浅谈回转窑用煤粉燃烧器操作参数选用和优化
- 格式:doc
- 大小:53.50 KB
- 文档页数:14
浅析 300MW煤粉炉燃烧调整与控制摘要:本文通过火力发电厂燃料——原煤的特性,针对某些特定的情况,简要概述燃烧调整与锅炉的控制。
关键词:燃烧调整;控制;细度前言:锅炉燃烧是一个动态过程,我们在平时运行中应对燃烧的变化重点关注,当燃烧变化时,我们应分清楚影响燃烧的因素为内部因素还是外部因素,采取针对性的措施,将燃烧工况调到最佳。
1、火力发电厂锅炉的控制1.1 保持正常和稳定的汽温、汽压,维持过再热汽温参数在额定值,满足汽轮机做工要求。
1.2 均衡给水,维持正常汽包水位;防止汽包满水和缺水事故的发生。
保持合格的炉水和蒸汽品质。
1.3 保持良好的燃烧,减少热损失,提高锅炉热效率。
及时调整锅炉运行工况,使锅炉在安全、稳定、经济的最佳工况下运行。
1.4 合理利用低氮燃烧技术,降低污染物的排放。
2、煤的一般特性通常电厂煤粉炉燃用的煤形状很不规则,煤粉具有较好的流动性。
由于煤粉颗粒小,比表面积大,能吸附大量空气,所以煤粉的堆积角很小,并有很好的流动性,可采用气力方便地在管内输送。
同时也容易通过缝隙向外泄漏,造成对环境的污染。
煤粉中的含水量也影响着火和燃烧。
水分太低易引起自燃或爆炸,同时干燥耗能增加。
因此,磨煤机出口的煤粉水分还与磨机出口的煤粉细度及煤粉温度有关,较可靠的数值应该通过试验或参照同类机组运行数据确定。
一般要求烟煤磨制后的煤粉最终水分,当各种燃料在自然条件(温度很低)下时,尽管和氧接触,但只能缓慢氧化而不能着火燃烧。
但是将温度提高到一定值后,燃料和氧的反应就会自动加速到相当大的程度,而产生着货和燃烧,由缓慢氧化态转变到高速烧状态的瞬间过程称为火,转变的瞬间温度称为着火温度,所以我们在锅炉低负荷情况下,应将暖风器投入运行,并保持磨煤机出口温度靠上限运行,这将有利于锅炉的燃烧。
3、煤质变化期间锅炉燃烧调整当煤质变化时锅炉燃烧将会恶化或者加强,为了保证一定的符合率,我们应该及时进行调整干预。
3.1基本均等配风方式:下组燃烧器辅助风挡板开度一致,上组燃烧器辅助风挡板开度一致,下组燃烧器辅助风挡板开度大于上组燃烧器辅助风挡板开度。
5 回转窑火焰的调节目前国内预分解窑大多采用三风道或四风道燃烧器,而火焰形状则是通过内流风和外流风的合理匹配来进行调整的。
由于预分解窑人窑生料CaC03分解率已高达90%左右,所以一般外流风风速应适当提高,这样可以控制烧成带稍长一点,以利于高硅酸率料子的预烧和细小均齐熟料颗粒的形成。
如需缩短火焰使高温带集中一些或煤质较差,燃烧速度较慢时,则可以适当加大内流风,减少外流风;如果煤质较好或窑皮太薄,窑简体表面温度偏高,需要拉长火焰,则应加大外流风,减少内流风。
但是外流风风量过大时容易造成火焰太长,产生过长的浮窑皮,容易结后圈,窑尾温度也会超高;内流风风量过大,容易造成火焰粗短、发散,不仅窑皮易被烧蚀,顶火逼烧还容易产生熟料结粒粗大并出现黄心熟料。
目前国内大中型预分解窑生产线大多设有中央控制室。
操作员在中控室操作时主要观察彩色的CRT上显示带有当前生产工况数据的模拟流程图。
但火焰颜色,实际烧成温度、窑内结圈和窑皮等情况在电视屏幕上一般看不清楚,所以最好还应该经常到窑头进行现场观察。
在实际操作中,假如发现烧成带物料发粘,带起高度比较高,物料翻滚不灵活,有时出现饼状物料,这说明窑内温度太高了。
这时应适当减少窑头用煤量,同时适当减少内流风,加大外流风使火焰伸长,缓解窑内太高的温度。
若发现窑内物料带起高度很低并顺着耐火砖表面滑落,物料发散没有粘性,颗粒细小,熟料fCaO高,则说明烧成带温度过低,应加大窑头用煤量,同时加大内流风,相应减少外流风,使火焰缩短,烧成带相对集中,提高烧成带温度,使熟料结粒趋于正常。
假如发现烧成带窑简体局部温度过高或窑皮大量脱落,则说明烧成温度不稳定,火焰形状不好,火焰发散冲刷窑皮及火砖。
这时应减少甚至关闭内流风,减少窑头用煤量,加大外流风,使火焰伸长或者移动喷煤管,改变火点位置,重新补挂窑皮,使烧成状况恢复正常。
总之,窑内火焰温度、火焰形状要勤观察勤调整,以满足实际生产的需要。
