微分方程习题课1
- 格式:ppt
- 大小:837.00 KB
- 文档页数:25
微分方程习题课例题解答例1.若微分方程的通解为x C y x +=e ,求该微分方程.解:对x C y x +=e 求导,有1e +='x C y ,消去C ,得1+-='x y y ,这就是所求的微分方程.例2.若函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23是二阶线性方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:根据非齐次线性微分方程两个解的差是相应齐次线性微分方程的解,得相应齐次线性 方程的两个线性无关的解x x y y y y 22313e e =-=--、,于是应齐次线性方程的通解为 x x C C Y 221e e +=-.取非齐次线性微分方程的一个特解为x x y y y y e 321*=-+=,所以原方程的通解为 x x x x C C y Y y e e e 221*++=+=-. (注:*y 也可以取321y y y 、、中的任何一个)例3.已知221,x y x y ==是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,x y e *=是二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的一个特解,写出二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的通解,并写出此微分方程. 解:因为221,x y x y ==线性无关,根据线性微分方程解的结果,该方程的通解为 xx C x C y e 221++=.将221,x y x y ==分别代入到齐次线性微分方程0)()(=+'+''y x Q y x P y 之中,有⎩⎨⎧=++=+,,0)()(220)()(2x Q x x xP x xQ x P 解得x x P 2)(-=,22)(x x Q =. 将xy e *=代入到非齐次线性微分方程)(222x f y xy x y =+'-''之中,得 x x x xx x x x x f e )221(e 2e 2e )(22+-=+-=.所以该微分方程为xx x y xy x y e )221(2222+-=+'-'',或写为x x x y y x y x e )22(2222+-=+'-''.例4.求解下列微分方程:(1)求xy y y x 2=+'满足初始条件0)1(=y 的特解; 解:先求方程的通解. (方法1)化为齐次方程xyx y y 2=+',令u x y =,则u u u x u x 2d d =++,分离变量有xxu u u d )1(2d -=-,积分得x C u ln )1ln(=-,即x C u =-1,通解为C x xy =-.(方法2)看作伯努利方程y xx y y 2=+'(21=n ),令y y z n ==-1,则方程化为一阶线性方程xx z z 12=+',通解为)(1)d (1)d e 1(e2d 2d x C xx C x x x C z y x xxx+=+=⎰+⎰==⎰⎰-,即C x xy =-. (方法3)令u xy =,则方程化为u x u 2d d =,分离变量为x uud 2d =,积分得C x u +=,即通解为C x xy =-.再求满足初始条件的特解,由0)1(=y ,得1=C ,特解为1=-x xy ,或写作xx y 2)1(-=.(2)求)(ln 2d d x y y x y -=的通解; 解:(方法1)将方程改写为y x y y x )(ln 2d d -=,即yy x y y x ln 22d d =+,则方程通解为 )d ln (1)d ln 2(1)d e ln 2(e222d 2d y y y y C yy y y C y y y y C x y y tyt⎰⎰⎰-+=+=⎰+⎰=-)2ln (122y y y C yy-+=,或写作2ln 222y y y C xy -+=.(方法2)令u x y =-ln ,则xux y y d d 1d d 1=-,于是u x u 211d d =+,即u u x u 221d d -=, 分离变量有x u u d d )2111(-=--,积分得C x u u ln 21)21ln(21+-=-+,即 C u x u ln )21ln()(2=-++,化简为C x y y =+-)2ln 21(2,这就是原方程通解.(3)求y x x y ++-='221的通解;解:令u y x =+2,则u y x '='+2,于是u u +='1,分离变量为x uu d 1d =+.