百万元者有15名,假如你花10元买5张,下列说法正确的是写 ( )A 、中一百万元是必然事件B 、中一百万元是不可能事件C 、中一百万元是可能事件,但可能性很小D 、因为5÷15=1/3,所以中一百万元的可能性是33.3%6、计算(-1)1001÷(-1)2002所得的结果是( )A 、1/2B 、-1/2C 、1D 、-17、任何一个有理数的平方( )A 、一定是正数B 、一定不是负数C 、一定大于它本身D 、一定不大于它的绝对值8、如图,AOC ∠和BOD ∠都是直角,如果︒=∠150AOB ,那么=∠COD ( ) A 、︒30 B 、︒40 C 、︒50 D 、︒60二、认真填一填(每题3分,计36分)9、计算:0-1=___________。
10、据2003年12月29日,中央气象台预报,下列四个地区的最低气温分别是:哈尔滨-10℃,杭州5℃,兰州-6℃,南沙26℃,请你把这四个气温按从高到低的顺序排列:_____________________。
11、人体中的红细胞个数约有25,000,000,000,000,用科学记数法表示这个数为:_____________ 。
AC B O D12、俯视图为圆的立体图形可能是______________________。
七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.人教版七年级(上)期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104 3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=05.下列不是三棱柱展开图的是()A.B.C.D.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.189.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条二、填空题(每小题3分,共30分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.﹣的系数是,次数是.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差米.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.若|m﹣2|+(n+1)2=0,则2m+n=.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).三、解答题(共40分)21.(16分)计算:(1)16﹣(﹣23)+(﹣49)(2)[﹣+(﹣1)﹣(﹣)]×24(3)26×(﹣3)2+175÷(﹣5)(4)﹣42﹣6×+2×(﹣1)3÷(﹣)22.(7分)(1)合并同类项:﹣3(2m2﹣mn)+4(m2+mn﹣1)(2)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.23.(4分)若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.24.(5分)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?25.(8分)已知数轴上两点A,B对应的数分别为﹣4,8.(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①A,B两点之间的距离为.②当P,Q两点相遇时,点P在数轴上对应的数是.③求点P出发多少秒后,与点Q之间相距4个单位长度?(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?参考答案一、选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.【分析】根据三视图的知识求解.解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.5.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为米,那么依此类推得到第六次后剩下的绳子的长度为米.解:∵1﹣=,∴第2次后剩下的绳子的长度为米;依此类推第六次后剩下的绳子的长度为米.故选:C.【点评】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④【分析】根据相反数和绝对值的概念进行判断.解:①正确;②若﹣a>a,则2a<0,即a是负数,故②正确;③数轴上原点两侧,且到原点距离相等的数互为相反数;故③错误;④两个负数相互比较,绝对值大的反而小;故④错误;所以正确的结论是①②.故选:A.【点评】理解相反数和绝对值的概念是解答此题的关键.相反数:符号不同,绝对值相等的两个数互为相反数;绝对值:数轴上,一个数到原点的距离叫做这个数的绝对值.8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.18【分析】把已知等式代入原式计算即可求出值.解:∵x﹣2y=﹣3,∴原式=27+15+6=48,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】根据数轴判断出a、b两个数之间的距离小于3,然后根据绝对值的性质解答即可.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.【点评】本题考查了实数与数轴,准确识图,判断出a、b两个数之间的距离小于3是解题的关键.10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条【分析】可考虑三个面切一个小角的情况.解:依题意,剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:因此顶点最多的个数是10,棱数最少的条数是12,故选:C.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.二、填空题(每小题3分,共30分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的系数是,次数是3.【分析】单项式的系数是指单项式中的数字因数,次数是指所有字母的指数和.解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.【点评】解答此题的关键是理解单项式的概念,比较简单.注意π属于数字因数.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差40米.【分析】地势最高的与地势最低的相差,即地势最高的海拔高度﹣地势最低的海拔高度.解:10﹣(﹣30)=10+30=40米.答:三地中地势最高的与地势最低的相差40米.【点评】注意A,B,C三地要通过比较,找到地势最高的B地与地势最低A.比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.16.若|m﹣2|+(n+1)2=0,则2m+n=3.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:根据题意得,m﹣2=0,n+1=0,解得m=2,n=﹣1,所以,2m+n=3.故答案为:3.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为0或﹣2.【分析】a,b互为倒数,即ab=1;c,d互为相反数即c+d=0,m的绝对值为1,m为1或﹣1两种情况,把这些数据整体代入求得结果.解:当m=1时,原式=1+0﹣1=0;当m=﹣1时,原式=﹣1+0﹣1=﹣2.故答案为:0或﹣2.【点评】此题重在考查倒数、相反数、绝对值的意义以及有理数的混合运算等知识点.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成10a+b.【分析】根据a表示两位数,b表示一位数,把a放在b的左边,相当于把a扩大10倍,从而列出代数式.解:∵a表示两位数,b表示一位数,∴把a放在b的左边组成一个三位数,那么这个三位数可表示为10a+b;故答案为:10a+b.【点评】本题考查了列代数式,正确理解把a放在b的左边组成一个三位数,其中a的变化情况是关键.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤(请填写编号).【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,。
四川省成都市2012-2013学年七年级数学上学期期中考试试题 新人教版(120分钟完成 满分150分)A 卷(100分)一、选择题:(每小题3分,共30分)1. 图中的纸板经过折叠能围成一个正方体的是( )A. B. C. D. 2.下列各数中,负数是( )A. -(-3)B. 3--C. (-3)2D. -(-3)33.下面四种说法中,正确的是( )A. +(-2)既是正数,也是负数B. —a表示负有理数C. 零是最小的自然数D. 任何有理数都有倒数 4.比零下2℃多6℃的温度是( )A. 4℃B. -4℃C. 8℃D. -8℃ 5.汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作( ) A. 5千米 B. -5千米 C. 10千米 D. 0千米6.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。
小明同学在洗手后,没有把水龙头拧紧,当小明离开2小时后水龙头滴了( )毫升水.(用科学记数法表示)A.720B. 31072.0⨯C. 2102.7⨯D.3102.7⨯ 7. 当21=a ,1=b 时,代数式223b ab a -+的值为( ) A. 41 B. 21 C. 43 D. 458. 下列各式中,不是同类项的是( )A. y x 221和y x 231B.ab -和baC. 273abcx -和abc x 237-D. y x 252和225xy9.下列各题运算正确的是( )A .336x y xy +=B .2x x x +=C .229167y y -+=D .22990a b a b -= 10. 有12米长的木料,要做成一个如图的窗框。