6 篦式冷却机的操作和调整篦式冷却机的操作目标是要提高其冷却效率,降低出冷却机的熟料温度,提高热回收效率和延长篦板的使用寿命。
九沣矿业直接还原铁铁磷还原法生产回转窑工艺、操作要求及推荐参数一、回转窑直接还原法工艺流程1、回转窑法工艺流程一般如上图所示(九沣矿业使用的工艺流程与上图不完全一致)。
回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。
作业时,将一定粒度的原料(氧化铁皮)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。
在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。
窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。
如热量不足,可在窑头增设煤粉烧嘴补充。
物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。
调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。
使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。
从排料端排出的高温料通过溜槽落入冷却筒。
靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。
为改善物料运动强化冷却,筒内装有扬料板。
在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发生再氧化。
冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。
非磁性颗粒料含较高固定碳,可作还原剂重新利用。
二、回转窑设备组成回转窑设备主要由筒体、滚圈、支承装置、传动装置、窑头罩、密封装置、集尘室、燃烧装置及热烟室等部分构成,详见上图。
(1)筒体。
回转窑的筒体由钢板卷成,从铆接已发展为全部焊接。
筒体应具有足够的刚度和强度,以保证在安装和运转中轴线的直线性和截面的圆度。
关于烧煤燃烧器的合理使用(讲义)燃烧器在水泥工厂里面,通常也叫做喷煤管。
它是水泥熟料煅烧生产工艺中的最重要的设备之一。
选用一台性能先进的燃烧器,通过正确的调节,合理的使用,使它发挥出提高熟料的产量、质量,最大限度地降低能耗,是每个企业都在不断追求的目标。
我们今天讲述的,不是如何开发研究喷煤管,而是针对目前工厂使用的喷煤管,研究如何更好的使用它。
使它达到设想的性能和目的。
俗话说:工欲善其事 必先利其器要想烧好窑,就要先选择好喷煤管。
并调整到位。
回转窑对煤粉燃烧器的要求(1)对燃料具有较强的适应性,尤其是在燃烧无烟煤或劣质煤时,能保证在较低空气过剩系数下完全燃烧,CO和NOx排放量最低;(2)火焰形状能使整个烧成带具有强而均匀的热辐射,有利于熟料结粒、矿物晶相正常发育,防止烧成带扬尘,形成稳定的窑皮,延长耐火砖使用寿命;(3)外风采用环形间断喷射,保证热态不变形,射流均匀稳定,形成良好的火焰形状,最好采用多个小喷嘴喷射;(4)采用拢焰罩技术,避免产生峰值温度,降低有害气体NO x的排放,使窑内温度分布合理,提高预烧能力;(5)采用火焰稳定器,受喂煤量、煤质和窑情变化波动的影响小,火焰更加稳定;(6)结构简单,调节灵敏、方便,适应不同窑情的变化,满足烧不同煤质和形成不同火焰的要求。
现在的熟料生产中,大部分都是使用的三通道或四通道喷煤管。
少数工厂也有使用两通道喷煤管。
不管哪种喷煤管,在对火焰进行调节热时候,很多技术人员都是按照多年以前的理论,也即喷煤管的火焰,如果是“活泼有力”,就说明这个喷煤管是好的。
同时,使用这种喷煤管的时候,一般将其定位在以窑口中心线为原点的平面直角坐标系中的第四象限。
这种使用调节方法,已经延续了很多年,并且在使用中也得到了大家的认可。
如果没有国外先进的燃烧器的进入,没有国外先进的水泥生产企业在国内的建厂,这种做法不会被打破。