因为t tt t t t u uu d )111(2d 121d ⎰⎰⎰+-=+=+C u u C t t -+-=-+-=)]1ln([2)]1ln([2,所以方程通解为 x C u u =-+-)]1ln([2,即C x y x y x +=++-+)]1ln([222.(4)求)ln (ln x y y y x -''=''的通解;解:令)(x p y =',则p y '='',于是)ln (ln x p p p x -=',即xpx p x p ln d d =,这是齐次方程,再令u x p =,则u u u x u x ln d d =+,分离变量为xx u u u d )1(l n d =-,积分得x C u 1ln )1ln(ln =-,即x C x xu p y 11e +===',所以方程通解为21111111)1(e ]d e [e 1d e1111C C x C x C x x y x C x C x C xC +-=-==++++⎰⎰.(5)求012=+'-''y y y 的通解;解:令)(y p y =',则p p y '='',于是012=+-'p p yp ,分离变量为y yp p p d d 12=-,积分得y C p 12ln 1ln 21=-,即22121y C y =-'. 当1±='y 时,则C x y +±=; 当1>'y 时,有22121yC y =-',则1221+±='y C y ,分离变量有x C y C y C d 1d 12211±=+,积分得211arsh C x C y C +±=,原方程的通解为)(sh 1121x C C C y ±=; 当1<'y 时,有22121y C y ='-,则2211y C y -±=',分离变量有x C yC y C d 1d 12211±=-,积分得211arcsin C x C y C +±=,原方程的通解为)(sin 1121x C C C y ±=. (6)1)9(62='++''+'''y a y y (0>a ).解:这是三阶常系数非齐次线性方程,相应齐次线性方程为0)9(62='++''+'''y a y y ,特征方程为0)9(6223=+++r a r r ,特征根是ai a r r ±-=-±-==3246023,21、,相应齐次线性方程通解为x ax C ax C C Y 3321e )sin cos (-++=.对于原方程,0=λ是单重特征根,0=m ,为此设bx y =*,代入方程有1)9(2=+b a ,得291a b +=,所以2*9a x y +=.原方程通解为23321*9e )sin cos (a xax C ax C C y Y y x++++=+=-.例5.已知1)(=πϕ,试确定函数)(x ϕ使0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,并对所确定的)(x ϕ,求该方程满足1)(=πy 的特解. 解:设)()]([sin x Q x y x x P ϕϕ=-=、,由0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,有yPx Q ∂∂=∂∂,得)]([sin 1)(x x x x ϕϕ-=',即x x x x x sin )(1)(=+'ϕϕ,这是一阶线性方程,通解为)cos (1)d sin (1)d e sin (e)(d d x C x x x C x x x x C x x xxx-=+=⎰+⎰=⎰⎰-ϕ.由1)(=πϕ,有)1(11+=C π,得1-=πC ,所以)cos 1(1)(x xx --=πϕ.这时原方程为0d )cos 1(1d )]cos 1(1[sin =--+---y x xx x y x x x ππ, )cos 1(d )cos 1(1d 0d d )(01),()0,1(x x yy x x x y Q x P y x u y x y x --=--+=+=⎰⎰⎰ππ,,于是原方程通解为1)cos 1(C x xy=--π,由1)(=πy ,得11=C ,所以原方程的特解是1)cos 1(=--x x y π,或写作xx y cos 1--=π. (注:方程通解也可以用凑微分方法得到,方程左式凑微分得0)]cos 1([d =--x xyπ,于是原方程通解为1)cos 1(C x xy=--π)例6.若函数)(x f 连续,且满足⎰--+=x t t f t x x x x f 0d )()(cos sin )(,求)(x f .