16利用三角函数测高
- 格式:ppt
- 大小:995.00 KB
- 文档页数:4
利用三角函数解决实际问题的方法三角函数是数学中的重要概念,广泛应用于实际问题的解决中。
无论是在物理、工程还是日常生活中,三角函数都能提供有效的数学工具,帮助我们解决各种实际问题。
本文将介绍一些利用三角函数解决实际问题的方法,并举例说明其应用。
一、测量高度在实际生活中,我们经常需要测量物体的高度,如建筑物、树木等。
利用三角函数的正弦定理,我们可以通过测量物体的底边与其顶端的角度,以及观察者与物体的距离,计算出物体的高度。
假设观察者离物体的距离为d,底边与顶端的角度为θ,物体的高度为h,则有以下公式:h = d * sin(θ)通过测量角度和距离,我们就可以准确地计算出物体的高度。
二、解决航海导航问题在航海导航中,我们常常需要计算船只的位置和航向。
利用三角函数的正切定理,我们可以通过测量船只与目标点之间的角度和距离,计算出船只需要调整的航向角度。
假设船只与目标点之间的角度为α,距离为d,船只需要调整的航向角度为β,则有以下公式:β = α - tan⁻¹(d)通过测量角度和距离,我们可以确定船只需要调整的航向角度,从而准确导航。
三、计算力的合成在力学中,我们常常需要计算多个力的合成。
利用三角函数的正弦和余弦定理,我们可以将多个力的大小和方向进行合成。
假设有两个力F1和F2,夹角为θ,合成后的力为F,则有以下公式:F = √(F1² + F2² + 2F1F2cosθ)通过计算多个力的合成,我们可以得到最终的力大小和方向,为力学问题的解决提供便利。
四、计算角度和距离在工程测量中,我们经常需要计算两点之间的角度和距离。
利用三角函数的反正弦和反余弦定理,我们可以通过已知的两点坐标,计算出两点之间的角度和距离。
假设两点的坐标分别为(x1, y1)和(x2, y2),两点之间的角度为α,距离为d,则有以下公式:α = atan2(y2 - y1, x2 - x1)d = √((x2 - x1)² + (y2 - y1)²)通过计算角度和距离,我们可以准确测量两点之间的位置和距离。
《利用三角函数测高》教学设计教学目标:1.了解三角函数的概念和性质;2.学会在实际问题中利用三角函数测量高度;3.培养学生的实际动手操作和数学推理能力。
教学重点:1.三角函数的概念和性质;2.如何利用三角函数测量高度。
教学难点:1.如何在实际问题中应用三角函数进行高度测量。
教学准备:1.幻灯片、小黑板、三角板、直尺等教学工具。
教学步骤:Step 1 引入与导入(10分钟)1.利用幻灯片或小黑板简要介绍三角函数的概念和性质,包括正弦、余弦和正切。
2.引发学生的兴趣,提问:“在测量高度的过程中,是否可以利用三角函数?如果可以,如何进行?”鼓励学生思考并分享自己的观点。
Step 2 实际问题与解决方法(15分钟)1.通过引导学生分析实际问题,如测量建筑物的高度,提醒学生要测量这样一个实际问题,首先需要确定一个已知量和未知量之间的关系。
2.解释三角函数与三角形之间的关系,如正弦函数与三角形内一条边的比例关系,如何将这个比例关系应用到测量高度的过程中。
3.演示利用三角函数测量高度的方法,在室内通过搭建房屋模型进行实际操作,并做出详细的解释。
Step 3 练习与巩固(25分钟)1.将学生分成小组,每组准备一些不同高度的建筑物图片,并使用三角板、直尺等工具进行实际测量,并记录测量结果。
2.引导学生在测量过程中记录相关数据,包括已知量、未知量和等式关系,并在小组内讨论如何利用三角函数计算出高度。
3.学生讨论结束后,进行小组间分享,展示最终的测量结果。
Step 4 拓展与运用(20分钟)1.将学生分成小组,给每组一些实际问题,让他们自行思考并利用三角函数解决问题,例如测量高校校园中一些建筑物的高度、测量一些山峰的高度等。
2.学生每个小组展示其解决问题的方法与结果,并进行讨论和总结。
Step 5 总结与评价(10分钟)1.教师对学生的学习情况进行评价,鼓励学生积极参与并提出自己的观点。
2.提供一个总结的幻灯片或小黑板,总结本课学习的重点内容,强调学会利用三角函数测量高度的方法,并激发学生对数学的兴趣。
