最新北师大版七年级上册数学第四章生活中的平面图形测试题(AB卷)
- 格式:doc
- 大小:390.50 KB
- 文档页数:6
第四章 基本平面图形检测题参考答案一、选择题1.C 解析:射线OA 与射线AB 不是同一条射线,因为端点不同.2.D 解析:因为两点之间线段最短,从A 地到B 地,最短路线是A -F -E -B ,故选D .3.C 解析:∵ AC +BC =AB ,∴ AC 的中点与B C 的中点间的距离=21AB =5 cm ,故选C . 4.C 解析:由题意,得n 条直线之间交点的个数最多为(n 取正整数且n ≥2),故6条直线最多有=15(个)交点.5.B 解析:∵ 大于90°且小于180°的角叫做钝角, ∴ 90°<α<180°,90°<β<180°, ∴ 30°<61(α+β)<60°, ∴ 满足题意的角只有48°,故选B .6.C 解析:∵ B 是线段AD 的中点,∴ AB =BD =21AD . A.BC =BD -CD =AB -CD ,故本选项正确; B.BC =BD -CD =21AD -CD ,故本选项正确; D.BC =AC -AB =AC -BD ,故本选项正确.只有C 选项是错误的. 7.C 解析:①直线BA 和直线AB 是同一条直线,正确;②射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确; ③由“两点之间线段最短”知,AB +BD >AD ,故此说法正确;④三条直线两两相交时,一定有三个交点,错误,也可能只有一个交点. 所以共有3个正确的,故选C .8. C 解析:∵ OA⊥OB,∴ ∠AOB=∠1+∠2=90°, ∴ ∠2=90°-∠1=90°-34°=56°.9.D 解析:360°×(1-70.8%-16.7%)=45°.故选D . 10.A 解析:设甲走的半圆的半径是R ,则甲所走的路程是:πR . 设乙所走的两个半圆的半径分别是:与,则.乙所走的路程是:,因而a =b ,故选A .二、填空题11.5 cm 或15 cm 解析:本题有两种情形:(1)当点C 在线段AB 上时,如图(1),有AC =AB -BC ,第11题图(1)∵ AB =10 cm ,BC =5 cm ,∴ AC =10-5=5(cm );(2)当点C 在线段AB 的延长线上时,如图(2),有AC =AB +BC ,第11题图(2)∵ AB =10 cm ,BC =5 cm ,∴ AC =10+5=15(cm ). 故线段AC =5 cm 或15 cm .12. 79° 解析:∵ OM 平分∠AOB ,ON 平分∠COD , ∴ ∠AOM =∠BOM ,∠CON =∠DON . ∵ ∠MON =42°,∠BOC =5°,∴ ∠MON -∠BOC =37°,即∠BOM +∠CON =37°.∴ ∠AOD =∠MON +∠AOM +∠DON =∠MON +∠BOM +∠CON =42°+37°=79°.13.20 解析:因为长为1 cm 的线段共4条,长为2 cm 的线段共3条,长为3 cm 的线段共2条,长为4 cm 的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm ). 14.11.7 s 解析:从第1根标杆到第6根标杆有5个间隔, 因而每个间隔行进6.5÷5=1.3(s ). 而从第1根标杆到第10根标杆共有9个间隔, 所以行进9个间隔共用1.3×9=11.7(s ).15.(1)55 805;(2)120,2;(3)45,2 700;(4)30,15,3616.4 解析:∵ 平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴ a +b =4. 17.11416解析:分针每分钟转动6°,时针每分钟转动0.5°, 设再经过a 分钟后分针与时针第一次成一条直线,则有6a +90-0.5a =180,解得a =11416. 18.155° 65° 解析:∵ ∠AOC +∠COD =180°,∠AOC =25°,∴ ∠COD =155°.∵ OC 是∠AOB 的平分线,∠AOC =25°, ∴ ∠AOB =2∠AOC =2×25°=50°,∴ ∠BOD =180°-∠AOB =180°-50°=130°. ∵ OE 是∠BOD 的平分线, ∴ ∠BOE =21∠BOD =21×130°=65°. 三、解答题19.解:作图如图所示.第19题图 20.解:设,则,,,.∵ 所有线段长度之和为39, ∴ ,解得.∴.答:线段BC 的长为6. 21.解:(1)不存在. (2)存在,位置不唯一. (3)不一定,也可在直线上,如图,线段.22.解:(1)表格如下:点的个数所得线段的条数所得射线的条数1 02 214(2)可以得到2条线段,2n 条射线. 23.解:∵ ∠FOC =97°,∠1=40°,AB 为直线, ∴ ∠3=180°-∠FOC -∠1=180°-97°-40°=43°. ∵ ∠3与∠AOD 互补, ∴ ∠AOD =180°-∠3=137°. ∵ OE 平分∠AOD , ∴ ∠2=21∠AOD =68.5°. 24.解:∵ ∠AOB 是直角,∠AOC =30°, ∴ ∠AOB +∠AOC =90°+30°=120°.∵ OM 是∠BOC 的平分线,ON 是∠AOC 的平分线, ∴ ∠MOC =21∠BOC =60°,∠NOC =21∠AOC =15°. ∴ ∠MON =∠MOC -∠NOC =60°-15°=45°.25.分析:(1)有1个点时,内部分割成4个三角形; 有2个点时,内部分割成4+2=6(个)三角形; 那么有3个点时,内部分割成4+2×2=8(个)三角形; 有4个点时,内部分割成4+2×3=10(个)三角形; 有n 个点时,内部分割成(个)三角形.(2)令2n +2=2 012,求出n 的值. 解:(1)填表如下:正方形ABCD 内点的个数 1234… n分割成的三角形的个数46810…2n +2(2)能.当2n +2=2 012时,n =1 005,即正方形内部有1 005个点.3 3 6 468。
最新北师大版数学精品教学资料第四章 基本平面图形检测题【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.如图,下列不正确的几何语句是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段2.如图,从A 地到B 地最短的路线是( )A.A -C -G -E -BB.A -C -E -BC.A -D -G -E -BD.A -F -E -B3.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( )A.3 cmB.4 cmC.5 cmD.不能计算4.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.115.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( )A.甲B.乙C.丙D.丁6.如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( )A.BC =AB -CDB.BC =21AD -CDC.BC =21(AD +CD )D.BC =AC -BD7.如图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD 是同一条射线; ③AB +BD >AD ;④三条直线两两相交时,一定有三个交点.A.1B.2C.3D.48.下列说法中正确的是( )A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°A BC DD.3时整,时针与分针的夹角是90°9.如图,阴影部分扇形的圆心角是()A.15°B.23°C.30°D.36°10.如图,甲顺着大半圆从A地到B地,乙顺着两个小半圆从A地到B地,设甲、乙走过的路程分别为a、b,则()A.a=bB.a<bC.a>bD.不能确定二、填空题(每小题3分,共24分)11.已知线段AB=10 cm,BC=5 cm,A、B、C三点在同一条直线上,则AC=_ _.12.如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD= __________.13.如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于________cm.14.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5 s,则当他走到第10杆时所用时间是_________.15.(1)15°30′5″=_______″;(2)7 200″=_______´=________°;(3)0.75°=_______′=________″;(4)30.26°=_______°_______´______〞.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=___________.17.上午九点时分针与时针互相垂直,再经过分钟后分针与时针第一次成一条直线.18. 如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,若∠AOC=28°,则∠COD=_________,∠BOE=__________.三、解答题(共46分)19.按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.20.(6分)如图,C是线段AB的中点,D是线段BC的中点,已知图中所有线段的长度之.和为39,求线段BC的长21.(6分)已知线段,试探讨下列问题:(1)是否存在一点,使它到两点的距离之和等于?(2)是否存在一点,使它到两点的距离之和等于?若存在,它的位置唯一吗?(3)当点到两点的距离之和等于时,点一定在直线外吗?