解:将所给式子改写为⎰⎰+-+=x x t t tf t t f xx x x f 0d )(d )(cos sin )(,有1)0(=f ,且⎰⎰--=+---='x xt t f x x x xf x xf t t f x x x f 0d )(sin cos )()(d )(sin cos )(,1)0(='f .)(cos sin )(x f x x x f ---='',即x x x f x f cos sin )()(--=+'',这是二阶常系数非齐次线性微分方程,相应齐次线性方程为0)()(=+''x f x f ,其特征方程是012=+r ,特征根为i r ±=,相应齐次线性方程通解为x C x C F sin cos 21+=.考虑方程ixx f x f e )()(-=+'',这里i =λ是特征根,0=m ,为此设ix ax fe **=,将ax x Q =)(代入到)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ之中,有12-=ia ,得221i i a =-=,于是)cos (sin 2)sin (cos 2e 2**x i x xx i x x i x i f ix --=+==,则x x x f x f cos sin )()(--=+''的一个特解为)sin (cos 2)Re()Im(*****x x xf f f -=+=, 所以方程x x x f x f cos sin )()(--=+''的通解为)sin (cos 2sin cos )(21*x x xx C x C f F x f -++=+=. )cos (sin 2)sin (cos 21cos sin )(21x x xx x x C x C x f +--++-=',由初始条件1)0(=f 、1)0(='f ,得21121==C C 、,所以所求函数为=-++=)sin (cos 2sin 21cos )(x x xx x x f x x x x sin )221(cos )21(-++.例7.若二阶可导函数)(u f z =,其中y u xsin e =,满足方程x z yzx z 22222e =∂∂+∂∂,且0)0(=f ,2)0(='f ,试求函数)(u f .解:y u f x u u z x z x sin e )(d d '=∂∂=∂∂,y u f yuu z y z x cos e )(d d '=∂∂=∂∂, y u f y u f y u f x xz x x x sin e )()sin e )((]sin e )([222'+''='∂∂=∂∂, y u f y u f y u f y yz x x x sin e )()cos e )((]cos e )([222'-''='∂∂=∂∂, 由x z yz x z 22222e =∂∂+∂∂,有xx u f u f 22e )(e )(='',即0)()(=-''u f u f ,这是二阶常系数线性齐次微分方程,特征方程是012=-r ,特征根为1121-==r r 、,方程的通解是u u C C u f -+=e e )(21,u u C C u f --='e e )(21,由条件2)0(0)0(='=f f ,,有021=+C C , 221=-C C ,得1121-==C C 、,所所求函数是u u u f --=e e )(. 例8.求幂级数∑∞=-12!)!12(n nn x 的和函数.解:设∑∞=--=1121!)!12()(n n n x x s ,则0)0(1=s ,且)(1!)!12(1!)!32(1!)!32(1)(11122322221x xs n x x n x x n x x s n n n n n n +=-+=-+=-+='∑∑∑∞=-∞=-∞=-,即1)()(11=-'x xs x s ,这是一阶线性微分方程,通解为 )d e(e )d e (e )(x22xd d 122t C t C x s t x tt xx ⎰⎰--+=⎰+⎰=.由0)0(1=s ,得0=C ,所以幂级数∑∞=-12)!!12(n nn x 的和函数t x xs x s t x d ee)()(x 022122⎰-==.例9.设曲线位于xOy 面的第一象限,曲线上任一点)(y x M ,处的切线与y 轴交于A 点,=,且曲线过点2)323(,,求该曲线方程. 解:设所求曲线为)(x f y =,其在任一点)(y x M ,的切线方程为 ))(()(x X x f x f Y -'=-,令0=X ,得)()(x f x x f Y '-==,有222)]([Y x f Y x =-+,即)()()(2)()(222222x f x x f x xf x f x f x x '+'-='+,亦即yxx y y -='2,这是一阶齐次微分方程,令xu y =,则u x u x f '+=')(,于是u u u x u 1)(2-='+,即u u u x 212+-=',分离变量有x x u u u d d 122-=+,积分得x C u ln )1ln(2=+,即x C xy =+122.