特种陶瓷工艺学3
- 格式:ppt
- 大小:7.18 MB
- 文档页数:85
特种陶瓷制备工艺采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。
由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。
由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。
特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成型、第三步是烧结。
一、陶瓷粉体的制备粉体的制备方法有:固相法、液相法、和气相法等。
1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
《陶瓷工艺学》教学大纲的物理化学变化。
本章难点:配方计算包括由化学组成计算配方,由实验公式计算配方,由矿物组成计算配方,由分子式计算配方,以及更换原料时的重配计算。
可塑泥团的流变特性,陶瓷泥浆的流变特性及影响因素。
矿物煅烧时的变化。
第三章釉层的工艺基础(6学时)3.1 釉料的组成3.1.1 釉的分类3.1.2 确定釉料组成的依据3.1.3 釉料配方的计算3.2 釉层的形成3.2.1 釉层形成过程的反应3.2.2 釉料与坯体的作用3.2.3 釉层的显微结构3.3 釉层的性质3.3.1 釉层的物理化学性质3.3.2 坯-釉适应性3.3.3 釉的析晶本章重点:铅釉,石灰釉,长石釉的主要特性,釉料成分的种类,确定釉料组成的依据,釉料冷却过程的变化,釉的熔融温度范围,釉的粘度与表面张力,釉的化学稳定性,坯釉适应性,釉熔体的析晶过程,影响釉熔体析晶的因素,析晶对釉面光学性质的影响。
本章难点:釉料加热过程的变化,釉层中气泡的产生,釉料与坯体的作用,长石质透明釉,乳浊釉的显微结构,釉的热膨胀性,釉的弹性,釉的硬度,釉的介电性质。
第四章生产过程(16学时)4.1 原料的处理4.1.1 原料的精选4.1.2 原料的预烧4.1.3 原料的合成4.2 坯料的制备4.2.1 坯料的种类和质量要求4.2.2 原料的细粉碎4.2.3 泥浆的脱水4.2.4 造粒及陈腐和真空处理4.3 陶瓷成型方法与模具4.4 生坯的干燥4.4.1 干燥的工艺问题4.4.2 干燥制度确定4.4.3 干燥方法4.5 施釉4.5.1 釉浆的制备4.5.2 施釉4.6 烧成4.6.1 烧成制度的制订4.6.2 低温烧成与快速烧成4.6.3 烧成新方法执笔人:吴任平审核人:李湘祁《特种陶瓷》教学大纲四年制本科材料科学与工程专业用36学时2学分一、课程性质和任务《特种陶瓷》是材料科学与工程四年制本科生选修的一门专业课,内容主要包括特种陶瓷生产工艺原理、结构陶瓷和功能陶瓷等三大部分。
第二章特种陶瓷成型工艺1、什么是成型?特种陶瓷的主要成型方法可分为哪些?成型:将坯料制成具有一定形状、尺寸、孔隙和强度的坯体(生坯)的工艺过程。
2、坯料成型前原料预处理的5种方式。
1、原料煅烧2、原料的混合3、塑化4、造粒5、瘠性物料的悬浮3、原料煅烧的3个目的。
具体说明常用原料(氧化铝、氧化镁、滑石、二氧化钛)煅烧的目的。
煅烧的主要目的:① 去除原料中易挥发的杂质、化学结合和物理吸附的水分、气体、有机物等,提高原料的纯度。
② 使原料颗粒致密化及结晶长大,可以减少在以后烧结中的收缩,提高产品的合格率。
③ 完成同质异晶的晶型转变,形成稳定的结晶相,如γ-Al2O3煅烧成α-Al2O34、特种陶瓷原料混合的基本形式有哪两种?干混和湿混5、塑化的定义、原因及常用的塑化剂种类和组成。
塑化:是指利用塑化剂使原来无塑性的坯料具有可塑性过程。
传统陶瓷中有可塑性粘土,本身有良好的成型性能。
但特种陶瓷粉体中,几乎不含粘土,都是化工原料,这些原料没有可塑性。
因此,成型之前先要塑化。
塑化剂通常为有机塑化剂和无机塑化剂。
塑化剂通常由三种物质组成:a.粘结剂:能粘结粉料,如聚乙烯醇PVA、聚乙酸乙烯酯、羧甲基纤维素等。
b.增塑剂:溶于粘结剂中使其易于流动,通常为甘油等。
c.溶剂:能溶解粘结剂、增塑剂并能和坯料组成胶状物质,通常有水、无水乙醇、丙酮、苯等。
6、塑化剂对坯体性能的影响。
(1)还原作用的影响:将会同坯体中某些成分发生作用,导致还原反应,使制品的性能变坏,特别是易还原的TiO2和钛酸盐。
因此,焙烧工艺要特别注意。
(2)对电性能的影响:由于塑化剂挥发时产生一定的气孔,也会影响到制品的绝缘性能。