如果假设窗框横档的长度为x 米,那么窗框的面积是( )A.2362x x ⎛⎫-⎪⎝⎭米 B.()212x x -米 C.()263x x -米 D.()26x x -米二、填空题:(每小题3分, 共15分)11.多项式532123--y x x 的次数是 ,其中最高次项的系数是 .12. 若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 13.计算:3232)2()3(22-+----= 14.数轴上到原点的距离是3的点表示的数是 15.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,x= ,y= . 三、解答题:(共55分) 16. (每小题5分,共 15分)(1)计算)71()5()7()2(-⨯+⨯-⨯- (2)计算]2)32[(232--⨯- (3)计算])3(2[)3()211()1(24--⨯+÷---- 17.((1)小题6分,(2)小题8分,共14分) (1)化简)2(3)6(422xy x xy x ---+(2)先化简,再求值:()()[]222237653x y xy y x --+-,其中31,21=-=y x 18.(6分)画出下列几何体的三视图.19. “十.一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(共10分)日期 1 2 3 4 5 6 7 人数变化(万人)+1.6+0.8+0.4-0.4-0.8+0.2-1.2(1)若9月30日的游客为3万人,请完成下面7天游客人数记录表:(6分)日期 1 2 3 4 5 6 7 游客人数(万人) 4.6(2)(4分)七天内游客人数最多的一天有 万人;游客人数最少的一天是第 天.1 2 3x y20.(10分)某居民楼根据需要计划建造一个如图所示的无盖长方体水箱.(1)若水箱长a m 、宽b m 、高h m ,请你用含a 、b 、h 的代数式表示水箱所用材料的总面积S ;(2)该楼居民已集资1万元用于建造一个长5m ,宽3m 的水箱.已知箱底造价每平方米240元,箱壁每平方米的造价是箱底造价的32,求此水箱的高度.B 卷(50分)一、填空题:(每小题4分,共20分)21.若02)1(2=-++b a ,则12-+b a 的= .22.若代数式7322++x x 的值为8,则代数式9642-+x x 的值是 23.8米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第6次后剩下的小棒长 . 24.观察下列各式:21312;⨯+=22413;⨯+= 23514;⨯+=24615⨯+=;……请你将猜想到的规律用含自然数()1n n ≥的等式表示出来 . 25. 计算:10 (3211)......32112111+++++++++++= . 二、(8分)26. 将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为4cm,宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的表面积、体积分别是多大? 三、(10分)27. a 、b 、c 三个数在数轴上位置如图所示,且b a = (1)比较a ,―a 、―c 的大小(用“>”连接) (2)化简c b c a b a b a --++--+四、(12分)28. 某农户2011年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <a ).该农户将水果拉abcba· · ··到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的纯收入?(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到15000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出)?成都铁中2012-2013学年(上)初2015级期中检测数学答案A 卷18.19. (1) 日期 1 2 3 4 5 6 7 游客人数 (万人)4.65.45.85.44.64.83.6(2) 七天内游客人数最多的一天有 5.8 万人;游客人数最少的一天是第 7 天. 20. (1) S=ab+2ah+2bh (2))35(2240322405310000+⨯⨯⨯⨯-=25主视图 俯视图左视图。
2012级初一上中期考试数学试卷时间:120分钟 总分:150分友情提示:亲爱的同学,你好!祝贺你完成了七年级第一个学期前半期的学习,今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!一、选择题(每小题4分,共40分) 1. 下列四个数中,在-3到0之间的数是 A .-2 B .1 C .-4D .32. 嫦娥一号是我国的首颗绕月,已于2007年10月24日18时05分左右成功发射,预计卫星的总重量为2350千克左右,寿命大于1年.请用科学记数法表示数2350为A.0.235×104B.5×103C.0.235×103D.5×1043. 下列各组数中,相等的一组是A .B .-(+2.5)和-(-2.5)C .-(-2.5)和+(-2.5)D.-(+2.5)和+(-2.5)4. 下列运算中,正确的是A .22=-a aB .ab b a 22=+C .b a b a b a 2222-=-D .422523a a a =+ 5、下列说法,正确的是( )。
A 、若 -2+x 是一个正数,则x 一定是正数B 、如果两个数的和为零,那么这两个数一定是一正一负C 、-a 表示一个负数D 、两个有理数的和一定大于其中每一个加数 6.在数轴上与原点的距离等于1个单位的点表示的数是班级 座号 某某A .-1B .0和1C .1D . -1 和1 7.根据下表的规律,空格中应依次填写的数字是A .100,001B .011,001C .100,011D .011,100 8. 已知代数式x +2y 的值是5,则代数式2x +4y +1的值是 A. 6 B. 7 C. 11 D. 129. 若0<a<1,则a ,21,( )a a从小到大排列正确的是A 、a 2<a<a 1B 、a < a 1< a 2C 、a 1<a< a 2D 、a < a 2 <a 110. 若a 、b 为有理数,它们在数轴上的位置如图所示,那么a 、b 、-a 、-b 的大小关系是A.b C.b <-a <a <-b D. -a <-b <b <a二、填空题(每小题4分,共32分)11.如果盈利250元记作+250元,那么-70元表示____________________. 12. 比较大小:-0.1 0;-3 -5.(用“>、<或=”表示) 13. 一个数的绝对值是 13 ,则这个数是 .n y x 32与y x m 5 是同类项,则m= ,n= .15. 一件商品原来价格为x 元,降价10%后,则这件商品的实际价格是_______元.16. 下面是一个数值转换机的示意图.当输入x 的值为-2时,则输出的数值为.17. 用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案: 那么第(n )个图案中有白色地ba砖_____________块. 18.计算:()()2002200122-+-的结果是 _____________2012级初一上中期数学考试答题卷时间:120分钟 总分:150分友情提示:亲爱的同学,你好!祝贺你完成了七年级第一个学期前半期的学习,今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!一、选择题(每小题4分,共40分) 二、填空题(每小题4分,共32分11. _______________ 12. ___ ___ 13. _____ 14. m=____, n=_____ 15 . _______ 16 . _____ 17. ___________ 18. _______ 三、计算题(每小题5分,共20分)19. 21)16()14()21(+-+---20.– 9 + 5×(– 6 ) – 12÷(– 6 ) ;21. (―12―13+34)⨯(―60)22. (―1)3⨯ 5÷[―32+(―2)2]班级 座号 某某四、23. 若2x -与()27y +互为相反数,求x y 的值 (6分)五、先化简,再求值(每小题6分,共12分) 24.3x 2-x +2x 2+3x ,其中x =225. 6xy -3[3y 2-(x 2-2xy )+1], 其中x =-2 ,y =41-六、实践应用(第26题8分,第27题9分,共17分)26. 出租车司机小李某天下午在南北走向的中央路上营运.如果规定向北为正,向南为负,这天下午他的行程(单位:km )如下: 15,3-,5-,2-,10,4-,3-,9-,1,5-.(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多少km ? (2)若汽车耗油量为0.1 L/km ,这天下午小李的车共耗油多少L ?27. 邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到达C 村,最后回到邮局.⑴ 以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置; ⑵C 村离A 村有多远? ⑶邮递员一共骑行了多少千米?七.28.已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为2,求:xb a ++x 3–cd 的值:(7分)八、操作思考(每题8分,共16分)29. 三X如图的卡片,用它们拼成两种周长不同....的四边形(不重叠无缝隙)⑴画出示意图形,并求出每种四边形的周长;⑵计算两个四边形的周长差,并指出周长最小的图形.30.观察下列各式:21-12=9; 75-57=18; 96-69=27; 84-48=36;45-54=-9;27-72=-45;19-91=-72;……⑴请用文字补全上述规律:把一个两位数的十位和个位交换位置,新的两位数与原来两位数的差是_____________;⑵你能用所学知识解释这个规律吗?试试看.2012级初一上中期数学试卷参考答案一、选择题(每小题4分,共40分)二、填空题(每小题4分,共32分)11. 亏损70元;12. <,>;13. ±13;14. 3和1;x(或x109);16. 11;17. 4n+2; 18.20012三、计算题(每小题5分,共20分)19解:原式=21161421+-+-………………………………1分=)1614()2121(-++-………………………………3分=2-.………………………………5分20. 原式=-9+(-30)―(-2) ……3分= -9-30+2……4分= -37……5分21. 原式=―12⨯(―60)―13⨯(―60)+34⨯(―60)=30+20-45 ……3分 =5 ……5分22. 原式=(―1)⨯ 5÷(―9+4) ……3分=―5÷(―5) ……4分 =-1 ……5分四、23. 49 ......6分 五、先化简,再求值(每小题6分,共12分) 24.原式= 5x 2+2x ……4分把x =2代入上式,原式=24 ……6分 25. 原式=6xy -3(3y 2-x 2+2xy +1) ……2分=6xy -9y 2+3x 2-6xy -3 ……3分 =-9y 2+3x 2-3 ……4分 把x =-2 ,y =41-代入上式,原式=1678……6分 六、实践应用(第26题8分,第27题9分,共17分)26.解:(1)1)5(1)9(3)4(10)2()5()3(15=-++-++-++-+-+-+. 将最后一名乘客送到目的地时,小李距下午出车时的出发点北1 km .……4分 (2)57519341025315=-++-++-++-+-+-+,7.51.057=⨯(L ). 这天下午小李的车共耗油 L .……8分 27. ⑴画图略; ……3分 ⑵6千米; ……6分⑶∣-2∣+∣-3∣+∣+9∣+∣9-2-3∣=18千米. ……9分 七.28.解:因为a 、b 互为相反数,c 、d 互为倒数,|x|=2,所以a+b=0;cd=1,x=±2 3分 当x=2时,原式=0+8-1=7 5分当x= - 2时,原式=0+(-8)-1= - 9; 7分八、操作思考(每题8分,共16分) 29.⑴(画出第一图和第二图或第二图和第三图均可,每图2分,共4分) 周长分别为4a +2b 和4b +2a ……6分 ⑵周长差为2b -2a 或2a -2b ……7分长方形的周长最小. ……8分 30. ⑴9的倍数; ……2分⑵设原来两位数的十位数为a ,个位数为b ,则新两位数为(10b +a ),原两位数为(10a +b ),由题意,得 ……3分 (10b +a )-(10a +b )……5分 =10b +a -10a -b =9b -9a ……6分=9(b -a ) ……7分因为a 、b 是整数,所以b -a 是整数,故新两位数与原两位数的差是9的倍数。
