特种陶瓷工艺学1
- 格式:ppt
- 大小:3.03 MB
- 文档页数:47
【例2】已知坯料的化学组成简表1-2-2。
用原料氧化铝(工业纯、未经煅烧)、滑石(未经煅烧)碳酸钙、苏州高岭土培配制,求出其质量百分组成。
【解】设:氧化铝、碳酸钙的纯度为100%;滑石为纯滑石(3MgO·4SiO2·H2O),其理论组成为MgO31.7%,SiO263.5%,H2O4.8%;苏州高岭土为纯高岭土(Al2O3·2SiO2·2H2O),其理论组成为Al2O339.5%,SiO246.5%,H2O14%。
下面根据化学组成计算原料的质量百分含量:①CaCO3的质量=1/0.5603=1.78②滑石的质量=1.3/0.317=4.10③高岭土的质量=(4.7-由滑石引入的SiO2质量)/0.465=4.51④工业纯的Al2O3质量=93-由高岭土的引入的Al2O3质量=93-4.51×0.395=91.22⑤引入原料的总质量为: M=1.78+4.10+4.51+91.22=101.61⑥配方用原料的质量百分数:CaCO3=(1.78/M)×100﹪=1.75滑石=(4.1/M)×100﹪=4.03高岭土=(4.51/M)×100﹪=4.44工业纯Al2O3=(91.22/M)×100﹪=89.77总计: 99. 99 ﹪提出问题:假使采用煅烧过的氧化铝和滑石进行配料,计算方法相同。
第一章特种陶瓷粉体的物理性能及其制备粉体----就是大量固体粒子的集合系。
它表示物质的一种存在状态。
粉体是气、液、固三相之外的所谓第四相。
粉体由一个一个固体颗粒组成,所以它仍然具有很多固体的属性,例如物质结构,密度等等。
它与固体之间最直观,也最简单的区别在于:当我们用物轻轻触及它时,会表现出固体所不具备的流动性和变形。
第一节特种陶瓷粉体的基本物理性能一、粉体的粒度与粒度分布1.粉体颗粒粉体颗粒----是指在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
特种陶瓷制备工艺采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。
由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。
由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。
特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成型、第三步是烧结。
一、陶瓷粉体的制备粉体的制备方法有:固相法、液相法、和气相法等。
1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
特种陶瓷制备工艺特种陶瓷是一种高性能材料,具有耐高温、耐腐蚀、耐磨损、高强度、低热膨胀系数等优异的物理和化学性能,广泛应用于航空、航天、电子、光电、化工等领域。
制备特种陶瓷的工艺技术十分重要,下面将介绍几种常见的特种陶瓷制备工艺。
超声波振实制备法超声波振实制备法是在陶瓷粉体和溶剂混合物中添加聚乙烯醇作为粘结剂,通过超声波振动使粘结剂均匀分散在混合物中,使得粘结剂在材料表面形成薄膜,随后通过干燥和烧结工艺制备成特种陶瓷。
优点:这种制备工艺可以制备出高密度、高维氧化硅、硼碳化物、氮化硼等特种陶瓷材料,且可以制备出具有复杂形状的特种陶瓷。
缺点:由于特种陶瓷材料的制备需要高能化的超声波作为加工手段,因此仪器设备的成本高昂,生产成本较高。
射流磨法射流磨法是在一定参数下将陶瓷釉料施加到陶瓷基材表面,通过高速喷射将釉料磨损成细小颗粒后与基材表面结合。
随后通过控制烧成工艺制备成特种陶瓷。
优点:与传统的制备工艺相比,射流磨法制备的特种陶瓷产量更高,成本更低。
缺点:射流磨法的精度受到喷嘴尺寸、流量的限制,对于纳米级粒子的制备有一定难度。
同时,射流磨法还具有环境污染的可能性。
凝胶注模制备法凝胶注模制备法是先将陶瓷粉体、溶剂和有机物混合物在低温下形成凝胶,随后将凝胶注入注模中,在高温下脱除有机物和水分,然后进行烧成工艺。
通过控制注模和烧成工艺可以制备出具有特定形状和维度的特种陶瓷。