举例说明.22.(6分)如图,在直线上任取1个点,2个点,3个点,4个点,(1)填写下表:(2)在直线上取n个点,可以得到几条线段,几条射线?23.(7分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2.和∠3的度数24.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?25.(7分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2 012个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.第四章 基本平面图形检测题参考答案一、选择题1.C 解析:射线OA 与射线AB 不是同一条射线,因为端点不同.2.D 解析:因为两点之间线段最短,从A 地到B 地,最短路线是A -F -E -B ,故选D .3.C 解析:∵ AC+BC=AB ,∴ AC 的中点与BC 的中点间的距离=21AB=5(cm ),故选C . 4.C 解析:若画75°的角,先在纸上画出30°的角,再画出45°的角叠加即可;同理可画出30°、45°、60°、90°、15°、105°、120°、135°、150°的角(因为45°-30°=15°、45°+30°=75°、90°+45°=135°、90°+60°=150°、60°+60°=120°、60°+45°=105°),故选C .5.B 解析:∵ 大于90°且小于180°的角叫做钝角,∴ 90°<α<180°,90°<β<180°,∴ 30°<61(α+β)<60°, ∴ 满足题意的角只有48°,故选B . 6.C 解析:∵ B 是线段AD 的中点,∴ AB =BD =21AD . A.BC =BD -CD =AB -CD ,故本选项正确;B.BC =BD -CD =21AD -CD ,故本选项正确; D.BC =AC -AB =AC -BD ,故本选项正确.只有C 选项是错误的.7.C 解析:①直线BA 和直线AB 是同一条直线,正确;②射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确; ③由“两点之间线段最短”知,AB +BD >AD ,故此说法正确;④三条直线两两相交时,一定有三个交点,错误,也可能只有一个交点.所以共有3个正确的,故选C .8.D9.D 解析:360°×(1-64%-26%)=36°.故选D .10.A 解析:设甲走的半圆的半径是R .则甲所走的路程是:πR . 设乙所走的两个半圆的半径分别是:与,则.乙所走的路程是:,因而a=b ,故选A .二、填空题11.5 cm 或15 cm 解析:本题有两种情形:(1)当点C 在线段AB 上时,如图,有AC =AB -BC ,又∵ AB =10 cm ,BC =5 cm ,∴ AC =10-5=5(cm );(2)当点C 在线段AB 的延长线上时,如图,有AC =AB +BC ,又∵ AB =10 cm ,BC =5 cm ,∴ AC =10+5=15(cm ).故线段AC =5 cm 或15 cm .12. 90° 解析:∵ OM 平分∠AOB ,ON 平分∠COD ,∴ ∠AOM =∠BOM ,∠CON =∠DON .∵ ∠MON =50°,∠BOC =10°,∴ ∠MON -∠BOC =40°,即∠BOM +∠CON =40°.∴ ∠AOD =∠MON +∠AOM +∠DON =∠MON +∠BOM +∠CON =50°+40°=90°.13.20 解析:因为长为1 cm 的线段共4条,长为2 cm 的线段共3条,长为3 cm 的线段共2条,长为4 cm 的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm ). 14.11.7 s 解析:从第1根标杆到第6根标杆有5个间隔,因而每个间隔行进6.5÷5=1.3(s ).而从第1根标杆到第10根标杆共有9个间隔,所以行进9个间隔共用1.3×9=11.7(s ).15.(1)55 805;(2)120,2;(3)45,2 700;(4)30,15,3616.4 解析:∵ 平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴ a +b =4. 17.11416 解析:分针每分钟转动6°,时针每分钟转动0.5°, 设再经过a 分钟后分针与时针第一次成一条直线, 则有6a +90-0.5a =180,解得a =11416. 18.152° 62° 解析:∵ ∠AOC +∠COD =180°,∠AOC =28°,∴ ∠COD =152°. ∵ OC 是∠AOB 的平分线,∠AOC =28°,∴ ∠AOB =2∠AOC =2×28°=56°,∴ ∠BOD =180°-∠AOB =180°-56°=124°.∵ OE 是∠BOD 的平分线,∴ ∠BOE =21∠BOD =21×124°=62°. 三、解答题19.解:作图如图所示.20.解:设,则,,,.∵ 所有线段长度之和为39,∴ ,解得.∴ . 答:线段BC 的长为6.21.解:(1)不存在.因为两点之间,线段最短.因此.(2)存在.线段上任意一点都是.(3)不一定,也可在直线上,如图,线段. 22.解:(1)表格如下:(2)可以得到2)1( n n 条线段,2n 条射线. 23.解:∵ ∠FOC =90°,∠1=40°,AB 为直线,∴ ∠3+∠FOC +∠1=180°,∴ ∠3=180°-90°-40°=50°.∵ ∠3与∠AOD 互补,∴ ∠AOD =180°-∠3=130°.∵ OE 平分∠AOD ,∴ ∠2=21∠AOD =65°. 24.解:(1)∵ ∠AOB 是直角,∠AOC =40°,∴ ∠AOB +∠AOC =90°+40°=130°.∵ OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴ ∠MOC =21∠BOC =65°,∠NOC =21∠AOC =20°. ∴ ∠MON =∠MOC -∠NOC =65°-20°=45°.(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵ ∠MON =∠MOC -∠NOC =21∠BOC -21∠AOC =21(∠BOC -∠AOC )=21∠AOB , 又∠AOB =90°,∴ ∠MON =21∠AOB =45°. 25.分析:(1)有1个点时,内部分割成4个三角形;有2个点时,内部分割成4+2=6(个)三角形;那么有3个点时,内部分割成4+2×2=8(个)三角形;有4个点时,内部分割成4+2×3=10(个)三角形;有n 个点时,内部分割成个三角形.(2)令2n +2=2 012,求出n 的值.解:(1)填表如下:AB分割成的三角形的个数(2)能.当2n+2=2 012时,n=1 005,即正方形内部有1 005个点.。
北师大版七年级数学上册第4章《基本平面图形》单元测试试卷及答案(1)参考完成时间:90分钟一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是( ).A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A.点A B.点B C.AB之间D.BC之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB比折线AMB__________,理由是:____________________.12.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=__________.13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.三、解答题(本题共4小题,共54分)15.(12分)计算:(1)将24.29°化为度、分、秒;(2)将36°40′30″化为度.16.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a,b(如图),画出线段x,使x=a+2b.18.(8分)已知在平面内,∠AOB=70°,∠BOC=40°,求∠AOC的度数.19.(9分)如图,已知AB和CD的公共部分BD=13AB=14CD.线段AB,CD的中点E,F之间的距离是10 cm,求AB,CD的长.20.(10分)某摄制组从A市到B市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?参考答案1答案:D2答案:D3答案:A4答案:C 点拨:因为23平角=23×180°=120°,所以23平角是钝角,故选C.5答案:A 点拨:∠1=180°-26°30′=153°30′.6答案:C 点拨:说法①④错误.7答案:D8答案:B9答案:D 点拨:分别计算各选项中的用时可知,从景点A到景点C用时最少的线路是A→B→E→C,故选D.10答案:A11答案:短两点之间,线段最短12答案:2 点拨:∵AB=10,AC=6,∴BC=AB-AC=10-6=4.又∵点D是线段BC的中点,∴CD=12BC=2.13答案:160°点拨:可画出钟表的示意图帮助解答(如图).观察图可知,9点20分时,时针和分针的夹角是5个大格加时针从9点开始转过的角度,所以9点20分时,时针和分针的夹角是5×30°+20×0.5°=160°.14答案:10 点拨:由泰山到青岛的某一次列车的车票的种数是:泰山——济南,泰山——淄博,泰山——潍坊,泰山——青岛;济南——淄博,济南——潍坊,济南——青岛;淄博——潍坊,淄博——青岛;潍坊——青岛,共10种.15解:(1)先将0.29°化为17.4′,再将0.4′化为24″.24.29°=24°+0.29×60′=24°+17′+0.4×60″=24°+17′+24″=24°17′24″.(2)先将30″化为0.5′,再将40.5′化为0.675°.∵1′=160⎛⎫︒⎪⎝⎭,1″=160⎛⎫'⎪⎝⎭,∴30″=160⎛⎫'⎪⎝⎭×30=0.5′,40.5′=160⎛⎫︒⎪⎝⎭×40.5=0.675°.∴36°40′30″=36.675°.16解:以下答案供参考.17答案:略18解:(1)当∠BOC在∠AOB的外部时,如图1所示,∠AOC=∠AOB+∠BOC=70°+40°=110°;(2)当∠BOC在∠AOB的内部时,如图2所示,∠AOC=∠AOB-∠BOC=70°-40°=30°. 故∠AOC的度数为110°或30°.19解:设BD=x cm,则AB=3x cm,CD=4x cm.因为E,F分别是线段AB,CD的中点,所以EB=12AB=1.5x,FD=12CD=2x.又EF=10 cm,EF=EB+FD-BD,所以1.5x+2x-x=10.解得x=4.所以3x=12,4x=16.所以AB长12 cm,CD长16 cm.20解:如图,设小镇为D,傍晚汽车在E处休息,由题意知,DE=400千米,AD=12DC,EB=12CE,AD+EB=12(DC+CE)=12DE=12×400=200(千米).所以AB=AD+EB+DE=600(千米).答:A,B两市相距600千米.。