2012年七年级上册数学期中质检试卷(带答案)葛店中学2012年秋七年级期中数学试卷一、选择题(每小题3分,共30分)1、0.2的相反数是()2、下列计算正确的是()3、在有理数中负数有()个A、4B、3C、2D、14、下列说法中正确的是()A、没有最小的有理数B、0既是正数也是负数C、整数只包括正整数和负整数D、-1是最大的负有理数5、2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学计数法表示为()元6、若则()7、下列各式中与多项式2x-(-3y-4z)相等的是()A、2x+(-3y+4z)B、2x+(3y-4z)C、2x+(-3y-4z)D、2x+(3y+4z)8、若是同类项,那么m-n=()A、0B、1C、-1D、-29、数轴上点A,B,C,D对应的有理数都是整数,若点A对应有理数a,点B对应有理数b,且b-2a=7,则数轴上原点应是:()A、A点B、B点C、C点D、D点10、当x=2时,整式的值等于2002,那么当x=-2时,整式的值为()A、2001B、-2001C、2000D、-2000二、填空题(每小题3分,共30分)11、如果+3吨记为运入仓库的大米吨数,那么运出5吨大米记为吨12、的倒数是,-2.3的绝对值是13、绝对值小于3的所有整数的和是14、比较大小:(1)-(-3)-+(-9)];(2)-15、单项式-的系数是,次数是16、规定一种新运算:,如,请比较大小:(填“”)17、小明在求一个多项式减去时,误认为加上,得到的答案是,则正确的答案是18、将一张长方形的纸对折,如图所示可得到一条折痕。
(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得7条折痕,那么对折四次可以得到条折痕,如果对折n次,可以得到条折痕19、若z则,20、某专卖店统计2012年第一季度的销售额时发现,二月份比一月份增加10%,三月份比二月份减少10%,那么三月份比一月份三、解答题(21-24题每题5分,25-27题每题6分,28题10分,29题12分,共60分)21)22)25、先化简,再求值:。
人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×1044.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x5.下列各式中不是单项式的是()A.B.﹣C.0D.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=08.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=19.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>011.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是.14.单项式﹣的系数是,次数是,多项式2a2b2+5a3﹣1的次数是.15.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.16.数轴上距离原点为4个单位长度的数是.17.若5x+2与﹣2x+7互为相反数,则x的值为.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?参考答案一、选择题1.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米【分析】本题可从题意进行分析,高出海平面20米,记作+20米,“+”代表高出,则“﹣”代表低于,即可求得答案.【解答】解:由分析可得:“+”代表高出,“﹣”代表低于,则﹣30米表示低于海平面30米.故选:B.【点评】本题考查正数,负数的基本性质,看清题意即可.3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7000用科学记数法表示为:7×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、4x和4y所含字母不同,不是同类项,故本选项错误;B、4xy2和4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;C、4xy2和﹣8x2y所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;D、﹣4xy2和4y2x所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确.故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中不是单项式的是()A.B.﹣C.0D.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;D、分母中有字母,是分式,不是单项式.故选:D.【点评】本题考查单项式的定义,较为简单,要准确掌握定义.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.【分析】根据同类项的定义和合并同类项的法则求解.【解答】解:A、4x﹣9x+6x=x,故选项错误;B、xy﹣2xy=﹣xy,故选项错误;C、x3x2=不是同类项,不能合并,故选项错误;D、正确.故选:D.【点评】本题主要考查同类项的定义和合并同类项的法则.同类项的定义:所含字母相同,并且相同字母的指数也相同的项是同类项.合并同类项的法则:系数相加作为系数,字母和字母的指数不变.注意不是同类项的一定不能合并.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=0【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选:C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.8.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=1【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:方程﹣=1,去分母得:3(2x﹣1)﹣2(x+1)=6,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm【分析】根据“长方形的周长=2(长+宽)”,列出代数式,即可得到答案.【解答】解:根据题意得:长方形的周长为:2(x+y),故选:C.【点评】本题考查列代数式,正确掌握长方形的周长公式是解题的关键.10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0【分析】由数轴可知:a<﹣1<0<b<1,再根据不等式的基本性质即可判定谁正确.【解答】解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.【点评】主要考查了数轴上数的大小比较和不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.【点评】此题主要考查相反数、绝对值的意义.绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.【分析】设x=0.•45,则x=0.4545…,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.【解答】解:设x=0…45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是﹣.【分析】直接利用倒数以及相反数和绝对值的性质分别分析得出答案.【解答】解:﹣的相反数是:,绝对值是:,它的倒数是:﹣.故答案为:,,﹣.【点评】此题主要考查了倒数以及相反数和绝对值的性质,正确把握相关定义是解题关键.14.单项式﹣的系数是﹣,次数是4,多项式2a2b2+5a3﹣1的次数是4.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别分析得出答案.【解答】解:单项式﹣的系数是:﹣,次数是:4,多项式2a2b2+5a3﹣1的次数是:4.故答案为:﹣,4,4.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.15.当n=2时,单项式7x2y2n+1与﹣x2y5是同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n+1=5,求出n的值即可.【解答】解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.【点评】本题考查同类项的定义、关键是根据同类项的定义列出方程解答.16.数轴上距离原点为4个单位长度的数是±4.【分析】根据互为相反数的数到原点的距离都相等,可得结论.【解答】解:数轴上,距离原点4个单位长度的数是±4.故答案为:±4.【点评】本题考察了数轴上距离的意义.注意互为相反数的数到数轴上原点的距离相等.17.若5x+2与﹣2x+7互为相反数,则x的值为﹣3.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+2﹣2x+7=0,移项合并得:3x=﹣9,解得:x=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为3.【分析】根据运算程序可推出第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,依此类推,即可推出从第三次开始,第偶数次输出的为3,第奇数次输出的为6,可得第2010此输出的结果为3.【解答】解:∵第二次输出的结果为12,∴第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,∴从第三次开始,第偶数次输出的为3,第奇数次输出的为6,∴第2010次输出的结果为3.故答案为3.【点评】本题主要要考查有理数的乘法和加法运算,关键在于每次输出的结果总结出规律.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣26+15=﹣11;(2)原式=7﹣4+3﹣14=8;(3)原式=﹣;(4)原式=2﹣27=﹣25.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.【分析】先将原式化简,然后将未知数的值代入即可求出答案.【解答】解:(1)原式=x2﹣4x+4x2+3x=5x2﹣x当x=﹣1时,原式=5×1+1=6;(2)原式=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2,b=2004时,原式=﹣2×4﹣4×(﹣2)=﹣8+8=0.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:3x+2x=32﹣7,合并同类项得:5x=25,系数化为1得:x=5,(2)方程两边同时乘以6得:2(2y﹣1)=6﹣3y,去括号得:4y﹣2=6﹣3y,移项得:4y+3y=6+2,合并同类项得:7y=8,系数化为1得:y=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程得方法是解题的关键.22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|【分析】直接将各数在数轴上表示,进而得出大小关系.