同时,现在的生产给我们提出了更高的技术要求,根据对大多数水泥厂的现场了解发现,很多工厂的入窑生料不是很稳定。
预分解窑燃烧器的选择与使用一、煤粉燃烧的三个阶段煤粉燃烧过程可以分为准备、燃烧和燃尽三个阶段。
1、准备阶段包括燃料的干燥、预热和干馏煤粉受热后,水分汽化,煤粉温度≥100℃,物理水分全部逸出,干燥结束。
继续加热至一定程度,开始分解,放出挥发物,剩下固体焦炭,这一过程称干馏。
挥发份越多,挥发份放出需要的温度越低,反之亦然。
褐煤大约130℃,无烟煤约400℃,烟煤介于两者之间。
煤粉在准备阶段,由于燃烧尚未开始,基本上不需要空气,是吸热过程。
2、燃烧阶段燃烧阶段包括挥发物和焦炭的燃烧;挥发物主要是碳氢化合物,当挥发物到达一定的温度和浓度时,先于焦炭着火燃烧。
通常把挥发物着火燃烧的温度粗略地看作煤粉的着火温度。
挥发物多的燃料,着火温度低,反之亦然。
焦炭燃烧是煤粉的主要燃烧,焦炭的发热量一般占总发热量的一半以上,是煤粉燃烧过程中主要热量来源。
焦炭燃烧所需的时间比挥发物长得多,由于焦炭的燃烧是多相反应,完全燃烧比挥发物困难,如何提高焦炭的燃烧速度及燃尽率是组织燃烧重要的一环。
3、燃尽阶段(或称灰渣形成阶段)焦炭将烧完时,焦炭外壳形成了一层灰渣,空气很难掺入里面参与燃烧,从而使燃烧缓慢进行,尤其是高灰份煤粉就更难燃尽。
此阶段放热量不大,所需空气量也很少,但要保持较高温度,并给予时间。
二、煤粉气流燃烧的特点当原煤磨成煤粉时,受热面积和单位质量表面积大大增加。
当煤的密度为1000kg/m3时,1Kg煤的球形颗粒在不同尺寸具有的表面积。
不同颗粒尺寸的1Kg煤的单位质量比面积煤颗粒状况颗粒直径(mm)单位质量表面积(m2/Kg)在冷空气中的相对速度(m/s)块状煤30 0.05 -粗煤粉300×10-3 5 3.5×10-3细煤粉30×10-350 3.5×10-5当煤粉的平均颗粒直径很小时,单位质量的表面积很大,而煤粉和空气流之间的相对速度很小,这样煤粉颗粒将悬浮在空气流中。
回转窑用燃烧器作者:单位: [2007-9-4]关键字:回转窑-燃烧器摘要:燃烧技术,由于它对熟料质量有着决定性的影响,所以它是水泥制造过程敏感的区域之一。
燃烧器技术进展从使用一根普通管子这种非常简单的喷射系统开始,延续到现代的多燃料、多通道、低NOx燃烧器。
在这个技术发展过程中燃烧器制造者的任务有了很大的变化。
特别是替代燃料的使用对燃烧器的设计有着持久的影响。
本报告试图为用户特定的应用选择合适的燃烧系统时提供一些帮助。
历史第一代回转窑燃烧器是喷射磨细燃料和/或天然气,无外加燃烧空气的普通管子。
在上世纪80年代常应用三通道燃烧器来燃烧传统的燃料(煤、天然气、重油)(见图1)。
这种燃烧器通过外层轴向一次风通道和燃料通道里的径向一次风通道之间的一次风的分布,使火焰得到较好的调节。
这样达到了燃烧空气同燃料的良好混合,氧气进到了火焰中心。
然而,由于燃料的快速点燃,伴随着高的火焰温度(这是藉助于火焰中心的供氧),排放出大量的氮氧化物,这是这种燃烧器的缺点。
由于污染物排放限值的不断降低和降低单位热耗要求的提出,尽可能降低一次风需求量的任务被提出来了。
这一发展造成了低氮氧化物燃烧器的产生,它们部分地也是从使用锅炉燃烧器技术的经验中引进来的。
两个一次风通道(轴向风和径向风)被布置在供燃料通道外边,一次风的总量减少到4%-6%(图2)。
选择合适的窑头燃烧器现在的窑头燃烧器主要都是按照燃烧煤/石油焦炭和其它替代燃料设计和改进的。
有些制造厂家(表1)生产的燃烧器有很多不同的喷咀系统,他们已经在这个行业中确立了地位。
在选择一种合适的窑头燃烧器时,一般应当记住这些准则:a.火焰形状的可调节性应适应窑的生产和燃料的种类;b.氮氧化物的排放行为;c.对传统燃料的适应性;d.对市售代用燃料的适应性;e.代用燃料的替代程度;f.确保在每种火焰形状调节时燃烧器都能得到冷却;g.燃烧器在耐火绝热材料和磨蚀方面的可靠性;h.生产费用和维护费用。
回转窑燃烧器的选择及使用摘要:对于现在的危废处置的焚烧体系来说,回转窑燃烧器是非常重要的,对于其有着直接的影响,而且对于其处理的质量也有所提升,对于窑皮的表层也有着一定的影响,所以,其各个方面都有着重要的作用,要做好适宜的选择。