优点:凝胶注模制备法不需要昂贵的仪器设备,可以制备出高密度的特种陶瓷材料。
缺点:在注模中可能会出现气孔等缺陷,影响制品质量。
溶胶凝胶法溶胶凝胶法是通过配制前驱体溶液,经过几步反应生成粉末,然后通过热流传递作用烧结成特种陶瓷。
溶胶凝胶法可以制备出大量形状复杂的特种陶瓷,同时可以控制陶瓷材料的物理性能,是目前比较流行的一种制备工艺。
优点:已经被广泛应用于特种陶瓷材料的制备过程中,制备出来的特种陶瓷质量高,表面平整度高。
缺点:由于制备过程需要进行多次反应和烧结工艺,生产成本相对较高。
特种陶瓷生产工艺
特种陶瓷是指具有特殊性能和特殊用途的陶瓷材料,其生产工艺相对于普通陶瓷要求更为精细和复杂。
首先,特种陶瓷的原料选取非常重要。
特种陶瓷一般采用高纯度、细粒度的原料,如氧化铝、氧化锆、碳化硅等。
在选料过程中,需要对原料进行分析和筛选,确保其成分和颗粒大小的均匀性,以免对成品陶瓷的性能产生不良影响。
其次,特种陶瓷的成型方法多样。
常见的成型方法包括注塑成型、压制成型、挤出成型等。
其中,注塑成型是一种较为常用的方法,它通过将粉末与有机增塑剂混合,并加热使其变得可塑,再通过注射机将其压入模具中,最后经过高温烘烤使之固化成型。
然后,特种陶瓷的烧结过程一般分为前烧和后烧。
前烧是将成型后的陶瓷坯体在一定温度下进行烘烤,以去除残留的有机物和气泡,并使陶瓷坯体的颗粒结合成坚固的整体。
后烧是在更高的温度下进行,使陶瓷坯体的颗粒进一步熔结,从而增强陶瓷的密度和硬度,提高其力学性能。
最后,特种陶瓷还需要进行后处理工艺。
后处理工艺可以进一步提升特种陶瓷的性能和质量。
常见的后处理工艺包括研磨、抛光、修补、激光加工等。
这些工艺可以使陶瓷表面更加光滑,去除杂质和缺陷,提高陶瓷的抗磨损能力和耐热性。
综上所述,特种陶瓷的生产工艺是一个复杂而精细的过程。
从
原料选取、成型、烧结到后处理,每个环节都需要严格控制和精确操作,以确保特种陶瓷的品质和性能。
只有在专业的工艺指导下,特种陶瓷才能发挥其独特的特性,满足各种特殊用途的需求。
陶瓷(狭义)以粘土为主要原料加上其他天然矿石原料经过拣选、粉碎、混炼、成型、煅烧等工序制作的各类产品陶瓷(广义)无机非金属固体材料和产品的通称可塑性粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂,外力解除后,能维持形变,不因自重和振动再发生形变的现象可塑水量生产中适用于塑法成型的泥料,其含水量在塑限含水量和液限含水量之间的含水量结合性粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一定干燥强度的能力触变性粘土泥浆或可塑泥团受到振动或搅拌时,粘度会降低而流动性增加静置后能恢复原来状态。
反之,相同泥浆放置一段时间后,在维持原有水分的情况下会增加粘度,出现变稠和固化现象的性质耐火度陶瓷产品分为陶器、陶瓷原料就其来源分为天然原料和化工原料粘土的组成分为化学组成、矿物组成、颗粒组成陶瓷生产中常用可塑性限度、液限、可塑性指数、可塑性指标和相应含水率等指标来描述可塑性的大小粘土的收缩包括干燥收缩和烧成收缩,其中烧成收缩最大石英具有强耐酸性,除氢氟酸外,其余的酸对他都不起作用。
与碱接触时,会反应生成可溶性的硅酸盐。
高温时与碱金属氧化物反应生成硅酸盐和玻璃态物质石英在日用产品瓷产品中烧成后的最终产物是半安定方石英晶型和少量其他晶型在陶瓷生产中采用较多的废渣、废料包括高炉矿渣、磷矿渣、萤石矿渣粘土的化学组成和矿物组成粘土的化学组成:主要化学成分为SiO2、A12O3和结晶水(H2O),含有少量的碱金属氧化物K2O、Na2O,碱土金属氧化物CaO、MgO,以及着色氧化物Fe2O3、TiO2等。
粘土矿物主要为高岭石类(包括高岭石、多水高岭石等)、蒙脱石类(包括蒙脱石、叶蜡石等)和伊利石类(也称水云母)等等。
粘土工艺性能指标可塑性、结合性、离子交换性、触变性、收缩、烧结性能、耐火度粘土在陶瓷生产中的作用 1 成型的基础,配方依据;2 使浆料和釉料具有悬浮性、稳定性;3 坯体主成分;4 将各种原料合理结合在一起;5 陶器主体结构和瓷器中莫来石主要来源石英在加热过程中的晶型转变以及对陶瓷生产的影响石英晶型转化主要有高温型的缓慢转化和低温型的快速转化。