【解答】解:如图所示:,故﹣22<﹣2.5<0<|﹣|<﹣(﹣1).【点评】此题主要考查了有理数大小比较,正确在数轴上找到各数是解题关键.23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.【分析】根据题意得出m的值,进而代入原式求出答案.【解答】解:∵多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,∴m+1=0,解得:m=﹣1,故2m2﹣m2003+3=2×1﹣(﹣1)2003+3=6.【点评】此题主要考查了多项式,正确得出m的值是解题关键.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=a1q4.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.【分析】(1)根据题意可得等比数列5,﹣15,45,…中,从第2项起,每一项与它前一项的比都等于﹣3;故第4项是45×(﹣3)=﹣135;(2)观察数据可得a n=a1q n﹣1;即可得出a5的值;(3)根据(2)的关系式,可得公比的性质,进而得出第2项是10,第4项是40时它的公比.【解答】解:(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)则:a5=a1q4.(用a1与q的式子表示),(3)设公比为x,10x2=40,解得:x=±2.【点评】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,应用发现的规律解决问题.分析数据获取信息是必须掌握的数学能力,如观察数据可得a n=a1q n﹣1.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为﹣6,b的值为﹣3,c的值为24;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?【分析】(1)利用非负数的性质求出b与c的值,根据多项式为五次四项式求出a的值;(2)①利用点P、Q所走的路程=AC列出方程;②此题需要分类讨论:相遇前和相遇后两种情况下PQ=5所需要的时间.【解答】解:(1)∵(b+3)2+|c﹣24|=0,∴b=﹣3,c=24,∵多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式,∴|a+3|=5﹣2,﹣a≠0,∴a=﹣6.故答案是:﹣6;﹣3;24;(2)①依题意得3t+7t=|﹣6﹣24|=30,解得t=3,则3t=9,所以﹣6+9=3,所以出t的值是3和点D所表示的数是3.②设点P运动x秒后,P、Q两点间的距离是5.当点P在点Q的左边时,3x+5+7(x﹣1)=30,解得x=3.2.当点P在点Q的右边时,3x﹣5+7(x﹣1)=30,解得x=4.2.综上所述,当点P运动3.2秒或4.2秒后,这两点之间的距离为5个单位.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×1044.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x5.下列各式中不是单项式的是()A.B.﹣C.0D.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=08.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=19.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>011.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是.14.单项式﹣的系数是,次数是,多项式2a2b2+5a3﹣1的次数是.15.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.16.数轴上距离原点为4个单位长度的数是.17.若5x+2与﹣2x+7互为相反数,则x的值为.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?参考答案一、选择题1.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米【分析】本题可从题意进行分析,高出海平面20米,记作+20米,“+”代表高出,则“﹣”代表低于,即可求得答案.【解答】解:由分析可得:“+”代表高出,“﹣”代表低于,则﹣30米表示低于海平面30米.故选:B.【点评】本题考查正数,负数的基本性质,看清题意即可.3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7000用科学记数法表示为:7×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、4x和4y所含字母不同,不是同类项,故本选项错误;B、4xy2和4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;C、4xy2和﹣8x2y所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;D、﹣4xy2和4y2x所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确.故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中不是单项式的是()A.B.﹣C.0D.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;D、分母中有字母,是分式,不是单项式.故选:D.【点评】本题考查单项式的定义,较为简单,要准确掌握定义.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.【分析】根据同类项的定义和合并同类项的法则求解.【解答】解:A、4x﹣9x+6x=x,故选项错误;B、xy﹣2xy=﹣xy,故选项错误;C、x3x2=不是同类项,不能合并,故选项错误;D、正确.故选:D.【点评】本题主要考查同类项的定义和合并同类项的法则.同类项的定义:所含字母相同,并且相同字母的指数也相同的项是同类项.合并同类项的法则:系数相加作为系数,字母和字母的指数不变.注意不是同类项的一定不能合并.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=0【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选:C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.8.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=1【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:方程﹣=1,去分母得:3(2x﹣1)﹣2(x+1)=6,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm【分析】根据“长方形的周长=2(长+宽)”,列出代数式,即可得到答案.【解答】解:根据题意得:长方形的周长为:2(x+y),故选:C.【点评】本题考查列代数式,正确掌握长方形的周长公式是解题的关键.10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0【分析】由数轴可知:a<﹣1<0<b<1,再根据不等式的基本性质即可判定谁正确.【解答】解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.【点评】主要考查了数轴上数的大小比较和不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.【点评】此题主要考查相反数、绝对值的意义.绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.【分析】设x=0.•45,则x=0.4545…,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.【解答】解:设x=0…45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是﹣.【分析】直接利用倒数以及相反数和绝对值的性质分别分析得出答案.【解答】解:﹣的相反数是:,绝对值是:,它的倒数是:﹣.故答案为:,,﹣.【点评】此题主要考查了倒数以及相反数和绝对值的性质,正确把握相关定义是解题关键.14.单项式﹣的系数是﹣,次数是4,多项式2a2b2+5a3﹣1的次数是4.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别分析得出答案.【解答】解:单项式﹣的系数是:﹣,次数是:4,多项式2a2b2+5a3﹣1的次数是:4.故答案为:﹣,4,4.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.15.当n=2时,单项式7x2y2n+1与﹣x2y5是同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n+1=5,求出n的值即可.【解答】解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.【点评】本题考查同类项的定义、关键是根据同类项的定义列出方程解答.16.数轴上距离原点为4个单位长度的数是±4.【分析】根据互为相反数的数到原点的距离都相等,可得结论.【解答】解:数轴上,距离原点4个单位长度的数是±4.故答案为:±4.【点评】本题考察了数轴上距离的意义.注意互为相反数的数到数轴上原点的距离相等.17.若5x+2与﹣2x+7互为相反数,则x的值为﹣3.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+2﹣2x+7=0,移项合并得:3x=﹣9,解得:x=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为3.【分析】根据运算程序可推出第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,依此类推,即可推出从第三次开始,第偶数次输出的为3,第奇数次输出的为6,可得第2010此输出的结果为3.。