七上第四单元测评挑战卷(90分钟100分)一、选择题(每小题3分,共30分)1.(2021·重庆期中)已知平面上有三点,经过其中的任意两点画直线,最多能把这个平面分成(D)A.4部分B.5部分C.6部分D.7部分【解析】同一平面内不在同一直线上的3个点,可画三条直线.最多能把这个平面分成7部分.2.把50°40′30″化成度的形式为(C)A.50.43°B.50.65°C.50.675°D.50.765°【解析】50°40′30″=50.675°.3.如图,不是凸多边形的是(C)【解析】图形不是凸多边形的是C.4.如图,用一副三角板画角,不可能画出的角的度数是(B)A.120°B.85°C.135°D.165°【解析】A.120°=90°+30°,故本选项不符合题意;B.85°不能写成90°,60°,45°,30°的和或差,故本选项符合题意;C.135°=90°+45°,故本选项不符合题意;D.165°=90°+45°+30°,故本选项不符合题意.5.(2021·深圳期末)下列说法正确的有(A)①两点之间,线段最短;②若AB=BC,则点B是线段AC的中点;③射线AB和射线BA是同一条射线;④直线比线段长.A.1个B.2个C.3个D.4个【解析】①两点之间,线段最短,正确;②若AB=BC,则点B是线段AC的中点,不正确,只有点B在线段AC上时才成立;③射线AB和射线BA是同一条射线,不正确,端点不同;④直线比线段长,不正确,直线不能度量.共1个正确.6.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,则从灯塔P观测A,B两处的视角∠P的度数是(A)A.30°B.32°C.35°D.40°【解析】∵∠P AB=30°,∠ABP=120°,∴∠APB=180°-∠P AB-∠ABP=30°.7.如图,OC平分∠AOB,OD是∠BOC内的一条射线,且∠COD=1 2∠BOD,则∠AOB等于∠COD的(A)A.6倍B.4倍C.2倍D.3倍【解析】∵∠COD=12∠BOD,∴∠COB=3∠COD,∵OC平分∠AOB,∴∠AOB=2∠COB,∴∠AOB=6∠COD.8.两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(C)A.2 cm B.4 cm C.2 cm或22 cm D.4 cm或44 cm 【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,∵M,N分别为AB,BC的中点,∴BM=12 cm,BN=10 cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22 cm;②如图2,BC在AB上时,MN=BM-BN=12-10=2 cm.综上所述,两根木条的中点间的距离是2 cm或22 cm.9.(2021·西安期末)如图,A,B,C是一条公路上的三个村庄,A,B 间的路程为50 km,A,C间的路程为30 km,现要在A,B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?(A)A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间【解析】设P,C间的路程为x km,由题意,得如图1,当点P在点C的左侧,车站到三个村庄的路程之和为:30-x+x+20+x=x+50(km);如图2,当点P在点C的右侧,车站到三个村庄的路程之和为:30+x+x+20-x=x+50(km).综上所述:车站到三个村庄的路程之和为(x+50)km;因为x为非负数,即x≥0,所以,当x=0时,x+50最小.即当车站建在C处时,车站到三个村庄的路程之和最小.10.如图,在长方形ABCD中,AB∶BC=2∶1,AB=12 cm,点P 沿AB边从点A开始,向点B以2 cm/s的速度移动,点Q沿DA边从点D 开始向点A 以1 cm/s 的速度移动,如果P ,Q 同时出发,用t s 表示移动时间(0<t <6).在这运动过程中,下列结论:①当t =2 s 时,AP =AQ ;②当t =3 s 时,∠BPC =45°;③当t =2 s 时,PB ∶BC =4∶3;④四边形QAPC 的面积为36 cm 2. 其中正确的结论有( D )A .1个B .2个C .3个D .4个【解析】①当t =2 s 时AP =4 cm ,AQ =AD -DQ =6-2=4 cm ,故①正确;②当t =3 s 时,BP =AB -AP =12-3×2=6 cm ,∴BC =BP , 又∵∠B =90°,∴△BPC 是等腰直角三角形,故②正确;③当t =2 s 时,PB =AB -2×2=12-4=8 cm ,∵AB ∶BC =2∶1,AB =12 cm ,∴BC =6 cm ,∴PB ∶BC =8∶6=4∶3,故③正确;④t s 时,PB =AB -2t =12-2t ,DQ =t ,∴四边形QAPC 的面积=12×6-12 (12-2t)×6-12 ×12×t =72-36+6t-6t =36 cm 2,故④正确.所以正确的是①②③④共4个.二、填空题(每小题3分,共24分)11.(2021·宿州期末)时钟的时间是2点30分,时钟盘面上的时针与分针的夹角是__105°__.【解析】2点30分时,时针指向2与3的正中间,分针指向6,表盘上两个相邻数字间夹角为30°,故此时二者的夹角是3×30°+12×30°=105°.12.数轴上点A表示数a,点B表示数b,若|a|=7,|b|=4,则AB =__3或11__.【解析】∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,AB =7-4=3;当a=-7,b=4时,AB=|-7-4|=11;当a=7,b=-4时,AB=|7+4|=11;当a=-7,b=-4时,AB=|-7+4|=3.故AB的长为3或11.13.计算:90°-52°22′=__37°38′__.【解析】90°-52°22′=89°60′-52°22′=37°38′.14.如图,已知∠AOC=90°,∠COB=α°,OD平分∠AOB,则∠COD等于__45°-12α°__.(用含α的代数式表示)【解析】∵∠AOC=90°,∠COB=α°,∴∠AOB=∠AOC+∠COB=90°+α°.∵OD 平分∠AOB ,∴∠BOD =12 (90°+α°)=45°+12 α°,∴∠COD =∠BOD -∠COB =45°-12 α°.15.如图,点C 、点D 在线段AB 上,E ,F 分别是AC ,DB 的中点,若AB =m ,CD =n ,则线段EF 的长为__m +n 2 __(用含m ,n 的式子表示).【解析】∵AB =m ,CD =n.∴AB -CD =m -n ,∵E ,F 分别是AC ,DB 的中点,∴CE =12 AC ,DF =12 DB ,∴CE +DF =12 (m -n),∴EF =CE +DF +DC =12 (m -n)+n =m +n 2 .16.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成__11__部分;圆的十九条弦最多可将圆分成__191__部分.【解析】一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n 条弦将圆分成1+1+2+3+…+n =1+n (n +1)2部分, 当n =19时,1+n (n +1)2=191部分. 17.如图,将一张长方形纸片ABCD 分别沿着BE ,BF 折叠,使边AB ,CB 均落在BD 上,得到折痕BE ,BF ,则∠ABE +∠CBF =__45°__.【解析】由折叠得,∠ABE =∠DBE ,∠CBF =∠DBF ,∵∠ABE +∠DBE +∠CBF +∠DBF =∠ABC =90°,∴∠ABE +∠CBF =12 ∠ABC =12 ×90°=45°. 18.一副三角板AOB 与COD 如图1摆放,且∠A =∠C =90°,∠AOB =60°,∠COD =45°,ON 平分∠COB ,OM 平分∠AOD.当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,α+β=__105__度.【解析】如题图1,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°+∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°+∠BOD),∴∠MON =α=∠NOB +∠MOD -∠BOD =12 (45°+60°),如题图2,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°-∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°-∠BOD),∴∠MON =β=∠NOB +∠MOD +∠BOD =12 (45°+60°),∴α+β=45°+60°=105°.