粘结剂越多,气孔越多,击穿电压越低。
(3)对机械强度的影响:塑化剂挥发是否完全、塑化剂用量的大小,会影响到产生气孔的多少,从而将影响到坯体的机械强度。
(4)塑化剂用量的影响一般塑化剂的含量越少越好,但塑化剂过低,坯体达不到致密化,也容易产生分层。
第二章特种陶瓷的成型工艺粉料制备成型工艺陶瓷烧结第三节成型工艺引起材料破坏的缺陷大多源于坯体中,即形成于成型过程,成型过程造成的缺陷往往是陶瓷材料的主要危险缺陷,控制和消除这些缺陷的产生是人们深入研究成型工艺的主要原因。
恰当的成型工艺可以有效地降低烧结温度和坯体收缩率,加快致密化进程,减少烧结制品的机加工量,消除和控制烧结过程中的开裂、变形、晶粒长大等缺陷,调控界面结构组成。
因此,成型工艺是制备高性能陶瓷及其部件的关键。
成型就是将坯料制成具有一定形状尺寸¾成型就是将坯料制成具有一定形状、尺寸、孔隙和强度的坯体(生坯)的工艺过程。
¾成型技术和方法丰富、广泛,且具有不同的特点。
¾特种陶瓷成型方法的选择,是根据制品的性能要求、形状、大小、厚薄、产量和经性能要求形状大小厚薄产量和经济效益等方面进行的。
第节第一节配料计算在特种陶瓷工艺中,配料对制品的性能和以后各道工序影响很大,必须认真进行,否则将会带来不可估量的影的含量变动响。
例如,PZT压电陶瓷的配料中,ZrO20.5~0.7%时,Zr/Ti比就从52/48变到54/46,从下图可以看到,此时PZT陶瓷极化后的介电常数的变动是很大的。
PZT压电陶瓷配方组成点多半是靠近相界线,由于相界线的组成范围很窄,一旦组成点发生偏离,制品性能波动很的组成范围很窄旦组成点发生偏离制品性能波动很大,甚至会使晶体结构从四方相变到立方相。
第一节配料计算常用的配料计算方法有两种:一种是按化学计量式进行常用的配料计算方法有两种:种是按化学计量式进行计算,一种是根据坯料预期的化学组成进行计算。
1、按化学计量式计算Ca(Ti 0.54Zr 0.46)O 3,(Ba 0.85Sr 0.15)TiO 3其化学分子式的特点与相似其化学分子式的特点:与ABO 3相似,A 位置上和B 位置上各元素右下角系数的和等于1。
例如,(Ca 0.85Ba 0.15)TiO 3可以C TiO C B 看成是CaTiO 3中有15%的Ca 被Ba 取代了。
一:一次颗粒与二次颗粒的概念?形成二次颗粒团聚的原因是什么?表示粒度颗粒群的都有哪些?所谓粉体颗粒,是指物体的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
这种基本颗粒,一般是指没有堆积、絮联等结构的最小单元即一次颗粒。
在实际应用的粉体原料中,往往都是在一定程度上团聚的颗粒,即所谓的二次颗粒。
形成二次颗粒的原因,不外乎以下五种(1):分子间的范德华力,(2):颗粒间的静电引力,(3)吸附水分的毛细管力,(4)颗粒间的磁引力,(5)颗粒表面不平滑引起的机械纠缠力。
通常认为:一次颗粒直接与物质的本质两联系,而二次颗粒则往往是作为研究和应用工作中的一种对颗粒的物态描述指标。
颗粒群粒度的表示方法:等体积球相当径,等面积球相当径,等沉降速度相当径,显微镜下测得的颗粒径。
粉体的填充特性:1.等大球的致密填充:最基本的致密排列有两种,立方密堆和六方密堆2.等大球的不规则填充3.异直径球的填充4.加压压密填充二:特种陶瓷的制备方法?粉碎法:机械粉碎合成法:固相法制备粉末(化学合成法,热分解反应法,氧化物还原法)液相法【沉淀法(直接沉淀法)(均匀沉淀法)(共沉淀法)(醇盐水解法)(特殊的沉淀法,溶胶凝胶和凝胶沉淀)】溶剂蒸发法(冰冻干燥法)(喷雾干燥法)(喷雾热分解)气相法。
三:等静压成型的特点?1:可以成行一般方法不能生产的形状复杂、大件及细而长的制品,而且成型质量高;2:可以不断增加操作难度而比较方便地提高成型压力,而且压力效果比其他干法好;3:由于柸体各向受压里均匀,其密度高而且均匀,烧成收缩小,因而不易变形;4:模具制作方便、寿命长、因而不易变形;5可以少用或不用粘结剂。
四:陶瓷烧结过程中的烧制方式有哪些种以及它们的机理?蒸发和凝聚、扩散、粘滞流动与塑性流动、溶解和沉淀。
蒸发和凝聚机理:在高温下具有较高蒸气压的陶瓷系统、在烧结过程中,由于颗粒之间表面曲率的差异,造成各部分的蒸汽压不同,物质从蒸汽压较高的凸面蒸发,通过气相传递,在蒸汽压较低的凹面处凝聚,这样使颗粒间的接触面积增加,颗粒和形状改变,导致胚体逐步致密化。