因此,本文主要通过对其性能的研究,对其选择以及使用进行了进一步的分析。
关键词:回转窑;燃烧器;选择;使用1 一般燃烧器的主要性能1.1 一次风量一次风是经燃烧器通道提供给燃烧用的净风,它对火焰成形、燃料燃烧、吸卷二次风的数量都有很大的影响,但因一次风温度低,过多使用会降低火焰温度,且增加一次风机的电耗,因此,在燃烧器设计选型时必须控制一次风的使用量。
通常用一次风率来表征。
也就是说在保证燃烧器使用性能的情况下,一次风率越低,性能越优越。
1.2 一次风速和旋流强度一次风出口速度和旋流风的旋流强度对煤粉燃烧和窑速影响较大。
燃烧器一次风的轴流风速大小一方面控制着引射高温二次风的量,另一方面影响火焰的刚度,过小则不利于火焰成形和吸卷周围的高温空气以及造成火焰过于疲软而缺乏穿透力,还会导致煤粉的沉落,产生不完全燃烧。
出口速度过大会挤占后面的燃烧空间,导致窑尾温度过高;而旋流风的旋流角和风速控制着火焰内部回流区和强化煤粉与空气的混合,并影响燃料的着火快慢,影响黑火焰的位置。
1.3 火焰及动量由于水泥窑内的熟料烧成是通过火焰光辐射进行传播的,因此火焰的温度和形状就十分的关键。
火焰的温度分布反映了能量粒子的分布情况,均匀的分布对熟料煅烧非常有利,窑内好的火焰形状可以使用尽量少的空气而几乎没有CO的残留,燃烧器的动量决定了火焰的形状。
2 回转窑燃烧器的选择2.1一号燃烧器概况燃烧器共3台,其中一号燃烧器安装在旋转窑前端板,燃烧器轴向中心线立面上平行于转窑中心线,平面投影上与转窑中心线成7度夹角,喷嘴的雾化角为40度,火焰长度范围在2.5m--6m,以保证燃烧火焰对炉膛内均匀加热,同时避免火焰伤及转窑的耐火材料。
浅谈回转窑操作浅谈回转窑操作问题一:窑头罩漏风窑系统漏风主要分为内漏风和外漏风两种,窑头罩漏风属于典型的外漏风。
窑头罩漏风,大量外界冷风进入窑系统,与窑头罩内高温的二次风、三次风混合后,降低二、三次风的温度。
二次风在窑系统中主要起助燃窑头喷入的煤粉作用,高温的二次风使得煤粉开始燃烧的时间出现的早,缩短黑火头长度,火焰更短、火力更集中,有利于提高窑转速,适应目前新型干法回转窑“薄料快烧”的工艺理念。
二次风中混入大量外界冷风后温度降低,低温的二次风使得煤粉燃烧速度变慢,黑火头变长,火焰拉长。
三次风取自窑头罩内的二次风,主要起到分解炉用煤的助燃作用,低温的三次风相对高温风不利于煤粉燃烧。
为使窑内空气温度到达煅烧所需要求势必要求加大窑头、窑尾喷煤量,加大喷煤量的同时,为了使煤粉能够完全充分燃烧,减少CO的出现几率,保证系统的平安运转,尤其是窑尾电除尘器的防爆,必须加大系统的用风量,也就是增大高温风机和窑尾废弃风机排风量。
这样导致熟料热耗和电耗的同步上升。
问题二:一次风压一次风在窑系统中主要起到火焰成型和助燃的作用,由于一次风的风量在系统总用风量中占得比例较低在10%以下,且是低温冷风,所以助燃风主要由二次风承当。
一次风根本只能帮助大局部挥发分燃烧放热,为下一步焦炭燃烧提供热量。
一次风压、风量的大小直接影响燃烧器的火焰形状,在新型干法回转窑熟料煅烧中占据着至关重要的位置。
现代新型干法回转窑煅烧工艺要求“薄料快烧、急冷”,以使熟料到达内部矿物结构合理、强度高、结粒细小匀齐的特点。
这就要求必须有一个长短适宜、活波有力火焰形状。
在不考虑二次风温度和煤粉燃烧速度的情况下:当风道通风面积〔实际使用时调节内筒〕不变时,风压与风速的平方成正比(流体力学公式),增大一次风压时,内外风压均增加,即风流速度加快,这样势必会将煤粉射的更远更发散,反之减小一次风压,煤粉会更近更收敛。
但是在实际生产中,由于煤粉的燃烧速度对火焰的形成有重要影响,煤粉还没来得及被射远就已经燃尽了,实际经验给我们的结果是一次风压增大时火焰会更粗更短更集中有力,反之火焰会细长发软发飘。
回转窑对煤粉燃烧器的要求1 对燃料具有较强的适应性,尤其是在燃烧无烟煤或劣质煤时,能保证在较低空气过剩系数下完全燃烧,CO和NO排放量最低。
2 火焰形状能使整个烧成带具有强而均匀的热辐射,有利于熟料结粒、矿物晶相正常发育,防止烧成带扬尘,形成稳定的窑皮,延长耐火砖使用寿命。