课题:1.6利用三角函数测高课型:新授课年级:九年级教学目标:1.经历设计活动方案,自制测倾器和运用测倾器进行实地测量以及撰写活动报告的过程,培养动手操作能力以及语言表达能力.2.能够对所得的数据进行分析,并能够对侧倾器进行调整及对测量结果进行矫正,从而得出符合实际的结果.3.能够综合运用直角三角形的边角关系测量物体高度.教学重点与难点:重点:1.运用仪器进行实地测量以及撰写活动报告.2.综合运用直角三角形的边角关系的知识解决实际问题.难点:活动时的组织和调控,撰写活动报告.课前准备:学生准备:1.每一小组自制一个测倾器.2.设计测量学校旗杆高度的方案.3.依据方案测量旗杆高度并撰写活动报告.教师准备:1.制作多媒体课件.2.指导学生实践操作.教学过程:一、创设情境,导入新课活动内容:1.学生展示自制测倾器.2.利用实物投影仪展示各组测量旗杆的设计方案和测量结果.处理方式:1.由学生互评各组制作的测倾器,指出每个测倾器的优缺点并总结测量倾斜角的方法和步骤,最后全体学生举手投票选出“最美测倾器”.2.学生分组讨论,并在全班发言,指出每个方案的优缺点,最后由学生代表依据各组的优点,总结出测旗杆的“最佳方案”.设计意图:通过展示,激起学生的学习兴趣,在愉快的学习氛围中真正掌握测角仪的制作原理;通过运用测角仪测量仰角和俯角的活动,学生对自己小组制作的测角仪在测量中的原理能做到真正的理解,初步了解利用三角函数可以间接测出物体的高度.二、探究学习,感悟新知活动内容1:测量底部可以到达的物体高度(多媒体出示)请同学们观察下图,完成以下探究问题,并与同伴交流.1.所谓底部可以到达是什么意思?2.图中除MN 高不可测外,哪些数据是可测的. 3.根据测量数据,你能求出物体MN 的高度吗.处理方式:学生讨论交流,在导学案上完成后再展示说明,学生之间互相补充.教师适时点评.设计意图:本活动的设计意在引导学生通过自主探究、合作交流,对利用三角函数测高从感性认识上升到理性认识.先从图形入手,得出那些数据是可以测量的,在这一过程中让学生再次感受三角函数的应用.活动内容2:测量底部不可以到达的物体高度所谓底部不可以到达,就是在地面上不能直接测得测点与被测物体的底部之间的距离. (多媒体出示)请同学们观察下图,完成以下探究问题,并与同伴交流.1.已知图中MN 高不可测,另外AN 也是不能测量,那么,哪些数据是可测的. 2.要测量物体MN 的高度,测一次仰角是不够的,还需要测量哪些数据? 3.根据测量数据,你能求出物体MN 的高度吗.CAE NM处理方式:学生讨论交流,在导学案上完成后再展示说明,学生之间互相补充.教师适时点评.设计意图:学生通过与上一测量过程进行对比找出不同点,然后小组合作设计出合理的测量方案并根据方案进行测量,学生体会到数学知识在生活中的应用很大,生活离不开数学,进而增强学生学好数学的信心.活动内容3:议一议1.到目前为止,你有几种测量物体高度的方法?2.如果一个物体的高度已知或容易测量,那么如何测量某测点到该物体的水平距离? 处理方式:问题1先由学生自由讨论,然后由学生代表总结初中以来测物体高度的方法有(1)利用三角形全等(2)利用三角形相似(3)利用三角函数.问题2是活动1的逆向思维,由学生对照活动1独立完成.设计意图:学生通过讨论,梳理了初中以来测物体高度的方法,让学生体会测量方法的多样性及不同测量方法的优缺点,在测量中要合理的选择运用.三、中考链接,应用新知坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高.图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶(M)的仰角α=35°,在点A 和塔之间选择一点B ,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A 、B 两点间的距离为18.6m ,量出自身的高度为1.6 m .请你利用上述数据帮助小华计算出塔的高度(tan 35°≈0.7,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为m a (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题: ①在你设计的测量方案中,选用的测量工具是:______________________; ②要计算出塔的高,你还需要测量哪些数据?________________________. 处理方式:先让学生阅读已知,再请学生代表说出两个问题的不同,然后再让学生独立完B CAN Mα β D P N M图1 图2成.在学生回答问题的过程中,教师可进行针对性提问,让学生明白所给已知条件的不同,选取的做法就不同.学生完成后,教师可借助多媒体展示解题过程.巩固训练:(2011江苏淮安,23,10分)题23-1图为平地上一幢建筑物与铁塔图,题23-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度.