由初始条件23)23(=y ,有C 322=,得3=C ,所求曲线方程为x xy 3122=+,由曲线位于第一象限,于是)30(32≤≤-=x x x y .例10.一个质量为m 的物体,在海平面上由静止开始下沉,经过0t 秒后沉到海底,下沉过程中海水对物体的阻力与物体下沉速度成正比,求物体下沉运动的规律及海洋的深度h . 解:铅直向下取x 轴,原点在海平面,设时刻t 时,物体位于)(t x x =处,此时受力为t x k mg F d d -=(k 为比例系数),根据牛顿第二定律F ma =,有t xk mg tx m d d d d 22-=,即g tx m k t x =+d d d d 22(这是二阶常系数线性非齐次微分方程),初始条件为00==t x ,0d d 0==x t x.相应齐次微分方程为0d d d d 22=+t xm k tx ,特征方程为02=+r m k r ,特征根为01=r 、mkr -=2,相应齐次微分方程通解为t m kC C X -+=e 21.对原方程g t xm k tx =+d d d d 22,0=n 、0=λ是单重特征根,为此设at x =*,代入到方程之中,有g a m k =,得k mg a =,于是方程g t xm k tx =+d d d d 22的一个特解为t k mg x =*. 方程g t x m k tx =+d d d d 22的通解为=+=*x X x t k mg C C t m k++-e 21. kmg m k C t x t m k+-=-e d d 2,由初始条件00==t x ,0d d 0==x t x,有⎪⎩⎪⎨⎧=+-=+,,00221k m g mkC C C得222221k g m C k g m C =-=、,所以物体运动规律为t k mgk g m x t m k+-=-)1e (22.当0t t =时,得海洋深度为022)1e (0t k mgkg m h t m k+-=-.。
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。
§1.1 函数与映射一、指出下列函数是由那些简单初等函数复合而成:1.2arcsin y x =;2.x y ln ln ln =. 、设)(x f 的定义域为](1,0,求下列函数的定义域:1.)(2x f ;2.)(cos x f ;3.)(ax f )0(>a .三、设⎩⎨⎧=,,2)(x x x f 00≥<x x ,⎩⎨⎧-=,3,5)(x x x g 00≥<x x ,求)]([x g f 及)]([x f g .四、用x x f sin )(=的图形作下列函数图形:1.)2(+=x f y ;2.)(2x f y =;3.)2(x f y =.五、已知(sin )1cos 2x f x =+,求(cos )2xf .六、设定义在(,)-∞+∞的函数()f x 严格递增,且有[()]()f f x f x =,求()f x .七、证明:241()1x f x x+=+在(,)-∞+∞内有界. §1.2数列与极限 §1.3函数的极限一、根据数列极限的定义证明:1.0sin lim =∞→n n n ;2.21)21(lim 222=+++∞→nn n n n . 二、若lim 0n n x a →∞=≠,证明||||lim a x n n =∞→.反过来成立吗?成立给出证明,不成立举出反例.三、根据函数极限的定义证明:1.8)13(lim 3=-→x x ; 2.2)4(lim 2-=--+∞→x x x x .四、设31,1()2, 1x x f x x x ->⎧=⎨<⎩,试求:1.)(lim 1x f x →; 2.)(lim 2x f x →; 3.)(lim 0x f x →.五、设函数||35||3)(x x x x x f -+=,试求:1.)(lim x f x +∞→;2.)(lim x f x -∞→;3.0lim ()x f x +→; 4.0lim ()x f x -→; 5.)(lim 0x f x →. §1.4无穷大与无穷小 §1.5极限运算法则 一、下列函数在指定的变化趋势下是无穷小量还是无穷大量:1.ln x )1(→x 及)0(+→x ;2.)21(sin +xx )0(→x .二、证明函数x x y cos =在),0(+∞内无界,但当+∞→x 时,这函数不是无穷大. 三、计算下列极限:1.)2141211(lim n n ++++∞→ ; 2.12lim ++++∞→x x x x x ;3. 