人教版数学七年级上册期中考试试题【含答案】一.选择题(共14小题,满分42分)1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣32.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是34.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣18.若a≠0,则+1的值为()A.2 B.0 C.±1 D.0或29.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣9811.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.201912.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz214.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到位.16.的相反数是,的倒数是.17.写出一个只含有字母x的二次三项式.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子枚.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ };非负整数集合:{ };正分数集合:{ };负分数集合:{ }.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+322.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款元(用含x的式子表示);按方案二,购买裤子和T恤共需付款元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.参考答案一.选择题1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣3【分析】根据正数的定义进行判断.解:正数是2,故选:C.【点评】此题考查正数和负数,关键是根据正数的定义进行判断.2.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个【分析】根据整式的定义求解可得.解:整式有,0,m,x+y2,这5个,故选:C.【点评】本题主要考查整式,解题的关键是掌握整式的定义.3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式【分析】直接利用单项式的次数与系数确定方法以及多项式的次数确定方法,进而分析得出答案.解:A、是整式,故此选项错误;B、﹣5是单项式,正确;C、πr2的系数π,次数是2,故此选项错误;D、多项式2x2y﹣xy+1是三次三项式,故此选项错误;故选:B.【点评】此题主要考查了单项式与多项式,正确把握单项式的次数与系数确定方法是解题关键.6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个【分析】本题可通过特殊值法、绝对值及相反数的意义,逐一判断得到正确结论.解:﹣|0|=0,不是负数,故①不正确;|﹣3|=|3|,故②不正确;当a=b时,|a|=b,故④不正确;正数和0的绝对值等于它本身,负数小于它的绝对值,故③正确;当a是非正数时,|a|+a=0,故⑤正确.综上正确的是③⑤.故选:B.【点评】本题考查了有理数的相反数和绝对值.理解绝对值、相反数的意义是解决本题的关键.7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.解:根据题意:(a﹣d)﹣(b+c)=(a﹣b)﹣(c+d)=﹣3﹣2=﹣5,故选:C.【点评】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.8.若a≠0,则+1的值为()A.2 B.0 C.±1D.0或2【分析】对a为正和负的不同情况,分类讨论得结果.解:当a>0时,+1=+1=1+1=2;当a<0时,+1=+1=﹣1+1=0.故选:D.【点评】本题考查了绝对值的化简.掌握绝对值的意义是解决本题的关键.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.9.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数【分析】利用相反数,乘方的意义判断即可.解:A、一个数的立方可能是负数,正确;B、一个数的平方一定大于等于这个数的相反数,错误;C、一个数的平方可以是正数或0,错误;D、一个数的立方一定大于或等于这个数的相反数,错误,故选:A.【点评】此题考查了有理数的乘方,以及相反数,熟练掌握各自的性质是解本题的关键.10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣98【分析】原式去括号整理后,将已知等式代入计算即可求出值.解:∵m﹣n=99,x+y=﹣1,∴原式=﹣(m﹣n)+(x+y)=﹣99﹣1=﹣100,故选:C.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.2019【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.解:实数﹣2019的绝对值=|﹣2019|=2019,故选:D.【点评】本题主要考查了绝对值,解题时注意:一个负数的绝对值是它的相反数.12.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 【分析】根据数轴上点的位置判断即可.解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.【点评】此题考查了数轴,以及有理数的加法,熟练掌握运算法则是解本题的关键.13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【分析】根据同类项的定义即可求出答案.解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.14.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c【分析】直接利用数轴上a,b,c的位置进而得出a﹣b<0,b﹣c<0,c﹣a>0,再去绝对值即可.解:由数轴可得:a﹣b<0,b﹣c<0,c﹣a>0,故原式=﹣(a﹣b)﹣(b﹣c)+c﹣a=﹣a+b﹣b+c+c﹣a=﹣2a+2c.故选:B.【点评】此题主要考查了数轴以及绝对值,正确得出各式的符号是解题关键.二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到万位.【分析】根据近似数的精确度求解.解:近似数1.5×105精确到万位.故答案为:万.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.16.的相反数是﹣,的倒数是 3 .【分析】直接利用相反数以及倒数的定义得出答案.解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.【点评】此题主要考查了倒数和相反数,正确把握相关定义是解题关键.17.写出一个只含有字母x的二次三项式x2+2x+1(答案不唯一).【分析】二次三项式即多项式中次数最高的项的次数为2,并且含有三项的多项式.答案不唯一.解:由多项式的定义可得只含有字母x的二次三项式,例如x2+2x+1,答案不唯一.【点评】本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)= 1 .【分析】根据a*b=ab+a﹣b,可以求得所求式子的值,本题得以解决.解:∵a*b=ab+a﹣b,∴1*(﹣2)=1×(﹣2)+1﹣(﹣2)=(﹣2)+1+2=1,故答案为:1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子3n+2 枚.【分析】观察各图可知,后一个图案比前一个图案多3枚棋子,然后写成第n个图案的通式,再取n=21进行计算即可求解.解:根据图案可知规律如下:图2,2×3+2;图3,2×4+3…图n,2×(n+1)+n=3n+2,故答案为:3n+2.【点评】本题考查了图形的变化类问题,主要考查了学生通过特例分析从而归纳总结出一般结论的能力.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ ﹣7 };非负整数集合:{ 0,2018 };正分数集合:{ 8.7 };负分数集合:{ ﹣0.5,﹣,﹣98% }.【分析】利用负整数,非负整数,正分数,负分数的定义判断即可.解:负整数集合:{﹣7,…};非负整数集合:{ 0,2018,…};正分数集合:{ 8.7,…};负分数集合:{﹣0.5,﹣,﹣98%,…}.故答案为:﹣7;0,2018;8.7;﹣0.5,﹣,﹣98%.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+3【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算绝对值运算,再计算加减运算即可求出值.解:(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.【分析】先去括号、合并同类项化简原式,再由非负数的性质得出x和y的值,继而代入计算可得.解:原式=12x2﹣18xy+24y2﹣3x2+21xy﹣24y2=(12x2﹣3x2)+(﹣18xy+21xy)+(24y2﹣24y2)=9x2+3xy.∵|x﹣1|+(y+2)2=0,∴x=1 y=﹣2,则原式=9×12+3×1×(﹣2)=9﹣6=3.【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则及非负数的性质.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?【分析】让所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.解:总售价为:56×8+(﹣3+7﹣8+9﹣2+0﹣1﹣6)=448﹣4=444元,444﹣400=44元.答:盈利44元.【点评】考查有理数的混合运算;得到总售价是解决本题的突破点.24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.【分析】根据整式的加减混合运算法则把原式变形,根据题意列式计算.解:5x2﹣(2y n+1﹣mx2)﹣3(x2+1)=5x2﹣2y n+1+mx2﹣3x2﹣3=(5+m﹣3)x2﹣2y n+1﹣3=(2+m)x2﹣2y n+1﹣3由题意得,2+m=0,n+1=3,解得,m=﹣2,n=2.【点评】本题考查的是整式的加减运算,掌握整式的加减混合运算法则是解题的关键.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|【分析】根据数轴可得a<0,b>0,c>0,b﹣c<0,a+c>0,a﹣b<0,再根据绝对值的性质去绝对值,然后合并同类项即可.解:由数轴可得a<0,b>0,c>0,b﹣c<0,a+c>0,a﹣b<0,则|b﹣c|+|a﹣b|﹣|a+c|=﹣b+c﹣a+b﹣a﹣c=﹣2a.【点评】此题主要考查了数轴和绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款(1500+50x)元(用含x的式子表示);按方案二,购买裤子和T恤共需付款(2400+40x)元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.【分析】(1)根据题意列代数式即可;(2)令两个方案中的付款相等,列方程可得到结论;(3)因为两种优惠方案可同时使用,所以可以先按方案一购买裤子30件,再按方案二只需购买T恤10件,即可得到结论.