题23-1图 题23-2图处理方式:让一名学生主动到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.参考答案:过A 作AE ⊥CD ,AB 与铁塔CD 都垂直于底面,所以ABDE 为矩形,所以AE =BD =30,在Rt △AED 中,因为∠EAD =45°,所以DE =AE =30,在Rt △ACE 中,由于∠CAE =60°,所以CE= AE·tan 60°=330,所以CD =30+330设计意图:中考链接的设计主要是针对如何测量不可到达底部物体高度,让学生体会所给已知的不同做法也要做出相应改变.通过巩固练习加深对知识的理解与应用.四、回顾反思,提炼升华同学们,知识的积累、能力的提升在于及时的总结.通过这节课的学习,你有哪些收获?请结合以下问题先想一想,再分享给大家.1.测倾器的原理是什么?2.如何测量底部可以到达的物体的高度.3.测量底部不可以直接到达的物体的高度. 学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)A 组:1.某市为促进本地经济发展,计划修建跨河大桥,需测出河的宽度AB , 在河边一座高度为300米的山顶观测点D 处测得点A ,点B 的俯角分别为α=30°,β=60°, 求河的宽度(精确到0.1米)B 组:(2011辽宁大连,20,12分)如图7,某建筑物BC 上有一旗杆AB ,小明在与BC 相距12m 的F 处,由E 点观测到旗杆顶部A 的仰角为52°、底部B 的仰角为45°,小明的观测点与地面的距离EF 为1.6m . (1)求建筑物BC 的高度; (2)求旗杆AB 的高度.(结果精确到0.1m1.41,sin52°≈0.79,tan52°≈1.28)处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本25页,复习题 第10题、第11题.图7CFBDAC选做题:课本26页,复习题第17题.板书设计:。
利用三角函数测高优秀教案课题名称:利用三角函数测高教学目标:1.理解正弦、余弦和正切的概念及其在三角函数测高中的应用;2.掌握使用正弦定理和余弦定理测量不可直接测量的高度;3.能够灵活运用三角函数测高的方法解决实际问题。
教学重点:1.正弦、余弦和正切的概念及其在三角函数测高中的应用;2.正弦定理和余弦定理的应用。
教学难点:教学准备:教具:直尺、测量工具、投影仪;课件:包含三角函数和其应用的相关知识点。
教学过程:一、导入(5分钟)1.引入三角函数的概念,复习正弦、余弦和正切的定义和计算方法。
2.提问学生:在实际生活中,我们如何使用三角函数来测量高度?二、讲解(15分钟)1.三角函数测高的原理:利用正弦、余弦和正切的性质通过测量已知边长和角度的方式求解未知高度。
2.正弦定理的应用:利用三角形中任意两边的长度和它们夹角的正弦比,求解不可直接测量的高度。
3.余弦定理的应用:利用三角形中三边的长度和它们之间的夹角余弦,求解不可直接测量的高度。
三、示范(15分钟)1.示范测量不可直接测量的高度的步骤,例如使用正弦定理:a.给出一个实际问题,如:如何测量一栋建筑物的高度?b.画出相应的示意图,标注已知边长和角度。
c.利用正弦定理的公式,求解未知的高度。
d.明确解题思路和计算步骤,进行计算。
2.呈现示范的解题过程,详细讲解每一步骤的计算方法和答案。
四、练习(20分钟)1.分发练习题,让学生独立完成。
2.讲解练习题答案,帮助学生纠正错误,巩固和理解三角函数测高的方法。
五、应用(15分钟)1.提供一些实际问题,要求学生运用三角函数测高的方法解决。
2.分组讨论并呈现解决方案,交流思路和讨论结果。
六、总结(10分钟)1.对本节课的要点进行总结,强调正弦、余弦和正切的应用。
2.核对课程目标,评估学生的学习情况。
七、作业(5分钟)布置作业:完成课后练习题,巩固三角函数测高的知识。
教学延伸:可以引导学生使用三角函数测高解决其他实际问题,并探究其他测高方法的应用。
第一章直角三角形的边角关系
第六节利用三角函数测高
精选练习
参考答案与试题解析
基础篇
一.选择题(共8小题)
1.直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处,那么点C在点A的()
A.俯角67°方向B.俯角23°方向
C.仰角67°方向D.仰角23°方向
【答案】解:∵BC⊥AB,∠BCA=67°,
∴∠BAC=90°﹣∠BCA=23°,
从低处A处看高处C处,那么点C在点A的仰角23°方向;
故选:D.