三、解答题(共46分)19.(6分)如图所示,OB 平分∠AOC ,且∠2∶∠3∶∠4=2∶5∶3.求∠2,∠3,∠4的度数.【解析】设∠2=2x ,∠3=5x ,∠4=3x ,根据OB 平分∠AOC ,故∠1=∠2=2x ,∴∠1+∠2+∠3+∠4=2x +2x +5x +3x =12x =360°,解得:x =30°, ∴∠2=2x =60°,∠3=5x =150°,∠4=3x =90°.20.(6分)如图,∠1=∠2=∠3,若图中所有角的和等于180°,求∠AOB的度数.【解析】如图,设∠1=∠2=∠3=x,∵∠AOC+∠AOD+∠AOB+∠COD+∠COB+∠DOB=180°,∴x+2x+3x+x+2x+x=180°,∴x=18°,∴∠AOB=3x=54°.21.(6分)如图,线段AB=10 cm,C是AB的中点,点D在CB上,DB=3 cm.求线段CD的长.【解析】由AB=10 cm,C是AB的中点,得BC=12AB=5 cm,由线段的和差,得CD=BC-BD=5-3=2(cm).22.(6分)已知A,B,C,D是直线上顺次四点,AB,BC,CD的长度比是1∶2∶3,点E,F分别是AB,CD的中点,且EF=8 cm,求AD的长.【解析】如图所示:∵AB,BC,CD的长度比是1∶2∶3,∴设AB =x ,则BC =2x ,CD =3x ,∵点E ,F 分别是AB ,CD 的中点,且EF =8 cm ,∴EF =12 x +2x +32 x =8,解得x =2,∴AD =x +2x +3x =6x =12 cm .23. (10分)(2021·宁波质检)如图,点A ,B 和线段CD 都在数轴上,点A ,C ,D ,B 起始位置所表示的数分别为-2,0,3,12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为________,当t =2秒时,AC 的长为________.(2)用含有t 的代数式表示AC 的长为________.(3)当t =________秒时AC -BD =5,当t =________秒时AC +BD =15.【解析】(1)当t =0秒时,AC =|-2-0|=|-2|=2;当t =2秒时,移动后C 表示的数为2,∴AC =|-2-2|=4.答案:2 4(2)点A 表示的数为-2,点C 表示的数为t ;∴AC =|-2-t|=t +2.答案:t +2(3)∵t 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15.答案:61124.(12分)如图,∠AOB=90°,∠BOC=20°.(1)如图1所示,分别作∠AOC,∠BOC的平分线OM,ON,求∠MON 的度数;(2)如图2所示,若将(1)中的OC绕O点向下旋转,使∠BOC=2x°,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数?若能,求出其值;若不能,试说明理由;(3)如图3所示,∠AOB=90°,若将(1)中的OC绕O点向上旋转,使OC在∠AOB的内部,且∠BOC=2y°,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值;若不能,说明理由.【解析】(1)∵∠AOB=90°,∠BOC=20°,∴∠AOC=∠AOB+∠BOC=110°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×110°=55°,∠NOC=12∠BOC=12×20°=10°,∴∠MON=∠MOC-∠NOC=55°-10°=45°.(2)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2x°,∴∠AOC=∠AOB+∠BOC=90°+2x°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°+2x°)=45°+x°,∠NOC=12∠BOC=12×2x°=x°,∴∠MON=∠MOC-∠NOC=45°+x°-x°=45°;(3)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2y°,∴∠AOC=∠AOB-∠BOC=90°-2y°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°-2y°)=45°-y°,∠NOC=12∠BOC=12×2y°=y°,∴∠MON=∠MOC+∠NOC=45°-y°+y°=45°.。
图(7)第四单元测试题班别 姓名 总分 。
一、 选择题(每题3分,共30分) 1、下列说法正确的是( )A 、过一点P 只能作一条直线。
B 、射线AB 和射线BA 表示同一条射线C 、直线AB 和直线BA 表示同一条直线D 、射线a 比直线b 短 2、下面表示ABC ∠的图是( )AAB C D 3、如图(7),从A 到B 最短的路线是( )A 、A -G -E -B B 、A -C -E -B C 、A -D -G -E -B D.、A -F -E -B4、同一平面内互不重合的三条直线的公共点的个数是( )A 、可能是0个,1个,2个B 、可能是0个,2个,3个C 、可能是0个,1个,2个或3个D 、可能是1个或3个5、 直线a 外有一定点A ,A 到a 的距离是5,P 是直线a 上的任意一点,则( ) A 、AP>5 B 、AP ≥5 C 、AP=5 D 、AP<56、下列说法正确的是( )A 、连结两点的线段叫做两点的距离B 、过一点能作已知直线的一条垂线C 、射线AB 的端点是A 和BD 、不相交的两条直线叫做平行线 7、一个钝角与一个锐角的差是( )A 、锐角B 、直角C 、钝角D 、不能确定 8、AB=10,AC=16,那么AB 的中点与AC 的中点的距离为( ) A 、13 B 、3或13 C 、3 D 、6 9、 下列说法中正确的是( )A 、8时45分,时针与分针的夹角是7.5°B 、6时30分,时针与分针重合C 、3时30分,时针与分针的夹角是90°D 、3时整,时针与分针的夹角是30°ACAB BA10、如图,四条表示方向的射线中,表示北偏东60°的是( )二、 填空题(每题3分,共24分)1、用两个钉子就可以把木条钉在墙上,其依据是_________ __________ 23、若点C 为线段AB 45、右图有 条线段。
亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。
当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。
今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。
北师版数学七年级上册第四章基本平面图形综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.关于直线、射线、线段的描述正确的是( )A.直线最长、线段最短B.射线是直线长度的一半C.直线没有端点,射线有一个端点,线段有两个端点D.直线、射线及线段的长度都不确定2.下列图形的几何语言表示正确的有( )A.3个B.4个C.5个D.6个3.下列关系中,与图示不符合的式子是( )A.AD-CD=AB+BCB.AC-BC=AD-DBC.AC-BC=AC+BDD.AD-AC=BD-BC4.已知∠AOB=30°.自∠AOB的顶点O引射线OC,若∠AOC∶∠AOB=4∶3,那么∠BOC等于( ) A.10°B.40°C.70°D.10°或70°5.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于( ) A.38°B.104°C.142°D.144°6. 如图所示,OA,OB,OC,OD是圆的四条半径,则图中以B为端点的弧的条数为( )A.6条B.8条C.2条D.4条7.如图,长度为12 cm的线段AB的中点为M,点C将线段MB分成的MC∶MB=1∶3,则线段AC的长度为( )A.2 cm B.6 cmC.8 cm D.9 cm8.如图,OA,OC,OB是圆的三条半径,则图中扇形的个数为( )A.3 B.4C.5 D.69.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为( )A .4,3B .3,3C .3,4D .4,410.已知线段AB ,延长AB 到点C ,使BC=13AB ,D 为AC 的中点,若AB=9 cm ,则DC 的长为( )A.3 cmB.6 cmC.1 cmD.12 cm第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理?_______________.12.下列命题中,正确的有_________.(填序号)①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.13.如图是一个时钟的钟面,7:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=_________度.14.一个多边形从一个顶点最多能引出三条对角线,这个多边形是__________.15.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若∠AOC =∠AOB ,则OC 的方向是北偏东_________.16.(1)计算:50°-15°30′=__________;(2)两点半时钟面上时针与分针的夹角为__________. 17. 将一张正方形的纸片,按图4-4的方式对折两次,相邻两条折痕(虚线)间的夹角为__________.18.