3 外风采用环形间断喷射,保证热态不变形,射流均匀稳定,形成良好的火焰形状,最好采用多个小喷嘴喷射。
4 采用拢焰罩技术,防止产生峰值温度,降低有害气体NO 的排放,使窑内温度分布合理,提高预烧能力。
5 采用火焰稳定器,受喂煤量、煤质和窑情变化波动的影响小,火焰更加稳定。
6 结构简单,调节灵敏、方便,适应不同窑情的变化,满足烧不同煤质和形成不同火焰的要求。
窑内煤粉点燃的模式窑内煤粉的点燃着火,随煤质的差异及其加热速率的不同,有三种模式。
1 均相点燃。
当其挥发分含量较多,加热速率不很快时,因挥发物首先析出而着火,随之固定碳开始燃烧。
2 非均相点燃。
当其挥发分较少,加热速率很快时,挥发分还来不及析出,其中的固定碳已经到达了燃点温度而首先着火。
3 联合点燃。
当挥发分和固定碳同时点燃时,那么称为联合点燃。
采用烟煤为燃料的水泥窑,多属均相点燃;无烟煤那么应考虑到非均相点燃的情况。
一次风温度因一次风温度较低室温,其用量越少那么煤粉空气混合体到达燃点温度所需的热量越少,越容易着火燃烧。
一次风用量少,意味着煤粉燃烧时所用的二次风多。
经验说明每减少%一次风量将节省熟料热耗/g。
燃烧器推动力煤粉与二次风的混合速度和质量,以及其本身的燃烧速率均随着燃烧器推动力M值的增大而提高,M值是一次风的质量流量m与其喷出速度v值的乘积,即MN=mg/s×Vm/s相对燃烧推动力,即一次风百分数与其风速之乘积。
增加一次风量显然是不可取的,所以提高一次风速是增强燃烧推动力的主要手段,但V值太大,阻力骤增,风机电耗上升,在一定的燃烧条件范围内,V值有一最正确范围。
回转窑点火燃烧器调整方法回转窑是用于烧结或煅烧材料的设备,其点火燃烧器的调整是确保生产过程稳定和能源效率的重要步骤。
以下是一些一般的回转窑点火燃烧器调整方法:
清洁和维护:首先,确保点火燃烧器和相关设备保持清洁,并进行定期的维护,以确保其正常运行。
检查气源:确认燃气或燃油供应源是否充足,检查阀门、管道和连接是否无漏。
确保燃料和空气的适当比例:点火燃烧器需要确保燃料和空气的混合比例适当。
可以通过调整供气阀门或者风扇的速度来实现。
调整点火装置:点火装置的位置和方向需要正确设置,以确保火焰能够均匀地覆盖窑内的物料。
监测温度和氧气浓度:安装温度和氧气浓度传感器,以便实时监测窑内的温度和氧气浓度。
这些数据可以用于调整点火燃烧器的工作参数。
使用高效的燃烧技术:考虑采用高效的燃烧技术,如低氮氧化物燃烧技术,以减少氮氧化物排放并提高能源利用率。
调整点火强度:根据窑内物料的要求,可以调整点火燃烧器的火焰强度和大小。
定期校准和监测:定期校准点火燃烧器和相关控制系统,以确保其性能稳定。
这些调整方法可能会根据具体的回转窑类型、应用和工艺要求而
有所不同。
因此,在进行调整之前,建议请专业技术人员或设备制造商提供指导,以确保点火燃烧器的安全和有效运行。
此外,确保在调整点火燃烧器时遵循适用的安全规程和操作程序。
6煤粉制备技术及燃烧器6.1煤粉燃烧器的发展回转窑煤粉燃烧器已由单风道发展到三风道、四风道和烧两种以上燃料的五风道。
风道越多,性能越好,但结构越复杂,质量越大,造价越高,使用时容易弯曲变形。
从煤风与空气混台的效果看,燃烧器可分为旋流式和分割式,分割式四风道燃烧器通道分为外轴流风、煤风、内轴流风、内旋流风,其中外轴流风是轴向喷射的,风道为连续成形,由于分割式燃烧器将煤风分割成四股喷射,煤粉喷出后在圆周方向不均匀,在形成火焰完整性方面与旋流式有一定差距,而且增加了煤风通道的磨损。
衡量燃烧器性能优劣的重要指标是一次风用量。
旋流式煤粉燃烧器是利用直流风与旋流风形成组合射流及中心风形成的平衡流的方式来强化煤粉燃烧,由于燃烧器的结构特殊,煤粉被送入燃烧区域内,通过涡流、回流等方式和喷射效能,使煤粉与燃烧空气充分混合、迅速点燃并充分燃烧。
当前性能优良的四风道煤粉燃烧器一次风用量可降到5%~7%,甚至3%~4%,既可以烧优质烟煤,也可以烧劣质煤、低挥发分煤、无烟煤、石油焦、煤页岩、废轮胎和生活垃圾等。
6.1.1回转窑对煤粉燃烧器的要求1 对燃料具有较强的适应性,尤其是在燃烧无烟煤或劣质煤时,能保证在较低空气过剩系数下完全燃烧,CO和NO x排放量最低。