解:(1)方案一:30×100+50(x﹣30)=1500+50x,方案二:30×100×0.8+50×0.8x=2400+40x,故答案为:1500+50x;2400+40x;(2)1500+50x=2400+40x,x=90,答:购买90件T恤时,两种优惠方案付款一样;(3)当x=40,①按方案一购买所需费用=1500+50×40=3500(元);②按方案二购买所需费用=2400+40×40=4000(元),③按方案一购买30件裤子:30×100=3000(元);按方案二购买10件T恤:10×50×0.8=400(元);总费用:3000+400=3400<3500;则比较省钱的购买方案:可以先按方案一购买裤子30件,再按方案二只需购买T恤10件.【点评】本题考查了列代数式:利用代数式表示文字题中的数量之间的关系.也考查了求代数式的值.人教版数学七年级上册期中考试试题【含答案】一.选择题(共14小题,满分42分)1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣32.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是34.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣18.若a≠0,则+1的值为()A.2 B.0 C.±1 D.0或29.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣9811.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.201912.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz214.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到位.16.的相反数是,的倒数是.17.写出一个只含有字母x的二次三项式.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子枚.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ };非负整数集合:{ };正分数集合:{ };负分数集合:{ }.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+322.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款元(用含x的式子表示);按方案二,购买裤子和T恤共需付款元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.参考答案一.选择题1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣3【分析】根据正数的定义进行判断.解:正数是2,故选:C.【点评】此题考查正数和负数,关键是根据正数的定义进行判断.2.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个【分析】根据整式的定义求解可得.解:整式有,0,m,x+y2,这5个,故选:C.【点评】本题主要考查整式,解题的关键是掌握整式的定义.3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式【分析】直接利用单项式的次数与系数确定方法以及多项式的次数确定方法,进而分析得出答案.解:A、是整式,故此选项错误;B、﹣5是单项式,正确;C、πr2的系数π,次数是2,故此选项错误;D、多项式2x2y﹣xy+1是三次三项式,故此选项错误;故选:B.【点评】此题主要考查了单项式与多项式,正确把握单项式的次数与系数确定方法是解题关键.6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个【分析】本题可通过特殊值法、绝对值及相反数的意义,逐一判断得到正确结论.解:﹣|0|=0,不是负数,故①不正确;|﹣3|=|3|,故②不正确;当a=b时,|a|=b,故④不正确;正数和0的绝对值等于它本身,负数小于它的绝对值,故③正确;当a是非正数时,|a|+a=0,故⑤正确.综上正确的是③⑤.故选:B.【点评】本题考查了有理数的相反数和绝对值.理解绝对值、相反数的意义是解决本题的关键.7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.解:根据题意:(a﹣d)﹣(b+c)=(a﹣b)﹣(c+d)=﹣3﹣2=﹣5,故选:C.【点评】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.8.若a≠0,则+1的值为()A.2 B.0 C.±1D.0或2【分析】对a为正和负的不同情况,分类讨论得结果.解:当a>0时,+1=+1=1+1=2;当a<0时,+1=+1=﹣1+1=0.故选:D.【点评】本题考查了绝对值的化简.掌握绝对值的意义是解决本题的关键.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.9.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数【分析】利用相反数,乘方的意义判断即可.解:A、一个数的立方可能是负数,正确;B、一个数的平方一定大于等于这个数的相反数,错误;C、一个数的平方可以是正数或0,错误;D、一个数的立方一定大于或等于这个数的相反数,错误,故选:A.【点评】此题考查了有理数的乘方,以及相反数,熟练掌握各自的性质是解本题的关键.10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣98【分析】原式去括号整理后,将已知等式代入计算即可求出值.解:∵m﹣n=99,x+y=﹣1,∴原式=﹣(m﹣n)+(x+y)=﹣99﹣1=﹣100,故选:C.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.2019【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.解:实数﹣2019的绝对值=|﹣2019|=2019,故选:D.【点评】本题主要考查了绝对值,解题时注意:一个负数的绝对值是它的相反数.12.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 【分析】根据数轴上点的位置判断即可.解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.【点评】此题考查了数轴,以及有理数的加法,熟练掌握运算法则是解本题的关键.13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【分析】根据同类项的定义即可求出答案.解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.14.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c【分析】直接利用数轴上a,b,c的位置进而得出a﹣b<0,b﹣c<0,c﹣a>0,再去绝对值即可.解:由数轴可得:a﹣b<0,b﹣c<0,c﹣a>0,故原式=﹣(a﹣b)﹣(b﹣c)+c﹣a=﹣a+b﹣b+c+c﹣a=﹣2a+2c.故选:B.【点评】此题主要考查了数轴以及绝对值,正确得出各式的符号是解题关键.二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到万位.【分析】根据近似数的精确度求解.解:近似数1.5×105精确到万位.故答案为:万.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.16.的相反数是﹣,的倒数是 3 .【分析】直接利用相反数以及倒数的定义得出答案.解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.【点评】此题主要考查了倒数和相反数,正确把握相关定义是解题关键.17.写出一个只含有字母x的二次三项式x2+2x+1(答案不唯一).【分析】二次三项式即多项式中次数最高的项的次数为2,并且含有三项的多项式.答案不唯一.解:由多项式的定义可得只含有字母x的二次三项式,例如x2+2x+1,答案不唯一.【点评】本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)= 1 .【分析】根据a*b=ab+a﹣b,可以求得所求式子的值,本题得以解决.解:∵a*b=ab+a﹣b,∴1*(﹣2)=1×(﹣2)+1﹣(﹣2)=(﹣2)+1+2=1,故答案为:1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子3n+2 枚.【分析】观察各图可知,后一个图案比前一个图案多3枚棋子,然后写成第n个图案的通式,再取n=21进行计算即可求解.解:根据图案可知规律如下:图2,2×3+2;图3,2×4+3…图n,2×(n+1)+n=3n+2,。
七年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.在-112,15,-10,0,-(-5),-|+3|中,负数的个数有( )A. 2个B. 3个C. 4个D. 5 个2.为了加快4G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成4G投资39300000元左右,将39300000用科学记数法表示时,下列表示正确的是( )A. 3.93×103B. 3.93×105C. 3.93×107D. 3.93×1083.若(x-2)2与|5+y|互为相反数,则y x的值( )A. 2B. −10C. 10D. 254.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是( )A. −3B. −1C. 1D. 35.下列各式运算正确的是( )A. 2(a−1)=2a−1B. a2b−ab2=0C. a2+a2=2a2D. 2a3−3a3=a36.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是( )A. B. C. D.7.下列说法中,正确的是( )A. 若x2=y2,则x=yB. 若|x|=|y|,则x=yC. 若x>|y|,则x>yD. 若|x|>|y|,则x>y8.下列说法,正确的有( )(1)整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和-1.A. 1个B. 2个C. 3个D. 4个9.如图,将小正方体切去一个角后再展开,其平面展开图正确的是( )A.B.C.D.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=n2k(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( )A. 1B. 4C. 2018D. 42018二、填空题(本大题共10小题,共30.0分)11.计算(-1)100-(-1)107的结果为______.12.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=______.13.若23x3m-1y3与-14x5y2n+1是同类项,则5m-3n=______.14.已知|x|=3,|y|=7,x<y,则x+y=______.15.