如图,B ,C 两点在线段AD 上. (1)BD=BC+______,AD=AC+BD-_______;(2)如果CD=4 cm ,BD=7 cm ,B 是AC 的中点,那么AB 的长为______.三.解答题(共7小题,66分)19. (6分)如图所示,已知点A,B,请你按照下列要求画图(延长线都画成虚线):(1)过点A,B画直线AB,并在直线AB上方任取两点C,D;(2)画射线AC,线段CD;(3)延长线段CD,与直线AB相交于点M;(4)画线段DB,反向延长线段DB,与射线AC相交于点N.20. (6分)如图,直线AB和CD相交于点O,∠DOE=90°,OD平分∠BOF,∠BOE=50°,求∠AOC,∠EOF,∠AOF的度数.21. (6分)如图,已知线段AD=16 cm,线段AC=BD=10 cm,点E,F分别是线段AB,CD的中点,求线段EF的长.22. (6分)(1)将31.24°化为用度、分、秒表示的形式;(2)将38°37′12″化成以度为单位的形式.23. (6分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24. (8分)抗日战争时期,一组游击队员奉命将A村的一批文物送往安全地带,他们从A村出发,先沿北偏东80°的方向前进,走了一段路程后突然发现A村南偏东50°的方向距离A村3 km处的B 村出现了敌情,于是他们把文物就地隐藏,然后调转方向直奔B村增援,走了一段路程赶到B村消灭了敌人.战斗结束后,据游击队员们回忆,文物在B村北偏东25°的方向.根据上述信息,你能确定文物的大致位置点C吗?请以1 cm的长度表示1 km,画图说明文物的位置.25. (8分)如图,点C是线段AB上的一点,点D是线段AB的中点,点E是线段BC的中点.(1)当AC=8,BC=6时,求线段DE的长度;(2)当AC=m,BC=n(m>n)时,求线段DE的长度;(3)从(1)(2)的结果中,你发现了什么规律?请直接写出来.26. (10分)已知∠AOB=40°,∠AOC=100°,分别作∠AOB和∠AOC的平分线OM,ON,求∠MON的大小.27. (10分)如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.甲乙参考答案:1-5CCCDC 6-10ACDCB 11. 两点确定一条直线 12. ①③ 13. 150 14.六边形 15. 70°16. 34°30′,105° 17. 22.5°18.(1)CD ,BC (2)3 cm 19. 解:答案不唯一,如图所示.20. 解:∠AOC =∠BOD=90°- ∠BOE =40°, ∠EOF =90°+∠DOF= 90°+∠DOB =130°, ∠AOF =180°-∠BOF= 100°21. :因为AB =AD -BD =16-10=6, 同理可求CD =AB =6,所以BC =AD -AB -CD =16-6-6=4, 因为E 是AB 的中点,所以EB =12AB =12×6=3,因为F 是CD 的中点,所以CF =12CD =12×6=3,所以EF =EB +BC +CF =3+4+3=10(cm)22. 解:(1)31.24°=31°+0.24°×60=31°14.4′=31°14′+0.4′×60=31°14′24″ (2)38°37′12″=38°37′+12″÷60=38°37.2′=38°+37.2′÷60=38.62° 23. 解:(1)若以B 为原点,则C 表示1,A 表示-2, 所以p =1+0-2=-1;若以C 为原点,则A 表示-3,B 表示-1, 所以p =-3-1+0=-4(2)若原点O 在图中数轴上点C 的右边,且CO =28, 则C 表示-28,B 表示-29,A 表示-31, 所以p =-31-29-28=-88 24. 解:画法如下:(1)在平面中任取一点作为A 村(2)沿A 村的南偏东50°的方向画射线AM ,在AM 上截取AB =3 cm (3)沿A 村北偏东80°的方向画射线AN(4)沿B 村的北偏东25°的方向画射线BP ,BP 与AN 交于点C ,则C 点即为所求25. 解:(1)因为AC =8,BC =6,所以AB =14, 因为点D 是线段AB 的中点,所以AD =12AB =7,因为BC =6,点E 是线段BC 的中点,所以BE =12BC =3,所以DE =14-7-3=4(2)因为AC =m ,BC =n ,所以AB =m +n. 因为点D 是线段AB 的中点,所以AD =m +n2.因为BC =n ,点E 是线段BC 的中点,所以BE =n2,所以DE =m +n -m +n 2-n 2=m2(3)规律:DE 的长等于12AC 的长26. 解:如图1,因为∠AOB=40°,OM平分∠AOB,所以∠AOM=20°,因为∠AOC=100°,ON平分∠AOC,所以∠AON=50°,所以∠MON=70°;如图2,因为∠AOB=40°,OM平分∠AOB,所以∠AOM=20°,因为∠AOC=100°,ON平分∠AOC,所以∠AON=50°,所以∠MON=30°本文使用Word编辑,排版工整,可根据需要自行修改、打印,使用方便。
北师大版七年级数学上册第四章《基本平面图形》练习题及答案第四章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 下列说法正确的是(B )A .过一点P 只能作一条直线B .直线AB 和直线BA 表示同一条直线C .射线AB 和射线BA 表示同一条射线D .射线a 比直线b 短2. 下面表示∠ABC 的图是(C )3. 同一平面内互不重合的三条直线的交点的个数是(C )A .可能是0个,1个,2个B .可能是0个,2个,3个C .可能是0个,1个,2个或3个D .可能是1个或3个 4. 如图,点C ,D 是线段AB 上的两点,且点D 是线段AC 的中点,若AB =10 cm ,BC =4 cm ,则AD 的长为(B )A .2 cmB .3 cmC .4 cmD .6 cm,第4题图) ,第5题图),第6题图) ,第9题图)5. 如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠COB=35°,则∠AOD 等于(C ) A .35° B .70° C .110° D .145°6. 如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是(A )A .两点之间线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间的线段叫做两点间的距离7. 点C 是线段AB 的中点,点D 是BC 上一点,则以下关系式中不正确的是(C )A .CD =AC -BDB .CD =12AB -BDC .CD =12BC D .CD =AD -BC8. 下列属于正n 边形的特征的有(A )①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n -2)条对角线;⑤从一个顶点引出的对角线将n 边形分成面积相等的(n -2)个三角形.A .2个B .3个C .4个D .5个9. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是(A) A.1∶2∶2∶3 B.3∶2∶2∶3 C.4∶2∶2∶3 D.1∶2∶2∶110. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE 为∠BOC的平分线,则∠DOE的度数为(D)A.36°B.45°C.60°D.72°,第10题图) ,第13题图),第16题图)二、填空题(本大题6小题,每小题4分,共24分)11. 班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条可任意转动;钉两颗钉子时,木条不动了,用数学知识解释这种现象为两点确定一条直线.12. 点C在射线AB上,若AB=3,BC=2,则AC为1或5.13. 如图,平角AOB被分成的三个角∠AOC,∠COD,∠DOB的比为2∶3∶4,则∠DOB =80°.14. 十边形的一个顶点与其余各个顶点相连能得到8个三角形.15. 已知∠A=18°18′,∠B=18.18°,则∠A>∠B.16. 如图,斜折一页书的一角,原顶点A落到A1处,EF为折痕,FG平分∠A1FD,则∠EFG =90°.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,共有多少条线段?多少条射线?多少条直线?把能用字母表示的表示出来.解:有3条线段,分别为线段AB,线段AC,线段BC.有8条射线,能用字母表示的分别为射线AB,射线BA,射线CA,射线BC.有1条直线,直线AB18. 如图,在四边形ABCD内找一点O,使得线段AO,BO,CO,DO的和最小,并说明理由.(画出即可,不写作法)解:如图所示,连接AC,BD,交点即为点O,是根据两点之间线段最短19. 如图,AB=6 cm,延长AB到点C,使BC=3AB,点D是BC的中点,求AD的长度.解:因为AB=6 cm,BC=3AB,所以BC=18 cm,因为点D为BC的中点,所以BD=9 cm,所以AD=AB+BD=15(cm)四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知线段a,b和射线OA.(1)在OA上截取OB=2a+b,OC=2a-b;(2)若a=3,b=2,求BC.解:(1)如图,OB,OC即为所求(2)BC=BO-CO=2a+b-(2a-b)=2b=2×2=421. 如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.解:由题意可知,∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°,所以点C在观测点南偏东52.5°方向22. 