2 火焰形状能使整个烧成带具有强而均匀的热辐射,有利于熟料结粒、矿物晶相正常发育,防止烧成带扬尘,形成稳定的窑皮,延长耐火砖使用寿命。
3 外风采用环形间断喷射,保证热态不变形,射流均匀稳定,形成良好的火焰形状,最好采用多个小喷嘴喷射。
4 采用拢焰罩技术,避免产生峰值温度,降低有害气体NO x的排放,使窑内温度分布合理,提高预烧能力。
5 采用火焰稳定器,受喂煤量、煤质和窑情变化波动的影响小,火焰更加稳定。
6 结构简单,调节灵敏、方便,适应不同窑情的变化,满足烧不同煤质和形成不同火焰的要求。
6.1.2 窑内煤粉点燃的模式窑内煤粉的点燃(着火),随煤质的差异及其加热速率的不同,有三种模式。
回转窑燃烧器的调校和使用作者:何志军来源:《中国化工贸易·上旬刊》2019年第02期摘要:在水泥生产过程中,主要使用的燃料为煤,作为回转窑用燃烧器,喷煤管在熟料煅烧过程中起着关键的作用。
水泥熟料的品质、窑的产量、耐火材料的使用周期和使用寿命、单位熟料热耗等等无不与喷煤管的选择和使用息息相关。
这里面使用过程中的调整最为关键,它直接决定了水泥窑的产量、耐火材料的使用寿命以及单位熟料热耗。
关键词:燃烧器;喷煤管;窑皮;燃煤1 燃料的情况介绍1.1 介绍喷煤管就不得不介绍它要使用的燃煤目前我国对煤种的划分如下:①无烟煤:V%为0-10;②烟煤:贫煤:V%为:10-20;瘦煤:V%为14-20;焦煤:V%为14-30;肥煤:V%为26-37;气煤:V%为30-37;弱粘煤:V%为20-37;不粘煤:V%为20-37;长焰煤:V%为大于37;③褐煤:V%为大于40。
1.2 原则上水泥企业可以使用所有煤种以下几个指标数值的高低,直接影响着回转窑的产质量,应加以关注。
1.2.1 燃煤的热值煤的热值是衡量燃煤性能的重要指标。
一般来讲,煤的热值越高,煤的燃烧性能就越好。
目前大的水泥公司有倾向于采用高热值燃煤的趋势。
这是因为,煤热值高,不仅用煤量减少了,而且煤的发热一般都较快,对水泥窑达到高产低耗的目的,综合经济效益不比采用低廉的劣质煤差。
1.2.2 燃煤的挥发份煤的挥发份一般是由碳元素同氢、氧、硫等元素组成的有机化合物。
在煤粉燃烧前它首先析出气化而燃烧,随着挥发份的提高,火焰变长,呈现出气体火焰的特性。
煤的燃烧能力与挥发份含量成正比,因此在采用低挥发份的燃料时,为了获得相同的燃料燃烧时间,通常采用减小煤粉粒径来控制煤粉的燃烧。
1.2.3 煤粉细度在回转窑窑头烧成带,二次风温一般均大于1000℃,火焰温度大于1800℃,煤粉在这种环境下的燃烧速率主要受扩散速率控制。
对于受扩散速率控制的反应过程,煤粉燃尽时间与颗粒大小的二次方成正比。
合理选择和优化1.研究意义回转窑工作原理是利用回转着的窑筒体,不断旋转带动固体物料不断翻滚,以其暴露的新表面与掠过的气体进行传热和传质并产生化学反应。由于回转窑内的物料是处于堆积态,窑内气-固、固-固之间的换热效率就相对较低,研究高温热处理条件下回转窑内发生的物质与能量的转化与传递,研究空气过剩系数、二次风温度、内外风量比等操作参数对窑内传热过程的影响,并对操作参数进行优化,从而求得烟气、物料、窑内外壁沿窑长方向的温度变化规律,借此了解煅烧窑内温度分布及炉窑热工特性,可为优化窑的操作参数提供理论依据。
并对煤粉燃烧器的操作参数进行优化,这对提高回转窑内换热效率、降低回转窑能耗具有重要的意义。
水泥熟料烧成反应是指硅酸二钙与氧化钙生成的液固相反应。
由于水泥熟料强度的主要组成来源是C3S,因此C2S+Ca O→C3S的烧成过程对整个煅烧过程具有至关重要的作用。
对 C-S-A-F-MgO系统而言,该反应主要发生在熔融的液相中,液相出现的温度约为 1550K (1277℃)。
烧结反应的机理可以这样描述:固相反应生成的 C2S和之前未被反应的 CaO在液相中溶解、扩散并在液相中发生反应、经液相的过饱和及反扩散,最后经过再结晶形成新相 C3S。
从传热学的角度来说,窑内物料因入窑生料表观分解率为90~95%,分解吸热反应所需的热量很少,公斤熟料约200~100千焦,物料升温吸热量约为450~500千焦,而熟料矿物形成是以放热反应为主,设熟料中C2S占%, C3S占%,C3A占%,C4AF占%,反应过程放热量约为655千焦。