2231lim 9x x x x →---; 4. 232121lim 1x x x x x x →-+--+.四、计算下列极限:1. 10515(1)(21)lim (32)x x x x →∞+-+ ; 2 53153lim()11x x x→--- 3 x →∞ 五、已知 22lim 222=--++→x x bax x x ,求常数,a 和b . §1.6极限存在准则 §1.7无穷小的比较一、计算下列极限:1.x x x csc 20)sin 31(lim -→; 2.x x x x x x )cos 1(1sin3sin lim20++→;3. 6lim sin()tan 26x x x ππ→-; 4. 1lim()1x x x x →∞+-.二、利用夹逼准则证明:1. 1)12111(lim 222=++++++∞→nn n n n n ; 2. 01lim []1x x x+→=.三、设01>=a x ,)2(211nn n x x x +=+ ,3,2,1=n ,利用单调有界准则证明:数列}{n x 收敛,并求其极限.四、确定α的值,使αx x x 41~sin 1tan 1+-+ ()0→x .§1.8 函数的连续性与间断点 §1.9连续函数的运算与初等函数的连续性 §1.10闭区间上连续函数的性质一、 判断下列函数在指定点处的间断点的类型,如果是可去间断点,则补充或改变函数的定义使其连续.1.23122+--=x x x y 1,2x x ==;2.tan x yx= x k π=,)2,1,0(2 ±±=+=k k x ππ.二、 讨论函数nnn x x x f 2211lim )(+-=∞→的连续性,若有间断点,判断其类型.三、 求下列极限:1.0e 1x →-; 2.11031lim 31xx x+→-+.四、设函数2(),1[ln ln()],f x b x x x x=⎨⎪⎪-+⎪⎩ 02002x x x ππ-<<=<<,问b a ,为何值时,)(x f 在(,)22ππ-内连续五、证明方程135=-x x 至少有一个根介于1和2之间.第一章习题课一、计算下列极限:1.)1311(lim31xx x ---→; 2.)11(lim 22--+∞→x xx ; 3.()0lim 1cos x x x →-; 4. 0lim x +→;5.xx arctan 3lim ∞→ ; 6.limx .二、已知 1)11(lim 23=--++∞→b ax x x x ,求常数,a 和b . 三、设0x →时,()12511ax+-与ln cos x 是等价无穷小,求常数a 的值.四、设a b c <<,证明:方程1110x a x b x c++=---在(),a b 与(),b c 内各至少有一实根. 五、设()f x 在[]0,2a 上连续,()()02f f a =,证明:存在[]0,a ξ∈使得()()f f a ξξ=+. §2.1导数概念 §2.2函数的求导法则(一)一、 下列各题中均假定)(0x f '存在,按照导数的定义,A 分别表示什么?1.000()()lim x f x x f x A x∆→-∆-=∆, 则A = ;2.A xx f x =→)(lim0,且)0(f '存在,则A = ; 3.000()()lim h f x h f x h A h→+--= 则A = .二、 讨论下列函数在0=x 处的连续性与可导性:1.x y sin = ;2.21sin ,00, 0x x y x x ⎧≠⎪=⎨⎪=⎩. 三、 设函数2, 1(),1x x f x ax b x ⎧≤=⎨+>⎩,若函数()f x 在1x =处可导,b a ,应取什么值?四、设sin ,(),x f x x ⎧=⎨⎩ 0≤>x x ,求)(x f '. 五、 已知函数)(x f 可导,且对任何实数y x ,满足:(1)()e ()e ()x y f x y f y f x +=+;(2)(0)e f '=,证明:1()()e x f x f x +'=+. 六、 求下列函数在给定点处的导数:1.x x y cos sin -=, 求6π='x y ; 2.23()5x f x x =+, 求)0(f '和)2(f '§2.2函数的求导法则(二) §2.3高阶导数一、求下列函数的导数:1.23253++-=x x e x y ;2.23e 2x x y +-=⋅;3.3)(arcsin x y = ;4.)ln(22x a x y -+= ;5.)1ln(ln ln 2+=x y ;6.xx y +-=11arcsin ;7.y =; 8.xy 1arcsin = .二、 设)(x f 可导,求d d y x: 1.