【点睛】本题考查了解直角三角形、仰角;熟记仰角定义,求出∠BAC=23°是解题的关键.2.(2020•徐汇区一模)跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着落点A的距离是()
A.200米B.400米C.米D.米
【答案】解:根据题意,此时小李离着落点A的距离是=,
故选:D.
【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.。
一、情境导入如图所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC 为34°,并已知目高AD 为1.5米.现在若按1∶500的比例将△ABC 画在纸上,并记为△A ′B ′C ′,用刻度直尺量出纸上B ′C ′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?实际上,我们利用图①中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本节要探究的内容.二、合作探究探究点:利用三角函数测高【类型一】 测量底部可以到达的物体的高度如图,在一次测量活动中,小华站在离旗杆底部B 处6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度(结果精确到0.1米,3≈1.732).解析:由题意可得四边形BCED 是矩形,所以BC =DE ,然后在Rt △ACE 中,根据tan ∠AEC =ACEC ,即可求出AC 的长.解:∵BD =CE =6m ,∠AEC =60°,∴AC =CE ·tan60°=6×3≈6×1.732≈10.4(米),∴AB =AC +DE =10.4+1.5=11.9(米).所以,旗杆AB 的高度约为11.9米.方法总结:本题借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解题.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 测量底部不可到达的物体的高度如图,放置在水平桌面上的台灯的灯臂AB 长为30cm ,灯罩BC 长为20cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少厘米(结果精确到0.1cm ,参考数据:3≈1.732)?解析:首先过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G ,进而求出FC 的长,再求出BG 的长,即可得出答案.解:过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G .∴四边形BFDG 矩形,∴BG =FD .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin30°=20×12=10(cm).在Rt △ABG 中,∠BAG =60°,∴BG =AB ·sin60°=30×32=153(cm).∴CE =CF +FD +DE =10+153+2=12+153≈37.98≈38.0(cm).所以,此时灯罩顶端C到桌面的高度CE约是38.0cm.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形,转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】利用三角板测量物体的高度如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离AB是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离CD是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度(参考数据:3≈1.7,结果保留整数).解析:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,由△AEM是等腰直角三角形得出AE=ME,设AE=ME=x m,根据三角函数列方程求出x的值即可求解.解:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,则EF=AB-CD=1.7-1.5=0.2(m),在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.设AE=ME=x m,则MF=(x+0.2)m,FC=(28-x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF·tan∠MCF,∴x+0.2=3 3(28-x),解得x≈10.1,∴MN=ME+EN=10.1+1.7≈12(米).