如图,OE 为∠AOD 的平分线,∠COD =14∠EOC,∠COD =15°.求: (1)∠EOC 的大小;(2)∠AOD 的大小.解:(1)由∠COD=14∠EOC,得∠EOC=4∠COD=4×15°=60° (2)因为∠EO D =∠EOC-∠COD=60°-15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,点C 在线段AB 上,AC =8 cm ,BC =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AB =AC +BC =a cm ,其他条件不变,试求线段MN 的长;(3)若C 在线段AB 的延长线上,且满足AB =AC -BC =b cm ,点M ,N 分别是AC ,BC 的中点,试求线段MN 的长,并画出图形.解:(1)MN =MC +CN =12AC +12BC =4+3=7(cm ) (2)MN =MC +CN =12AC +12BC =12(AC +BC)=a 2(cm ) (3)如图所示:MN =MC -NC =12AC -12BC =12(AC -BC)=b 2(cm ) 24.钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O 为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA 表示时针,半径OB 表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°.本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;(2)8点整,钟面角∠AOB =120°,钟面角与此相等的整点还有:4点整;(3)如图,设半径OC 指向12点方向,在图中画出6点15分时半径OA ,OB 的大概位置,并求出此时∠AOB 的度数.解:(3)如图:∠AOB =6×30+15×0.5-15×6=97.5°25. 乐乐对几何中角平分线等兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB =100°,射线OE ,OF 分别是∠AOC 和∠COB 的角平分线.(1)如图①,若射线OC 在∠AOB 的内部,且∠AOC=30°,求∠EOF 得度数; (2)如图②,若射线OC 在∠AOB 的内部绕点O 旋转,求∠EOF 的度数;(3)若射线OC 在∠AOB 的外部绕点O 旋转(旋转中∠AOC,∠BOC 均指小于180°的角),其余条件不变,请借助图③探究∠EOF 的大小,写出∠EOF 的度数.解:(1)因为∠AOB =100°,∠AOC =30°,所以∠BOC=∠AOB-∠AOC=70°,因为OE ,OF 分别是∠AOC 和∠COB 的角平分线,所以∠EOC=12∠AOC=15°,∠FOC =12∠BOC=35°,所以∠EOF=∠EOC+∠FOC=15°+35°=50°(2)因为OE ,OF 分别是∠AOC 和∠COB 的角平分线,所以∠EOC=12∠AOC,∠FOC =12∠BOC,所以∠EOF=∠EOC+∠FOC=12∠AOB=12×100°=50°(3)①射线OE ,OF 只有1条射线在∠AOB 外面,如图④,∠EOF =∠FOC-∠COE=12∠BOC -12∠AOC=12∠AOB=12×100°=50°;②射线OE ,OF 都在∠AOB 外面,如图⑤,∠EOF =∠EOC +∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=12×260°=130°.故∠EOF 的度数是50°或130°。
北师大版数学七年级上册第四章《基本平面图形》 综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.探照灯发射出的光线,可近似地看作( )A .线段B .射线C .直线D .折线2.如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠AOD =( )A .50°B .55°C .60°D .65°3.下列说法,正确的是( ) A .过两点有且只有一条直线 B .连接两点的线段叫作两点的距离C .两点之间直线最短D .若AB =BC ,则B 是AC 的中点4.一个多边形从一个顶点最多能引出三条对角线,这个多边形是( )A .三角形B .四边形C .五边形D .六边形5.一个人从A 点出发向南偏东30°方向走到B 点,再从B 点出发向北偏西45°方向走到C 点,那么∠ABC 等于( )A .75°B .45°C .30°D .15°6.如图,AB =CD ,则下列结论不一定成立的是( )A .AC >BCB .AC =BDC .AB +CD =BC D .AB +BC =BD 7.已知OA ⊥OC ,∠AOB ︰∠AOC =2︰3,则∠BOC 的度数为( )A .30B .150C .30或150D .以上都不对8.如图,扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是( )A .π-2B .π-4C .4π-2D .4π-4 第2题图第6题图 第8题图二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上.9.时钟表面3点30分,时针与分针所成夹角的度数是 .10.如图,B 、C 两点在线段AD 上,BD =BC + ,AD =AC +BD - ; 如果CD =4cm ,BD =7cm ,B 是AC 的中点,则AB 的长为 cm .11.计算:176°52′÷3=_______° _______′ _______″.12.一个圆被分成A ,B ,C 三部分,其中A 部分占25%,C 部分占45%,则B 部分的圆心角的度数为__________度.13.如图,OE 是∠BOC 的平分线,OD 是∠AOC 的平分线,且∠AOB =150°,∠DOE 的度数是 .14.已知线段AB ,延长AB 到点C ,使BC =13AB ,D 为AC 的中点,若AB =9 cm ,则DC 的长为 cm .15.长方形纸条按如图所示折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=70°,则∠B ′OG 的度数为 . 三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.如图,已知∠AOB =90°,∠COD =90°,OE 为∠BOD 的平分线,∠BOE =17°18′,求∠AOC 的度数.17.某摄制组从A 市到B 市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原第13题图第10题图 第15题图计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?18.如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.∠∠AOD和∠BOC相等吗?说明理由;∠∠AOC和∠BOD的以上关系还成立吗?说明理由.19.如图∠,线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC、BC的中点.(1)若点C恰好是AB中点,则DE= cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图∠,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.参考答案一、选择题:1.B 2.B 3.A 4.D 5.D 6.C 7.C 8.A二、填空题:9.75° 10.CD ,CB ,3 11.58 ,57 ,20 12.108 13.75° 14.6 15.55°三、解答题:16.∵OE 为∠BOD 的平分线, ∴∠BOD =2∠BOE =2×17°18′=34°36′, 又∵∠AOB =∠COD =90°,∴∠AOC =360°-∠AOB -∠COD -∠BOD =360°-90°-90°-34°36′=145°24′17.如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =DC ,EB =CE , AD +EB =(DC +CE )=DE =×400=200千米, ∴AB =AD +EB +DE =600千米, 答:A ,B 两市相距600千米.18.(1) 相等.∵①∠AOD =90°+∠BOD ,∠BOC =90°+∠BOD , ∴∠AOD =∠BOC ; ②∵∠AOC +90°+∠BOD +90°=360°, ∴∠AOC +∠BOD =180°;(2)①∵∠AOD =90°-∠BOD ,∠BOC =90°-∠BOD , ∴∠AOD =∠BOC ; ②成立.由∠AOC =90°+90°-∠BOD , ∴∠AOC +∠BOD =180°19.(1)6;(2)∠AB =12,AC =4, ∠BC =8,∠点D 、E 分别是AC 、BC 的中点, ∠CD =2,CE =4, ∠DE =6cm ;(3)设AC =a ,∠点D 、E 分别是AC 、BC 的中点,∠DE =CD +CE =12(AC +BC )=12AB =6cm , ∠不论AC 取何值(不超过12cm ),DE 的长不变;(4)∠OD 、OE 分别平分∠AOC 和∠BOC ,∠∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12∠AOB , ∠∠AOB =120°, ∠∠DOE =60°, ∠∠DOE 的度数与射线OC 的位置无关.1212121212。