在数轴上,点P表示的数是a,点P′表示的数是11−a,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是12,则点A2016在数轴上表示的数是______.16.若m2-2mn=6,2mn-n2=3,则m2-n2=______.17.有理数a,b,c在数轴上的位置如图所示,化简|a+b-c|-|c-b|+2|a+c|=______.18.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是______.19.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E 点,…,依此类推.这样第______次移动到的点到原点的距离为2018.20.为了求1+2+22+23+…+2100的值,可令m=1+2+22+23+…+2100,则2m=2+22+23+…+2101,因此,2m-m=2101-1,所以m=2101-1.仿照以上推理计算:1+3+32+33+…+3100的值______.三、计算题(本大题共3小题,共18.0分)(2)-225−(+3411)+(−35)−(−1311);(3)(-7)×(-5)-90÷(-15)(4)−120×(−389)+(−7)×(−389)+37×(−389)(5)-14-(1-0.5)×13×[2−(−3)2]22.(1)先化简,再求值:(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=13,y=−12,求12A﹣B的值.23.有这样一道题:“当x=-2015,y=2016时,求多项式7x3-6x3y+3(x2y+x3+2x3y)-(3x2y+10x3)的值”.有一位同学看到x,y的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?四、解答题(本大题共5小题,共40.0分)24.如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求x的值;(3)在第(2)问的条件下,求原长方体的容积.25.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次4-53-4-36-1(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离为|4-1|=______;表示5和-2两点之间的距离为|5-(-2)|=|5+2|=______;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|,如果表示数a和-2的两点之间的距离是3,那么a=______.(2)若数轴上表示数a的点位于-4与2之间,求|a+4|+|a-2|的值;(3)当a=______时,|a+5|+|a-1|+|a-4|的值最小,最小值为______.27.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?28.某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.7元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;(2)若某人乘坐的路程大于3千米,试解答下列问题:①计算此人分别乘坐甲、乙出租车所需要的费用(用含x的式子表示);②请帮他规划一下乘坐哪种车较合算?答案和解析1.【答案】B【解析】解:在-1,15,-10,0,-(-5),-|+3|中,负数有-1、-10、-|+3|这3个,故选:B.根据正数与负数的定义求解.本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.2.【答案】C【解析】解:将39300000用科学记数法表示为:3.93×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:∵(x-2)2与|5+y|互为相反数,∴(x-2)2+|5+y|=0,∴x-2=0,5+y=0,解得x=2,y=-5,所以,y x=(-5)2=25.故选:D.根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.【答案】B【解析】解:因为AC的中点为O,所以点C表示的数是-3,所以点B表示的数是-1.故选:B.找到AC的中点,即为原点,进而看B的原点的哪边,距离原点几个单位即可.5.【答案】C【解析】解:A、原式=2a-2,不符合题意;B、原式不能合并,不符合题意;C、原式=2a2,符合题意;D、原式=-a3,不符合题意,故选:C.各项计算得到结果,即可作出判断.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.【答案】B【解析】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选:B.俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.7.【答案】C【解析】解:A、若x2=y2,则x=y或x=-y,此选项错误;B、若|x|=|y|,则x=y或x=-y,此选项错误;C、若x>|y|,则x>y,此选项正确;D、若|x|>|y|,则x>y或x<y,此选项错误;故选:C.根据绝对值性质和有理数乘方逐一判断即可得.本题主要考查有理数的乘方,解题的关键是掌握有理数乘方的运算法则和绝对值性质.8.【答案】A【解析】解:(1)整数和分数统称为有理数;正确.(2)符号不同的两个数叫做互为相反数;错误,比如2,-4符号不同,不是互为相反数.(3)一个数的绝对值一定为正数;错误,0的绝对值是0.(4)立方等于本身的数是1和-1.错误0的立方等于本身,故选:A.根据有理数的分类、绝对值的性质、互为相反数的定义、立方的意义一一判断即可;本题考查有理数的分类、绝对值的性质、互为相反数的定义、立方的意义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】解:观察图形可知,将小正方体切去一个角后再展开,其平面展开图正确的是.故选:D.由平面图形的折叠及立体图形的表面展开图的特点解题.此题考查的知识点是几何体的展开图,关键是解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.【答案】A【解析】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.11.【答案】2【解析】解:原式=1-(-1)=1+1=2,故答案为:2原式利用乘方的意义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【答案】-2【解析】解:∵a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d 是到原点的距离等于2的负数,e是最大的负整数,∴a=1,b=0,c=0,d=-2,e=-1,∴a+b+c+d+e=1+0+0-2-1=-2.故答案为:-2.先根据题意确定a、b、c、d、e的值,再把它们的值代入代数式求值即可.本题主要考查的是有理数的相关知识.最小的正整数是1,绝对值最小的有理数是0,相反数等于它本身的数是0,最大的负整数是-1.13.【答案】7解:根据题意,得解得:,5m-3n=10-3=7.故答案为:7.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值,再代入代数式计算即可.本题考查了同类项的定义,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.14.【答案】10或4【解析】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=-3,y=7,∴x+y=10或4,故答案为10或4.根据绝对值的定义,求出x、y的值,计算即可;本题考查绝对值、有理数的加法等知识,解题的关键是判断出x、y的值是解决问题的关键.15.【答案】-1【解析】解:∵点A1在数轴表示的数是,∴A2==2,A3==-1,A4==,A5==2,A6=-1,…,2016÷3=672,所有点A2016在数轴上表示的数是-1,故答案为:-1.先根据已知求出各个数,根据求出的数得出规律,即可得出答案.本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.16.【答案】9解:∵m2-2mn=6∴m2=6+2mn∵2mn-n2=3∴n2=-3+2mn∴m2-n2=(6+2mn)-(-3+2mn)=6+2mn+3-2mn=9此题涉及整式的加减综合运用,解答时可将两个多项式相加,即可得出m2-n2的值.此题考查的是整式的加减,解决此类题目的关键是熟练掌握整式的变化,从而计算得出答案.17.【答案】-3a-2c【解析】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b-c<0,c-b>0,a+c<0,则原式=-a-b+c-c+b-2a-2c=-3a-2c,故答案为:-3a-2c根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.18.【答案】我【解析】解:由图1可得,“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图2可得,正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,当到第5格时,“国”在下面,则这时小正方体朝上一面的字是“我”.故答案为:我.动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.19.【答案】1345【解析】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1-3=-2;第2次从点B向右移动6个单位长度至点C,则C表示的数为-2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4-9=-5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为-5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7-15=-8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:-当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,-(3n+1)=-2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.20.【答案】3101−12【解析】解:令m=1+3+32+33+ (3100)则有3m=3+32+33+ (3101)因此2m=3101-1,所以m=,则1+3+32+33+…+3100=,故答案为:仿照题中的方法求出原式的值即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)原式=20+18+(-14)+(-13)=11;(2)原式=-225-35-3411+1311=-5111;(3)原式=35+6=41;(4)原式=-389×(-120-7+37)=-359×(-90)=350;(5)原式=-1-12×13×(-7)=-1+76=16.