基于窑内熟料形成热基本是一个负值,所以可以认为窑内传热已不是主要矛盾,而熟料矿物生成的晶格形成和晶体生长所需维持的高温条件及在烧成带的停留时间成为矛盾的主要方面。
2. 回转窑用燃烧器对性能的要求根据物料煅烧难易程度、窑的工况调节火焰形状。
因此回转窑对煤粉燃烧器的性能要求是必须易于调节。
煤粉燃烧形成的火焰形状应是肥瘦适宜的棒槌状,这样的火焰形状可使整个烧成带具有强而均匀的热辐射,从而在烧成带形成致密又稳定的窑皮,既可生成质量均匀且优质的水泥熟料,又延长了水泥回转窑耐火砖的使用寿命。3. 煤粉燃烧和火焰形成过程煤粒燃烧过程是一个非常复杂的气固两相流动与煤粉燃烧共同存在的过程,具体包括了预热、挥发份析出、挥发份燃烧及焦炭的燃烧。
煤粒反应过程:图1 煤粒反应模型火焰的燃烧过程:图2 火焰燃烧各个阶段区域A区:黑火头,长,在该区域燃料和助燃空气充分混合,但燃料尚未点燃,处于加热阶段。
温度逐渐上升到600℃。
B区:火焰的诞生地,挥发物质和助燃轻质油析出和燃烧生成CO2和H2O。
所达温度600-1100℃。
A区和B区的边界称为火焰的起点。
C区:煤燃烧和燃油裂化释放出碳。
温度上升到1100-1600℃。
D区:H2和CO2还原反应生成CO和H。
温度上升到高于1600℃。
E区:H和CO燃烧重新得到CO2和H2O,伴随有白炽粒子。
F区:燃烧的最后阶段,生成CO2和H2O,并伴有过剩空气。
火焰形状的调节火焰粗短的调节:增大旋流风出风面积和角度,火焰变粗,同时增大外轴流风的风速,保证外轴流风包裹火焰形状,即减小外轴风的出风面积,提高外轴风的风速和风压。
标尺直观判断:旋流风标尺数字变大,外轴风标尺数字变小。
火焰细长的调节:减小旋流风出风面积和角度,火焰变细,同时减小外轴流风的风速,保证外轴流风包裹火焰形状,即增大外轴风的出风面积,减小外轴风的风速和风压。
标尺直观判断:旋流风标尺数字变小,外轴风标尺数字变大。
增加推力意味着供给煤管的轴向风更多的能量。
增加旋转力意味着增加放射性能量从而增加了气流量。
图3 火焰调整示意图4回转窑内煤粉燃烧模型的建立假设条件回转窑内煤粉燃烧数学模型包括烟气的紊流、气体燃烧和辐射现象。
这里用到两个假设:一是烟气流动为稳态条件,且窑内压力恒定;二是烟气按不可压缩流对待。
物理模型回转窑的原型规格为ф4×60m。去除燃烧带内衬及窑皮的厚度之后,有效内径为ф。
模拟区域取为20m,包括了从窑头开始至烧成带结束的连续区域。
网格化的回转窑模型:图4 回转窑模型基于四通道煤粉燃烧器已在新型干法水泥生产线上得以广泛应用,本文也选取四通道煤粉燃烧器进行模拟。
四风道煤粉燃烧器的结构见图,选取的计算区域见图图5 燃烧器模型1-外净风道;2-煤风道;3-内净风道;4-中心风道;5-点火油枪通道煤燃烧模型煤粉由四通道煤粉燃烧器送入,煤粉与高温空气在进入窑内后进行混合,其燃烧特征符合非预混燃烧模型,因此煤粉的气相燃烧模型采用非预混燃烧模型。煤粉的流动用离散相模型来模拟,此模型可以预测出单个煤粒的运动轨迹。离散项的轨迹与气相连续方程交替计算也包含了煤粒与气体间的热量、动量和质量的传递。辐射模型由于回转窑内的辐射换热主要体现在气体与颗粒之间。
在气体与煤粉湍流运动的基础上,引入非预混燃烧模型计算煤粉的燃烧,与此同时耦合计算气体与煤粉颗粒之间的辐射换热。
初始条件及边界条件二次风、煤风和内净风进口采用风速边界条件,根据实测工况参数范围直接设定入窑速度。燃烧器的中心风、外净风出口速度很大,为可压缩流,进口采用质量边界条件,直接设定入窑质量流率。出口采用压力边界条件,出口压力设定为-70Pa。
对于近壁面,以及气固界面,沿烟气流动方向采用壁面函数。计算选取的各种初始条件及边界条件见表:煤粉低位发热量 (DAF)为kg,热值为1000J/(kg·K),密度为 m3。
一次风和二次风为净空气,由 21%的氧气和79%的氮气组成。
5 模拟结果及分析本文采用同规格生产线的热工标定实测参数作为初始参数进行计算。
着重研究了空气过剩系数、内外风量比及二次风温度对窑内温度分布的影响。