()(e )e x f x y f =⋅ ; 2.)(cos )(sin 22x f x f y +=.三、 求下列函数的二阶导数:1.21sin e x y x -=⋅;2.)1(ln 2x x x y ++=.四、 设6)10()(+=x x f ,求)2(f '''、)2()6(f及)2()20(f .五、求2234x y x x =--的n 阶导数.§2.4 隐函数及由参数方程所确定的函数的导数 §2.5 函数的微分一、 求由下列方程所确定的隐函数的导数d d yx:1.y x y x ln cos )sin(=+ ;2.y x x y =.二、 用对数求导法求下列函数的导数:1. xx y tan )(sin =; 2.54)1()3(2+-+=x x x y .三、 求下列参数方程所确定的函数的导数d d y x,22d d yx :1. ⎪⎩⎪⎨⎧==32bty at x ; 2. ⎩⎨⎧=-=θθθθcos )sin 1(y x .四、 求曲线在所给参数值相应的点处的切法线方程:1.⎩⎨⎧==t y t x cos sin , 4t π=处;2.⎪⎪⎩⎪⎪⎨⎧+=+=2221313t aty t at x ,2t =处.五、求下列函数的微分:1.21arcsin x y -=;2.x yy x arctan ln 22=+.六、求||y x x =的微分.第二章习题课一、设3e ,0()sin ,0x b x f x ax x ⎧+≤=⎨>⎩,且)(x f 在0=x 处可导,求b a ,的值.二、求下列函数的导数:1.x x arc y 2cot 2-=;2.ln(e x y = .三、设)2002(sin )22)(sin 12(sin )(2002---=t t t t f πππ,求)1(f '.四、设))((y x g f u +=,其中)(x y y =由方程2e sin()y y x y +=+确定,且g f ,一阶可导,求d d u x .五、设()f x 在e x =处有连续的一阶导数,且2(e)e f '=,求0d lim (e d x f x+→.六、已知⎩⎨⎧-==t t t y t x cos sin cos ln ,求224d d ,|d d t y yx x π=.七、设x y 3cos =,求)(n y .§3.1中值定理一、验证函数32()4710f x x x x =+--在[1,2]-上满足罗尔定理的条件,并确定ξ的值.二、设()f x 在(,)a b 内可导,且lim ()lim ()x ax bf x f x A +-→→==,证明:在(,)a b 内存在一点c ,使得()0f c '=.三、证明:1≥x 时,有π≡++212arcsin arctan 2xxx .四、设01210=++++n a a a n ,证明:方程010=+++n n x a x a a 在)1,0(内必有一个零点.五、设1,0><<p x y ,证明:)()(11y x px y x y x py p p p p -≤-≤---.六、若()f x 在(,)-∞+∞内满足关系式()(),f x f x '=-且(0)1f =,则()e x f x -=.七、设()f x 在[,]a b 上二阶可导,123,,x x x 为[,]a b 上的三个点,123x x x <<,且123()()()f x f x f x ==,证明:存在一点ξ,使得()0f ξ''=.§3.2罗必达法则 §3.3泰勒公式一、求下列极限:1.20)1ln(lim xx x x +-→; 2.)32(lim 11x x x x -∞→ ;3.)ln 11(lim 1xx x x --→; 4.110(1)lim[]e xx x x →+;5.xx x 1)(ln lim +∞→ ; 6.22lim (tan )x x x ππ--→.二、若30sin 6()lim 0x x xf x x →+=,求206()lim x f x x→+.三、求x +1的3阶麦克劳林展开式.四、求12-=x y 在20=x 处的3阶泰勒公式.五、利用泰勒公式求下列极限:1.21lim[ln(1)]x x x x →+∞-+ ;2.x xx x x 30sin cos sin lim -→ .§3.4函数单调性和曲线的凹凸性 §3.5函数的极值与最大值(1)一、求下列函数的单调区间:1.69323+--=x x x y ; 2.xxy 2ln = .二、证明下列不等式:1.x x x 1321->>时,;2.02x π≤≤时,2sin x x π≥.三、 讨论方程x x 2ln =的实根数目.四、求下列函数的凹凸区间及拐点:1.123+=x x y ; 2.e x y x = .