所以,旗杆MN的高度约为12米.方法总结:解决问题的关键是作出辅助线构造直角三角形,设出未知数列出方程.三、板书设计利用三角函数测高1.测量底部可以到达的物体的高度2.测量底部不可到达的物体的高度3.利用三角板测量物体的高度1.下表是小明同学填写活动报告的部分内容:AB 太阳 光 线 C D E (1)在你设计的方案中,选用的测量工具是__________. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a,b,c,α,β等表示测得的数据____. (4)写出求树高的算式:AB=___________.6.在1:50000的地图上,查得A 点在300m 的等高线上,B 点在400m 的等高线上, 在地图上量得AB 的长为2.5cm,若要在A 、B 之间建一条索道,那么缆索至少要多长? 它的倾斜角是多少?(说明:地图上量得的AB 的长,就是A,B 两点间的水平距离AB′,由B 向过A 且平行于地面的平面作垂线,垂足为B′,连接AB′,则∠A 即是缆索的倾斜角.)7、为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架。
测量高度是数学中一个重要的应用问题,利用三角函数可以有效地解决这类问题。
三角函数是研究角和三角形之间关系的数学工具,包括正弦、余弦和正切等函数。
下面我们将详细介绍如何利用三角函数测量高度的方法。
首先,我们需要明确什么是三角函数。
在一个直角三角形中,我们可以定义三个重要的比率:正弦、余弦和正切。
正弦(sine)函数表示一个角的对边与斜边之比,记作sin。
余弦(cosine)函数表示一个角的邻边与斜边之比,记作cos。
正切(tangent)函数表示一个角的对边与邻边之比,记作tan。
在测量高度的问题中,我们可以利用正切函数来解决。
假设我们要测量一个物体的高度,我们只需要找到一个合理的角度,测量与物体顶点相对应的斜边长度和与地面相对应的邻边长度,然后通过相应的三角函数计算出物体的高度。
具体步骤如下:1.找到一个合适的角。
选择一个适合的角度,最好是仰望物体的角度,使得斜边和邻边都容易测量。
2.测量斜边和邻边长度。
使用测量工具例如量角器、直尺等工具,测量出斜边和邻边的实际长度。
3. 计算三角函数。
利用正切函数的性质,高度(对边)与邻边的比值可以表示为tan函数。
即 tan(角度) = 高度 / 邻边。
4.解方程求解。
将已知的斜边长度、邻边长度和求解的角度代入以上方程,通过解方程求解,可以得到物体的高度。
总结一下,利用三角函数测高的步骤:选择角度、测量斜边和邻边长度、计算三角函数、解方程求解。
通过这样的方法,我们可以在不直接测量物体高度的情况下,利用三角函数关系计算出物体的高度。
除了利用正切函数测量高度,我们还可以利用正弦或余弦函数来测量高度。
这些方法在特定的条件下也可以有效地解决测量高度的问题。
需要注意的是,三角函数测高的方法适用于测量具备一定高度,但是无法直接测量的物体,例如高楼大厦、山峰等。
但是对于一些无高度要求的物体,例如台灯、植物等,可以直接使用直尺等工具进行测量,无需利用三角函数。
综上所述,利用三角函数测量高度是数学中的一个重要应用问题,可以帮助我们在现实生活中解决高度测量的难题。
1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)一、教学目标1.了解三角函数的定义和性质。
2.学会使用正弦、余弦、正切函数测量高度。
3.掌握解决与高度和角度相关的实际问题的方法和步骤。
二、教学内容1.三角函数的定义和性质。
2.正弦、余弦、正切函数的用法。
3.利用三角函数测量高度的实际问题。
三、教学重点1.理解三角函数的定义和性质。
2.掌握正弦、余弦、正切函数的用法。
3.运用三角函数解决实际问题。
四、教学难点1.学习如何应用三角函数测量高度。
2.解决与高度和角度相关的实际问题。
五、教学方法1.讲解与演示相结合的教学方法。
2.视频和实物模型展示三角函数测高的应用。
3.组织学生进行实际操作和练习。
六、教学过程1. 导入新知识通过提问和引导,导入三角函数的概念和性质,引起学生的兴趣,并激发学生对测量高度的需求。
2. 讲解三角函数的定义和性质利用教材和课件,详细讲解正弦、余弦、正切函数的定义和性质,并与实际问题联系起来,解释三角函数与高度的关系。
3. 演示三角函数测高的方法通过播放视频或展示实物模型,演示如何使用三角函数测量高度的方法和步骤,并让学生观察和思考。
4. 实际操作和练习将学生分成小组,配备测量工具,进行实际操作和练习,例如利用三角函数测量树木高度、建筑物高度等。
教师和助教进行指导和解答疑惑。
5. 总结与归纳让学生整理笔记,总结三角函数测高的方法和步骤,并与实际问题进行对比,并解答学生的问题。
七、教学评价1.在实际操作中,观察学生是否能正确使用三角函数测量高度。
2.组织小组讨论,评价学生对三角函数测高方法的理解和应用能力。