【解析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)原式=2x2+x-1-4x2-5+x2-x=-x2-6,当x=-3时,原式=-9-6=-15;(2)∵A=5x2-2xy-2y2,B=x2-2xy-y2,∴12A-B=52x2-xy-y2-x2+2xy+y2=32x2+xy,当x=13,y=-12时,原式=32×132+13×−12=16−16=0.【解析】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入原式,去括号合并得到最简结果,再将x与y的值代入计算即可求出值.23.【答案】解:原式=7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3=(7x3+3x3-10x3)-(6x3y-6x3y)+(3x2y-3x2y)=0-0+0=0,因为所得结果与x、y的值无关,所以无论x、y取何值,多项式的值都是0.【解析】去括号、合并同类项即可得.本题考查了整式的加减,合并同类项是解题关键.24.【答案】解:(1)∵AB=x,若AD=4x,AN=3x,∴长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意,8x-6x=8,解得:x=4;(3)原长方体的容积为x•2x•3x=6x3,将x=4代入,可得容积6x3=384.【解析】(1)根据AB=x,若AD=4x,AN=3x,即可得到长方形DEFG的周长与长方形ABMN的周长;(2)根据长方形DEFG的周长比长方形ABMN的周长少8,得到方程,即可得到x的值;(3)根据原长方体的容积为x•2x•3x=6x3,代入x的值即可得到原长方体的容积.本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.25.【答案】解:(1)4+(-5)+3+(-4)+(-3)+6=1(km).答:在岗亭A东边1km处;(2)第一次4km;第二次4+(-5)=-1(km);第三次-1+3=2(km);第四次2+(-4)=-2(km);第五次-2+(-3)=-5(km);第六次-5+6=1(km);第七次1+(-1)=0(km);故在第五次记录时距岗亭A最远,距离A5km.(3)|4|+|-5|+|3|+|-4|+|-3|+|6|+|-1|=26(km),26÷13=2(小时).答:在甲巡逻过程中,甲与乙的保持通话时长共2小时.【解析】(1)把前面6次记录相加,根据和的情况判断第六次结束时甲的位置即可;(2)求出每次记录时距岗亭A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再除以13计算即可得解.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【答案】3 7 -5或1 1 9【解析】解:(1)|4-1|=3,|5-(-2)|=|5+2|=7,|a+2|=3,则a+2=±3,解得a=-5或1;故答案为3;5;-5或1(2)∵数轴上表示数a的点位于-4和2之间,∴|a+4|+|a-2|=a+4-a+2=6;(3)当a=1时,|a+5|+|a-1|+|a-4|=6+0+3=9.故当a=1时,|a+5|+|a-1|+|a-4|的值最小,最小值为9.故答案为1,9.(1)利用绝对值的意义计算|4-1|和|5+2|的值,利用绝对值的意义得到a+2=±3,然后解关于a的方程即可;(2)利用-4<a<2去绝对值得到|a+4|+|a-2|=a+4-a+2,然后合并即可;(3)把|a+5|+|a-1|+|a-4|理解为点a表示的点分别到数-5、1、4表示的点的距离之和,从而得到数a表示的点与数1表示的点重合时,|a+5|+|a-1|+|a-4|的值最小,然后把a=1代入计算最小值.本题考查了数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.也考查了绝对值的意义.27.【答案】-4或2 -2或-1或0或1或2或3或4【解析】解:(1)A的幸福点C所表示的数应该是-1-3=-4或-1+3=2;(2)4-(-2)=6,故C所表示的数可以是-2或-1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8-2x-4+(8-2x+1)=6,解得x=1.75;②4-(8-2x)+[-1-(8-2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.28.【答案】解:(1)当x=5时,乘坐甲出租车的费用=10+(5-3)×1.2=10+2.4=12.4(元),乘坐乙出租车的费用=8+(5-3)×1.7=8+3.4=11.4(元),答:乘坐甲、乙两种出租车的费用分别为12.4元,11.4元.(2)①乘坐甲出租车的费用为:10+1.2(x-3),=(1.2x+6.4)元,乘坐乙出租车的费用为:8+1.7(x-3)=(1.7x+2.9)元;②∵此人乘坐的路程大于3千米,若1.2x+6.4=1.7x+2.9时,∴x=7,则当x=7时,他乘坐两种出租车所需要的费用一样多;由(1)知,当他乘坐的路程在大于3千米而小于7千米时,坐乙出租车较为合算;取x=8,则乘坐甲出租车所需费用为:1.2×8+6.4=16(元),乘坐乙出租车所需费用为:1.7×8+2.9=16.5(元),当他乘坐的路程大于7千米时,坐甲出租车较为合算.故当他乘坐的路程在大于3千米而小于7千米时,坐乙出租车较为合算;当他乘坐的路程为7千米时,坐两种出租车所需要的费用一样多;当他乘坐的路程大于7千米时,坐甲出租车较为合算.【解析】(1)分别利用两种计费方式计算得出答案;(2)①根据题意直接得出代数式进而得出答案;②利用①中代数式得出相等时x的值,进而得出答案.此题主要考查了代数式求值,正确得出两种计费代数式是解题关键.。
(120分钟完成 满分150分)
A 卷(100分)
一、选择题:(每小题3分,共30分)
1. 图中的纸板经过折叠能围成一个正方体的是( )
A. B. C. D. 2.下列各数中,负数是( )
A. -(-3)
B. 3--
C. (-3)2
D. -(-3)3 3.下面四种说法中,正确的是( )
A. +(-2)既是正数,也是负数
B. —a表示负有理数
C. 零是最小的自然数
D. 任何有理数都有倒数 4.比零下2℃多6℃的温度是( )
A. 4℃
B. -4℃
C. 8℃
D. -8℃ 5.汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作( ) A. 5千米 B. -5千米 C. 10千米 D. 0千米
6.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。
小明同学在洗手后,没有把水龙头拧紧,当小明离开2小时后水龙头滴了( )毫升水.(用科学记数法表示) A.720 B. 31072.0⨯ C. 2102.7⨯ D.3102.7⨯
7. 当2
1
=
a ,1=
b 时,代数式223b ab a -+的值为( ) A. 41 B. 21 C. 43 D. 45
8. 下列各式中,不是同类项的是( )
1 2 3
x y
A. y x 221和y x 231
B.ab -和ba
C. 273abcx -和abc x 237-
D. y x 252和225xy
9.下列各题运算正确的是( )
A .336x y xy +=
B .2x x x +=
C .229167y y -+=
D .22990a b a b -= 10. 有12米长的木料,要做成一个如图的窗框。
如果假设窗框横档的长度 为x 米,那么窗框的面积是( )
A.2362x x ⎛⎫-
⎪⎝
⎭米 B.()212x x -米 C.()263x x -米 D.()26x x -米
二、填空题:(每小题3分, 共15分)
11.多项式532123--y x x 的次数是 ,其中最高次项的系数是 . 12. 若单项式2
2m
x y 与3
13
n x y -
是同类项,则m n +的值是 . 13.计算:3
2
32
)2()3(22-+----= 14.数轴上到原点的距离是3的点表示的数是
15.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,x = ,y = . 三、解答题: (共55分) 16. (每小题5分,共 15分)
(1)计算7
1()5()7()2(-⨯+⨯-⨯- (2)计算]232
[(232--⨯-
(3)计算]
)3(2[)3()2
1
1()1(2
4
--⨯+÷----
17.((1)小题6分,(2)小题8分,共14分) (1)化简)2(3)6(422xy x xy x ---+
(2)先化简,再求值:()()[]
222237653x y xy y x --+-,其中31
,21=-=y x
18.(6分)画出下列几何体的三视图.
19. “十.一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(共10分)
(1)若9月30日的游客为3万人
,请完成下面7天游客人数记录表:(6分)
(2)(4分)七天内游客人数最多的一天有 万人;游客人数最少的一天是第 天.
20.(10分)某居民楼根据需要计划建造一个如图所示的无盖长方体水箱. (1)若水箱长am 、宽bm 、高hm ,请你用含a 、b 、h 的代数式表示水箱所用材料的总面积S ;
(2)该楼居民已集资1万元用于建造一个长5m ,宽3m 的水箱.已知箱底造价每平方米240元,箱壁每平方米的造价是箱底造价的3
2
,求此水箱的高度.
B 卷(50分)
一、填空题:(每小题4分,共20分)
21.若02)1(2=-++b a ,则12-+b a 的= .
22.若代数式7322
++x x 的值为8,则代数式9642
-+x x 的值是 23.8米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第6次后剩下
的小棒长 . 24.观察下列各式:
21312;⨯+=
22413;⨯+= 23514;⨯+=
24615⨯+=;
……
请你将猜想到的规律用含自然数()1n n ≥的等式表示出来 . 25. 计算:10
(3211)
......32112111+++++
++++++= . 二、(8分)
26. 将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为4cm,宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的表面积、体积分别是多大?
三、(10分)
27. a 、b 、c 三个数在数轴上位置如图所示,且b a = (1)比较a ,―a 、―c 的大小(用“>”连接) (2)化简c b c a b a b a --++--+
四、(12分)
28. 某农户2011年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a ,b 表示两种方式出售水果的纯收入?
(2)若a =1.3元,b =1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出)?
参考答案
A 卷
18.
19. (1)
(2) 七天内游客人数最多的一天有 5.8 万人;游客人数最少的一天是第 7 天. 20. (1) S =ab +2ah +2bh (2)
)35(22403
22405310000+⨯⨯⨯⨯-=25
主视图
俯视图
左视图。