五、 已知点)3,1(为曲线23bx ax y +=的拐点,求b a ,.六、求下列函数的极值:1.x x y ln 2=;2.|)1(|2-=x x y .§3.5函数的极值与最大值(2) §3.6函数图形的描绘一、求函数x x y 2+=在区间]4,0[上的最大值和最小值.二、 已知船航行一昼夜的费用由两部分组成:一为固定部分a 元;另一为变动部分,它与速度的立方成正比.试问当船的航程为s 时,船应以怎样的速度v 行驶,费用最省?三、过平面上点(1,4)P 作一直线,使得它在两坐标轴上的截距都是正的,且它们的和最小,求此直线的方程.四、求椭圆223x xy y -+=上纵坐标最大和最小的点.五、试作函数241x xy +=的图形.六、作函数e xy x=的图形.第三章习题课一、求下列极限:1.1ln sin1xx x→--; 2.2lim tan4nn nπ→∞⎛⎫+⎪⎝⎭;3.11lim cotsinxxx x→⎛⎫⋅-⎪⎝⎭; 4.xxxxxcba1)3(lim++→.二、 证明下列不等式:1. 设0x >,证明:()()221ln 10x x x ++-<;2.01x <<时,2e sin 12xx x -+<+.三、 求椭圆22334x xy y -+=上离原点O 最远及最近的点.四、求数列中最大的一项.五、设)(x f 在]1,0[上连续,在)1,0(内可导,且0)1(=f ,则必有ξξξξ)()()1,0(f f -='∈使得.六、设]0[)(c x f ,在上有定义,)(x f '存在且单调减少,0)0(=f ,试用拉格朗日定理证明: 对)()()(,0b f a f b a f c b a b a +≤+≤+≤≤≤有.§4.1不定积分的概念和性质 §4.2换元积分法一、 下列不定积分:1.2d x⎰; 2.21()d x x x -⎰;3.422d 1x x x-+⎰; 4.2332d 5x x x x ⋅-⋅⎰;5.22d sin cos x x x ⎰;6.cos 2d sin cos xx x x+⎰;⎰.7.cot(sin csc)d-x x x x(e,3),且在任一点处的切线斜率等于该点横坐标的倒数,求此曲线的二、一曲线过点2方程.三、 设1)0(,sec )(tan 22=='f x x f ,求)(x f .§4.2换元积分法(续)求下列不定积分:1. x ⎰; 2.;3. x ;4.d e e x x x-+⎰;5. 3cos d sin x x x ⎰;6.3sin d x x ⎰;7. arcsin xx ; 8. sin cos d 2xx x ⎰;9.1lndlnxxx x+⎰;10.3222d()xa x-⎰;11. x;12.§4.3分部积分法 §4.4有理函数的积分求下列不定积分:1.2ln ()d x x x ⎰; 2.2sin d x x x ⎰;3.1e d x x x +⎰;4.x ⎰;5.22arctan d 1x x x x +⎰; 6.22d (1)(1)xx x -+⎰;7.5d (1)x x x +⎰; 8.2sin d 2cos x x x -+⎰;9.dsin tan xx x +⎰; 10.;11. .第四章习题课一、求下列不定积分:1. 4sin cos d 2sin x x x x +⎰; 2. x ;3.⎰; 4.2d 12tan xx +⎰;5.6.2cos sin d x x xx x-⎰;7. x; 8.1182d (1)x xx +⎰ .二、设e ,0()2ln(1) ,2x x x f x x x x x -⎧≤=<<-≥⎪⎩,计算()d f x x ⎰.三、设)()(x f x F =',0≥x 时成立x x F x f 2sin )()(=,且1)0(,0)(=≥F x F ,求)(x f .§5.1定积分的概念与性质 §5.2微积分基本公式(1)(2) 一、 用定积分定义,计算() (1)d ba x x ab +<⎰.二、 利用定积分的几何意义,说明下列等式成立的理由.1311.d 0x x -=⎰; 2 0 02.sin d 2sin d 22x x x x ππ=⎰⎰; 03.x π=⎰.三、设()f x 在[],a b 上连续非负,且有()[]000,,f x x a b >∈,证明() d 0ba f x x >⎰.四、不计算比较大小 24 1d x x ⎰还是 25 1d x x ⎰,并说明严格不等式成立的原因.五、计算下列函数的导数:221.x x ⎰; 382.x t ⎰; 3 cos22 e3.sin d xxx x ⎰.六、求下列极限:22 02cos d 1.limx x x x x →⎰; ()2222 0e d 2.lim e d xt xx t t t t-→⎰⎰.