3.布置练习题,检查学生对三角函数测高的掌握情况。
八、教学延伸利用三角函数测高的方法,引出其他与高度和角度相关的实际问题,如建筑物的倾斜角度、塔吊的工作范围等。
并鼓励学生进行独立思考和解答。
九、板书设计1.6 利用三角函数测高- 三角函数的定义和性质- 正弦、余弦、正切函数的用法- 测量高度的实际问题十、教学反思本节课将数学知识与实际问题相结合,培养了学生的测量和解决问题的能力。
第一章直角三角形的边角关系《利用三角函数测高(第2课时)》一、教学任务分析知识与能力目标:能够对所得到的数据进行分析,能够对仪器进行调整和对测量结果进行矫正,从而得出符合实际的结果,能综合应用直角三角形的边角关系的知识解决实际问题.二、教学过程分析本节课设计了六个教学环节:课前准备——自制测角仪、原理回顾、展示测量对象及说明、测量活动及数据收集、统计分析及总结、布置作业.第一环节课前准备活动内容:自制测角仪、分组(5——6人)活动目的:培养学生的动手能力.活动的注意事项:学生所做的测角仪测量角时不方便、误差较大.(解决方法:先展示样品)第二环节原理回顾活动内容:简单地回忆利用测角仪测量物体高度的方法:1、测量底部可以到达的物体的高度;2、测量底部不可以到达的物体的高度活动的注意事项:提醒学生注意:1)方法的选择;2)不要忽略了测角仪到地面的高度.第三环节展示测量对象及说明活动内容:,把学生分成5~6人一组.引导学生选定测量对象(即旗杆或其他物体),根据上节课的分析设计出本组测量的方案.同时发放记录表.活动报告年月日课题测量示意图测得数据测量项目第一次第二次平均值计算过程活动感受负责人及参加人员计算者和复核者指导教师审核意见备注活动的注意事项:1.教师要引导学生展示自己设计的方案.并帮助完善. 2.要做好分工.第四环节测量活动及数据收集活动内容:根据自己设计的方案进行测量与填写记录.活动的注意事项:教师提示要注意的实验的细节:(1)注意实验时的安全.(2)在测量的过程中.要产生测量误差,因此,需多测两组数据.并取它们的平均值较妥(3)正确地使用测倾器,特别要注意测量过程中正确、规范地读数.(4)积极参与测量活动.并能对在测量过程中遇到的困难,想方没法,团结协作,共同解决. 第五环节统计分析及总结活动内容:汇报各组实验活动的结果、比较分析结果.反思实验过程,在全班交流各组的实验活动感受.活动的注意事项:通过学生的感受,教师要引导学生总结测量物体高度的方法及恰当的选择方法.第六环节布置作业补充完善活动报告。
授课教师林永寿课型新课授课时间课题§ 1.62利用三角函数测鬲教学目标知识与技能:能够对所得到的数据进行分析,能够对仪器进行调整和对测量结果进行矫止,从而得岀符合实际的结果,能综合应用直角三角形的边角关系的知识解决实际问题.过程与方法:经历运用仪器进行实地测量以及撰写活动报告的过程.积极参与数学活动,积累数学活动的经验,捉高对实验数据的处理能力;学会将实际问题转化为数学模型的方法,在提高分析问题、解决问题的能力的同时,增强数学的应用意识.情感态度与价值观:能够主动积极地想办法,积极地投入到数学活动中去,提高学习数学的兴趣;培养不怕困难的品质,发展合作意识和科学精神.教7重点难点重卢4\\\1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题难点1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题教学方法猜想证明法讲授法引导交流法合作探究学习法学法指导渗透指导、讲授指导、点拨指导、交流指导课前准备一体机、PPT课件师生活动过程一、活动报告展示展示内容:活动方案1r、厂 A r、测量对象测量工具测量数据\ r、计算过程/ C >规则与要求:1、提供4个展示机会;2、每个小组选派一名代表上台展示;3、展示时间不得超过5分钟;4、其他同学进行点评;5、评选出本次活动的最佳小组.《利用三角函数测高》活动报告(示例测量对象大树C 测量图示1 L测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例2)测量对象测量图示测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象旗杆M测量图示E1[N B A 测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象教学楼测量图示Z_______ .X1Q0□□□□□□t£□□□□<—30 m->ZZZZ/Z//ZZZ/Z//ZZ (甲)(乙)测量工具测量数据计算过程测量结果二、活动心得交流在这次活动中你有什么收获?1•必做题:2•选做题:1、学生非常喜欢活动课,学习积极性非常高,要结合教材,多开发数学活动课;2、在活动中,学生利用数学知识解决了实际问题,感受了生活中的数学,体验教学反思到了数学的价值;3、在分组活动、小组合作、全班交流研讨的过程中,学生的合作意识得到了发展.。