第四章简单平面图形单元测试题(总分100 分,时间90 分钟)一、选择题(每小题 3 分,共39 分)1、如图1,以O为端点的射线有()条.A、3B、4C、5D、 62、下列各直线的表示法中,正确的是().图1A、直线 A B 、直线AB C 、直线ab D 、直线Ab3、一个钝角与一个锐角的差是() .A、锐角B、钝角C、直角D、不能确定4、下列说法正确的是().A、角的边越长,角越大B、在∠ABC一边的延长线上取一点 DC、∠B=∠ABC+∠D BCD、以上都不对5、下列说法中正确的是().A、角是由两条射线组成的图形 B 、一条射线就是一个周角C、两条直线相交,只有一个交点D、如果线段AB=BC,那么 B 叫做线段AB的中点6、同一平面内互不重合的三条直线的交点的个数是().A、可能是0 个,1 个,2 个B、可能是0 个,2 个,3 个C、可能是0 个,1 个,2 个或 3 个D、可能是 1 个可 3 个7、下列说法中,正确的有().①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点 B 是线段AC的中点.A、1 个B、2 个C、3 个D、4 个8、钟表上12 时15 分钟时,时针与分针的夹角为().A、90°B、82.5 ° C 、67.5 °D、60°9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是().A、AB=8cm,BC=19cm,AC=27cmB、AB=10cm,BC=9cm,AC=18cmC、AB=11cm,BC=21cm,AC=10cmD、AB=30cm,BC=12cm,AC=18cm10、已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为().A、30° B 、150° C 、30°或150° D 、以上都不对11、下图中表示∠ABC 的图是().A、B、C、D、D 12、如图2,从A到B 最短的路线是().G CA、A -G-E-B B 、A-C-E-B C 、A-D-G-E-B D 、A-F-E-B13、∠1和∠2为锐角,则∠1+∠2满足().A、0°<∠1+∠2<90°B、0°<∠1+∠2<180° C 、∠1+∠2<90°D 90 1+ 2 180、°<∠∠<°A F E图(7 )图2B二、填空题(每空 3 分,满分30 分)14、如图3,点A、B、C、D在直线l 上.(1)AC= ﹣CD;AB+ +CD=AD;(2)共有条线段,共有条射线,以点C为端点的射线是.图315、用三种方法表示图 4 的角:.图4116、将一张正方形的纸片,按图 5 所示对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图6,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD 的代数式是∠AOD= .18、如图7,∠AOD∠=AOC+ =∠DOB+ .图5三、解答题(共 5 小题,满分31 分)图6图719、如图8,M是线段AC的中点,N是线段BC的中点.(6 分)(1)如果AC=8cm,BC=6cm,求MN的长.(2)如果AM=5cm,CN=2cm,求线段AB的长.图820、如图9,已知∠AOB内有一点P,过点P 画MN∥OB交OA于C, 过点P 画PD⊥OA,垂足为D,并量出点P 到OA距离。
第四章平面图形测试题一、选择题1.若点B 在直线AC 上,下列表达式:①AC AB 21;②AB=BC ;③AC=2AB ;④AB+BC=AC .其中能表示B 是线段AC 的中点的有( )A .1个B .2个C .3个D .4个2.已知线段AB =10 cm ,AC +BC =12 cm ,则点C 的位置是在:①线段AB 上;②线段AB 的延长线上;③线段BA 的延长线上;④直线AB 外.其中可能出现的情况有( ) (A )0种 (B )1种 (C )2种 (D )3种3、如果线段AB=6cm,BC=4cm,且线段A 、B 、C 在同一直线上,那么A 、C 间的距离是( )。
A.10B.2C.10或2D.无法确定4、如图:B 是线段AD 的中点,C 是线段BD 上的一点,下列结论中,错误的是 ( )A. BC=AD-CDB. BC=AB-CDC. BC=AC-BDD. BC=(AD-CD)5、若点M 线段AB 的中点,点C 是MB 上任意一点,则与MC 相等的是( ). A . 12(AC -BC ) B . 12(AC +BC ) C . AC -12AB D . BC -12AB6、∠AOB 为角,下列说法:①∠AOP=∠BOP ;②∠AOP= ∠AOB ;③∠AOB=∠AOP+∠BOP ; ④ ∠AOP=∠BOP=∠AOB .其中能说明射线OP 一定是∠AOB 的平分线的有( ) A. ①② B. ①③④ C. ①④ D .只有④ 7.利用一副三角板上已知度数的角,不能画出的角是 ( ) A 、15° B 、135° C 、165° D 、100°8、在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°二、填空题1、在同一直线上顺次取A 、B 、C 、三点,AB=5cm ,BC=3cm ,D 是AB 中点,E 是BC 中点,则DE=________.2、已知在一条直线上有A 、B 、C 三点,且BC=31AB ,若点D 为AC 的中点,且为AC 的中点,且DC=2cm ,则线段AB 的长为________.3、已知一条直线上有A 、B 、C 、三点,线段AB 的中点为P ,AB=10;线段BC 的中点为Q ,BC=6,则线段PQ 的长为 _________ .212112北OB第8题图4、已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6 cm,E、F分别是线段OA、OB的中点,则线段EF的长度为cm.5、如图所示, 把一根绳子对折成线段AB, 从P处把绳子剪断, 已知AP=12PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为cm.6、已知线段AB=20cm,直线..AB上有一点C,且BC=6cm,M是线段AC的中点,则AM= cm.7、如图,将一副三角板叠放在一起,使直角顶点重合于O点,则.8、如图所示,两块三角尺的直角顶点O重叠在一起,且OB恰好平分COD∠,则AOD∠的度数是 .9、.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=145°,则∠BOC=_______.10、如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=∠MFE.则∠MFB= .11、时钟上现在是八点整,再过分,时针和分针重合,此时时针转过度。
北师大版七年级数学上册第四章基本平面图形测试题带答案第 1 页共 6 页东图(4)图(5)DABC 图(6)D '图(2)第四章基本平面图形测试题一、相信自己,一定能填对!(2×8=16分)1、图(1)中有______条线段,分别表示为___________2、时钟表面3点30分时,时针与分针所夹角的度数是______。
3、已知线段AB,延长AB 到C ,使BC=31AB ,D 为AC 的中点,若AB =9cm ,则DC 的长为。
4、如图(2),点D 在直线AB 上,当∠1=∠2时, CD 与AB 的位置关系是。
5、如图(3)所示,射线OA的方向是北偏_________度。
6、将一张正方形的纸片,按如图(4)所示对折两次,相邻两折痕间的夹角的度数为度。
7、如图(5),B 、C 两点在线段AD 上,(1)BD=BC+ ;AD=AC+BD- ; (2)如果CD=4cm,BD=7cm,B 是AC 的中点,则AB 的长为。
8、如图(6),把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=700, 则∠B ′OG 的度数为。
二、只要你细心,一定选得有快有准!(3×10=30分)9、一个钝角与一个锐角的差是()A.锐角B.直角C.钝角D.不能确定 10、下列各直线的表示法中,正确的是()A .直线A B.直线ABC .直线ab D.直线Ab 11、下列说法中,正确的有()A 过两点有且只有一条直线B.连结两点的线段叫做两点的距离 C.两点之间,线段最短 D .AB =BC ,则点B 是线段AC 的中点B图(1)第 2 页共6 页图(7)图(8)第19题图12、下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线②平面内经过一点有且只有一条直线与已知直线垂直③经过一点有且只有一条直线与已知直线平行④平行同一直线的两直线平行A.1个B.2个C.3个D.4个13、下面表示ABC的图是()A(A)(B)(C)(D)14、如图(7),从A到B最短的路线是()A. A-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B15、已知OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30B.150C.30或150D.以上都不对16、在同一平面内,三条直线的交点个数不能是()A. 1个B. 2个C. 3个D.4个17、如图(8),与OH相等的线段有()条A. 8B. 7C. 6D. 418、小明用所示的胶滚从左到右的方向将图案滚到墙上,正面给出的四个图案中,用图示胶滚涂出的( )A B C D三、认真解答,一定要动脑思考哟!(54分)19、如图,已知∠AOB内有一点P,过点P画MN∥OB交OA于C,过点P画PD⊥OA,垂足为D,并量出点PAC AB BA第 3 页共 6 页第20题图BC E 到OA 距离。