七、设()f x 在[],a b 上连续,在(),a b 上可导且()0f x '≥,令()() 1d xaF x f x x x a =-⎰,证明在(),a b 内有()0F x '≥.§5.2微积分基本公式(3) §5.3定积分的换元法和分部积分法(1)一、计算下列各定积分:11.1d x ⎰; 2 02.cos d x x π⎰;23 43.tan d x x ππ⎰; 24.()d f x x ⎰,其中()21,11,12x x f x x x +≥⎧⎪=⎨<⎪⎩.二、 计算下列各定积分:2 01.sin d 4x x ππ⎛⎫+ ⎪⎝⎭⎰; 22 02.sin d x x π⎰;3e 13.⎰14.5. 36.x x ⎰.三、设()f x 是连续函数,求证:220()()(2)a a a af x dx f x dx f a x dx =+-⎰⎰⎰,并求2sin 1cos x xdx xπ+⎰.§5.3定积分的换元法和分部积分法(2) §5.4反常积分一、计算下列各定积分:201.e d xx x ⎰;2 02.sin d t t t πωω⎰,ω为非零常数;4 03.e cos 2d x x x π⎰; 4.x .二、计算120ln(1)(2)x I dx x +=-⎰.三、求20|sin |I x x dx π=⎰.四、判定下列反常积分的敛散性,若收敛,计算广义积分的值.() 01.e cos d ,0pt t t p ωω+∞->⎰; 2 d 2.46x x x +∞-∞++⎰;12 0d 3.1x xx -⎰; 2 04.x ⎰.五、证明:2440011dx x dx x x +∞+∞==++⎰⎰第五章习题课 一、设 2 02tan()sec d x y x x y t t ---=⎰,求d d y x .二、设sin ,0(),()20 ,x x f x x g x π⎧≤≤⎪==⎨⎪⎩其他,当0≥x 时,求 0()()()d x F x f t g x t t =-⎰.三、计算下列定积分: 1. 2 2x ππ-⎰; 2. 0d x x ⎰;3. ln 0x ⎰;4. 3 0[]d x x x ⎰,其中[]x 为不超过x 的最大整数.四、 计算 3|| 3(||)e d x x x x --+⎰.五、证明: 2 0sin 1d 2xx x ππ<<⎰.六、已知 1ln ()d 1x t f x t t =+⎰,求)21()2(f f +.七、设n 为自然数,求 4 0tan d n n I x x π=⎰.§6.1定积分的元素法 §6.2定积分在几何学上的应用(1)(2)一、求由下列各曲线所围成的图形的面积:2221.2y x x y =+=与(两部分都要计算); 2.ln ,y x y =轴与直线ln 2,ln 4y y ==.二、求由下列各曲线所围成的图形的面积:()1.2sin 0a a ρθ=>; ()2.sin ,(1cos ),02x a t t y a t t π=-=-≤≤.三、 把抛物线()()2002 0 0y px p x x x =>=>及所围成的图形绕x 轴旋转,计算所得旋转体的体积.四、求由曲线32,0,4y x y x ===所围图形绕y 轴旋转一周所得旋转体的体积.五、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.六、记()V ξ为曲线2,0,0,1y y x x x ξ====+所围图形绕x 轴旋转一周所得旋转体的体积,求lim ()V ξξ→+∞.§6.2定积分在几何学上的应用(3) 第六章习题课 一、求曲线ln cos 02y x x a π⎛⎫=≤≤< ⎪⎝⎭的弧长.二、在摆线()()sin 1cos x a t t y a t =-⎧⎪⎨=-⎪⎩上求分摆线第一拱成3:1的点的坐标.三、设曲线0 , [0,]y t xπ=∈⎰,求曲线之长.四、求1yx=与直线3y x x==及所围图形的面积.五、求双纽线22cos 2r a ϕ=所围图形的面积.六、求()sin ,00y x y x π==≤≤所围图形分别绕x 轴、y 轴旋转所得旋转体的体积.§7.1 微分方程的基本概念 §7.2 可分离变量的微分方程一、 判断下列各题中的函数是否为所给微分方程的解:1.1cot ,21cos dy x y y dx x=-=- 2.2121,ln cos()y y y C x C ''=+=-+二、 确定下列各题的函数关系式中的参数,使函数满足所给的初始条件:1.2202,|3x x y C y =-==2.1222cos sin ,|1,|2x x y C x C x y y ππ=='=+==三、 设曲线在点(,)x y 处切线的斜率等于该点纵坐标的立方,写出该曲线满足的微分方程。