《特种陶瓷》课程教学大纲课程代码:050441001课程英文名称:Special Ceramics 课程总学时:32适用专业:无机非金属材料工程大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标(1)课程的地位本课程是无机非金属材料工程专业的重要的专业方向课,必修课。
(2)教学目标1. 掌握特种陶瓷粉体制备的方法、陶瓷烧结与成型方法等基本理论2. 培养学生具有创新创业精神和卓越工程师意识。
(二)知识、能力及技能方面的基本要求(1)知识方面的基本要求掌握特种陶瓷生产工艺原理;掌握高温结构陶瓷的生产工艺、生产方法,了解高温结构陶瓷的主要性能及应用;掌握功能陶瓷的生产工艺、生产方法,了解高温结构陶瓷的主要性能及应用。
(2)能力方面的基本要求具备初步的运用特种陶瓷生产工艺理论分析解决实际问题的能力;具有运用特种陶瓷的生产与制备理论进行科学研究和解决实际问题的初步能力。
(3)技能方面的基本要求能够进行常规的特种陶瓷生产的综合设计能力(三)实施说明本教学大纲依据专业指导性教学计划制定,指导教学环节。
(1)理论教学环节教学以课堂讲授为主,多媒体辅助教学。
对课程中的重点、难点问题着重讲解。
在教学过程中充分体现理论与生科实践及应用的结合。
采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;通过课堂讲解生产实例加强对基础知识与基本理论的理解。
通过实践调动学生学习的主观能动性,培养学生的自学能力。
(2)实践教学环节根据知识、能力、技能方面的要求,安排实验项目,设置部分综合性实验提高学生分析解决实际问题的能力。
(四)对先修课的要求在讲授本课前,学生应修完《无机材料岩相基础》、《无机材料工艺原理》。
(五)对习题课、实践环节的要求每项实验要求学生依据实验指导书预习、写出合格实验报告。
(六)课程考核方式1.考核方式:考试2.考核目标:在考核学生对掌握特种陶瓷制备工艺的基本知识、基本原理和方法的基础上,重点考核学生的分析、解决实际问题,实验结果的分析解释方面的能力。
一:一次颗粒与二次颗粒的概念?形成二次颗粒团聚的原因是什么?表示粒度颗粒群的都有哪些?所谓粉体颗粒,是指物体的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
这种基本颗粒,一般是指没有堆积、絮联等结构的最小单元即一次颗粒。
在实际应用的粉体原料中,往往都是在一定程度上团聚的颗粒,即所谓的二次颗粒。
形成二次颗粒的原因,不外乎以下五种(1):分子间的范德华力,(2):颗粒间的静电引力,(3)吸附水分的毛细管力,(4)颗粒间的磁引力,(5)颗粒表面不平滑引起的机械纠缠力。
通常认为:一次颗粒直接与物质的本质两联系,而二次颗粒则往往是作为研究和应用工作中的一种对颗粒的物态描述指标。
颗粒群粒度的表示方法:等体积球相当径,等面积球相当径,等沉降速度相当径,显微镜下测得的颗粒径。
粉体的填充特性:1.等大球的致密填充:最基本的致密排列有两种,立方密堆和六方密堆2.等大球的不规则填充3.异直径球的填充4.加压压密填充二:特种陶瓷的制备方法?粉碎法:机械粉碎合成法:固相法制备粉末(化学合成法,热分解反应法,氧化物还原法)液相法【沉淀法(直接沉淀法)(均匀沉淀法)(共沉淀法)(醇盐水解法)(特殊的沉淀法,溶胶凝胶和凝胶沉淀)】溶剂蒸发法(冰冻干燥法)(喷雾干燥法)(喷雾热分解)气相法。
三:等静压成型的特点?1:可以成行一般方法不能生产的形状复杂、大件及细而长的制品,而且成型质量高;2:可以不断增加操作难度而比较方便地提高成型压力,而且压力效果比其他干法好;3:由于柸体各向受压里均匀,其密度高而且均匀,烧成收缩小,因而不易变形;4:模具制作方便、寿命长、因而不易变形;5可以少用或不用粘结剂。
四:陶瓷烧结过程中的烧制方式有哪些种以及它们的机理?蒸发和凝聚、扩散、粘滞流动与塑性流动、溶解和沉淀。
蒸发和凝聚机理:在高温下具有较高蒸气压的陶瓷系统、在烧结过程中,由于颗粒之间表面曲率的差异,造成各部分的蒸汽压不同,物质从蒸汽压较高的凸面蒸发,通过气相传递,在蒸汽压较低的凹面处凝聚,这样使颗粒间的接触面积增加,颗粒和形状改变,导致胚体逐步致密化。