七〔上〕第四章根本平面图形单元测试 (含答案) 一.选择题:〔四个选项中只有一个是正确的,选出正确选项填在题目的括号内〕1.以下各直线的表示法中,正确的选项是〔〕A.直线ab B.直线Ab C.直线A D.直线AB2.以下说法正确的选项是〔〕A.角的边越长,角越大B.在∠ABC一边的延长线上取一点DC.∠B=∠ABC+∠DBC D.以上都不对3.如图,O是直线AB上一点,∠COB=26°,那么∠1=〔〕A.154° B.164° C.174° D.184°4.以下四个现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路改直,就能缩短路程。
其中可用“两点之间,线段最短〞的是〔〕A.①②B.①③C.②④D.③④5.平面上有三点A,B,C,假如AB=8,AC=5,BC=3,以下说法正确的选项是〔〕A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外6.如图,C,D是线段AB上两点,假设CB=4cm,DB=7cm,且D是AC的中点,那么AC 的长等于〔〕A.3cm B.6cm C.11cm D.14cm7.如图,一艘轮船行驶在O处同时测得小岛A、B的方向分别为北偏东75°和西南方向,那么∠AOB等于〔〕A.100° B.120° C.150° D.135°8.如图,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,假如BD为∠A′BE的平分线,那么∠CBD=〔〕A.80° B.90° C.100° D.70°第6题图第7题图第8题图9.平面上有四点,经过其中的两点画直线,共可画〔〕A.1条直线B.6条直线C.6条或4条直线D.1条或4条或6条直线10.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,假设∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是〔〕A.1:2:2:3 B.3:2:2:3 C.4:2:2:3 D.1:2:2:1二.填空题:〔将正确答案填在题目的横线上〕11. 1周角=____平角=____直角=______度;12. 60.56°=______度_____分_____秒,28°28′12"=_________°;13. 8:30时针与分针所成的角度为_________;14.〔1〕如图,AB=12cm ,点C 为线段AB 上的一个动点,D 、E 分别是AC 、BC 的中点;①假设点C 恰为AB 的中点,那么DE=_______cm ;②假设AC=4cm ,那么DE=________cm ;〔2〕如图,点C 为线段AB 上的一个动点,D 、E 分别是AC 、BC 的中点;假设AB=a ,那么DE=_______;15.如图,∠AOB=120°,过角的内部任一点C 画射线OC ,假设OD 、OE 分别是∠AOC 、∠BOC 的平分线,那么∠DOE=______;第14题图 第15题图三.解答题:〔写出必要的说明过程,解答步骤〕16. 按要求作图:如图,在同一平面内有四个点A 、B 、C 、D ;〔1〕画射线CD ; 〔2〕画直线AD ;〔3〕连接AB ;〔4〕直线BD 与直线AC 相交于点O ;〔5〕请说明AD+AB >BD 的理由.17.如图,点C 为线段AD 上一点,B 为CD 的中点,且AD=10cm ,BD=4cm ; 〔1〕图中共有多少条线段?写出这些线段;〔2〕求AC 的长;〔3〕假设点E 在直线AD 上,且AE=3cm ,求BE 的长;18.如图,将一副三角尺的直角顶点叠放在点C 处,∠D=30°,∠B=45°,求:〔1〕假设∠DCE=35°,求∠ACB 的度数;〔2〕假设∠ACB=120°,求∠DCE 的度数. 〔3〕猜测∠ACB 和∠DCE 的关系,并说明理由;19. 如图,O 是直线AB 上的一点,C 是直线AB 外的一点,OD 是∠AOC 的平分线, OE 是∠COB 的平分线.〔1〕∠1=23°,求∠2的度数;〔2〕无论点C 的位置如何改变,图中是否存在一个角,它的大小始终不变〔∠AOB 除外〕?假如存在,求出这个角的度数;假如不存在,请说明理由.20. 如图,∠AOB=90°,OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线; 〔1〕当∠BOC=40°时,求∠MON 的大小?A D . 第17题图 . .C . B〔2〕当∠BOC 的大小发生变化时,∠MON 的大小是否发生改变?说明理由;七〔上〕第四章 根本平面图形 单元测试参考答案1~10 DDADA BCBDA11.2,4,360;12.60°33′36",28.47°;13.75°;14.〔1〕6,6;〔2〕2a ;; 15. 60°;16.〔1〕~〔4〕,如图,即为所求作;〔5〕AD+AB >BD 的理由是:两点之间线段最短;17. 〔1〕图中共有6条线段,分别是:线段AC ,AB ,AD ,CB ,CD ,BD ;〔2〕∵BD=4cm ,B 为CD 的中点,∴CD=2 BD=2×4=8〔cm 〕又∵AD=10 ∴ AC=AD -CD=10-8=2(cm)〔3〕点E 在直线AD 上有两种情况:①E 在线段AD 上,如图,∵ AB=AD -BD=10-4=6∴ BE= AB -AE=6-3=3(cm)②E 在线段DA 的延长线上,如图的点E ′,由①知:AB=6∴ BE ′= AB +AE ′=6+3=9〔cm 〕综上可得: BE=3cm 或9cm ;18. 〔1〕由题意知:∠ACD=90°,又∠DCE=35° ∴∠ACE=∠ACD -∠DCE =90°-35°=55° ∴∠ACB=∠ACE +∠BCE=55°+90°=145°〔2〕假设∠ACB=120°,∴∠ACE=∠ACB -∠BCE =120°-90°=30°∴ ∠DCE=∠ACD -∠ACE =90°-30°=60°〔3〕∠ACB +∠DCE=180°;理由如下:∵∠BCE=∠ACD=90°∴∠BCD+∠DCE=90°,∠DCE+∠ACE=90°∴∠ACB +∠DCE=∠ACE +∠DCE+BCD+∠DCE=90°+90°=180°ABON MC19. 〔1〕∠2=67°;〔2〕∠DOE的大小始终不变,等于90°;20. 〔1〕∠MON=45°;〔2〕当∠BOC的大小发生变化时,∠MON的大小不发生改变;理由如下:∵OM是∠AOC的角平分线,ON是∠BOC的角平分线∴当∠BOC的大小发生变化时,∠MON=45°,大小不发生改变;。
图(7)
北师大版七年级数学第四单元测试题(A 卷)
一、选择题
1、如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( )
.A BC AB CD =- 1
.()2B B C A D
C D =- 1
.()2
C B C A
D C D
=- .D B C A C
B
D =
- 2、如图(7),从A 到B 最短的路线是( )
A 、A -G -E -
B B 、A -
C -E -B C 、A -
D -G -
E -B D.、A -
F -E -B
3、已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出 AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )
A 、14
B 、38
C 、18
D 、316
4、用一副三角板的内角可以画出大于0 且小于等于150 的不同角度的角共有( )种. A 、8 B 、9 C 、10 D 、11
5、若一个60 的角绕顶点旋转15 ,则重叠部分的角的大小是( ) A 、15 B 、30 C 、45
D 、75
7、下列说法正确的是( )
A 、连接两点的线段叫做两点的距离
B 、线段的中点到线段两个端点的距离相等;
C 、到线段两个端点距离相等的点叫做线段的中点;
D 、AB=BC,则点B 是线段AC 的中点 8、AB=10,AC=16,那么AB 的中点与AC 的中点的距离为( ) A 、13 B 、3或13 C 、3 D 、6 9、 如图,OA 是北偏东30 方向的一条射线,若射线OB 与射线OA 垂直,则OB 的方向角是 ( ) A 、北偏西30 B 、北偏西60
C 、东偏北30
D 、东偏北60
二、填空题
1、如图,点A 、B 、C 、D 在直线l 上.
(1)___,____;AC CD AB CD AD =-++= (2)如图共有______条线段,共有_____条射线,以点C 为端点的射线是_________.
2、如图,12∠=∠ ,则______.BAD ∠=∠
3、如图,点A 、B 、C 、D 、E 是直线l 上顺次五点,
则____;________;____;________.BD CD CE BE BC DE BD AD BE =+=+=++=-=- 4、0.15°= ′= ″
5、若∠1:∠2:∠3=1:2:3,且∠1+∠2+∠3=180°,则∠2= ______度.
6、10点45分时,时针与分针所成的角度是______. 7
、
.
8、如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处, 若得∠AOB ′=700, 则∠B ′OG 的度数为________.
9、从公共端点O 引出10条射线所组成的角的个数是________.
10、半径为3的圆中150 圆心角所在的扇形面积为________,弧长为
三、解答题
1、
(尺规作图)已知线段a,b(a ﹤b),求作线段AB,使AB=b-a . 2、
3、如图,C 是线段AB 的中点,D 是线段BC 的中点,已知图中所有的线段之和为39,求线段BC 的长.
G D ’
' '
4、
5、如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长。
6、探索题
如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,……
A C
B A
C
D B A C D
E B
3=2+1 6=3+2+1 10=4+3+2+1
1)当线段AB上有6个点时,线段总数共有条。
2)当线段AB上有100个点时,线段总数共有多少条?
(B卷)。