测试工况下内外风量比为,二次风量为 s,窑头过剩空气系数为,二次风温度为1373K。窑内温度分布模拟结果见图。
窑内温度分布的主要影响因素内外风量比 R、空气过剩系数n、二次风温度T(K)和旋流角a(°)的值列在图下方。图6 模拟工况下窑内温度分布图由图6可以看出,火焰形状呈向外波动的棒槌形,这与从工程经验所知的实际火焰形状相符。
如图6指示,煤粉在离燃烧器喷嘴较远的一个窄而短的区域内高温燃烧,喷嘴附近的烟气温度均比较低,黑火头较长,这使得实际的烧成带较短,而使冷却带延长,预热分解带也相应缩短,这种窑内温度分布会降低窑的有效传热面积,因此不能满足水泥烧结所需的温度要求。同时由于高温区域较小,煤粉极易燃烧不完全,未来得及燃烧的煤粒或在物料内燃烧,或被物料带出,还有的甚至被烟气带出窑外,造成较大的机械损失及化学不完全燃烧热损失,甚至出现结皮、烧损衬料与窑壁等事故。回转窑的现场热工测试结果也证明了这一点。过剩空气系数n对燃烧过程的影响在燃烧器的主要操作参数中,窑头空气过剩系数对窑内火焰形状及烟气温度分布有重要影响,同时也关系着燃烧器性能的发挥。因此通过调整空气过剩系数 n来改善窑内火焰形状及烟气温度分布。
在R=, T=1373K,a=15°条件下,空气过剩系数从到的范围变化时窑内火焰形状和烟气温度分布情况,结果见图 7。图空气过剩系数n=时窑内火焰形状及烟气温度分布图空气过剩系数n=时窑内火焰形状及烟气温度分布图空气过剩系数n=时窑内火焰形状及烟气温度分布图空气过剩系数n=时窑内火焰形状及烟气温度分布图~是不同空气过剩系数时回转窑内火焰形状及烟气温度分布情况。由图可知,随着空气过剩系数的增大,高温区域逐渐向后移动且变得狭长,平均温度下降。空气过剩系数 n=时,火焰短而粗,平均温度较高,火焰长度 11m,熟料烧成温度有效区间长度为,黑火头长度。根据工程经验,回转窑内黑火头的长度一般在 m-1 m范围内为好。黑火头过长,会降低对回转窑的有效传热面积,对煅烧不利,进而影响产品质量;黑火头过短,会使出窑熟料温度过高,导致冷却机负荷增加,易烧坏喷煤嘴。空气过剩系数为时,火焰长度为13m,熟料烧成温度有效区间长度为 8m,火焰形状为良好的棒槌状,但黑火头长度为4m,长度过长。当过剩空气系数n=时,火焰变细变长,火焰平均温度降低,熟料烧成温度有效区间长度为 6m,窑壁区域烟气温度下降,燃烧区域较长。空气过剩系数过大造成的长火焰适于在点火烘窑或当窑温过高、耐火内衬有烧损时使用,且过多的助燃空气还会造成烟气排放损失。空气过剩系数n=时,煤粉在燃烧器喷嘴前方燃烧,火焰集中,熟料烧成温度有效区间长度为9m,黑火头长度为,符合黑火头最佳长度为的要求,火焰形状和长度适中,有利于强化生产,属于比较理想的活泼型火焰。煤粉燃烧中心温度高达2000K煤粉燃烧集中在距燃烧器喷嘴较远处一个“窄而短”的区域。这使得在燃烧带较长距离释放出热量,可成倍增加烧成带的长度,成倍提高烧成熟料能力,从而成倍增加窑产量。这种火焰尤其适用于新型的干法窑。并且可以看到在靠近燃烧器头部的位置,形成了一个长度适中的低温区域,这可以用于冷却燃烧器的喷嘴,起到保护燃烧器的作用。由以上对比结果可知,空气过剩系数对火焰形状及性能有重要影响,过剩空气系数较小时,火焰粗而短,平均温度比较高;当过剩空气系数过大时,火焰细而长,火焰平均温度降低,燃烧区域变长,且过多的助燃空气还会延迟煤粉燃烧的时间,这是喷嘴附近烟气温度较低,黑火头较长的主要原因。图中显示最佳的空气过剩系数为,可根据窑况在合适的范围内进行调节。内外风量比R对燃烧过程的影响在实际生产过程中,经常通过调节内、外风量的方法来调节火焰形状。所以现在研究不同内、外风量比时窑内火焰形状、烟气温度分布的变化规律。确定空气过剩系数 n=,在a=15°,T=1373K条件下,R值从到的范围内变化,比较不同内外风量比时窑内烟气温度分布情况。内外风量的变化会引起一次风量的变化,通过调整二次风量来保证的空气过剩系数。模拟结果见图8。图内外风比R=时窑内火焰形状及烟气温度分布图内外风比R=时窑内火焰形状及烟气温度分布图内外风比R=时窑内火焰形状及烟气温度分布图内外风比R=时窑内火焰形状及烟气温度分布图 ~为不同内外风量比时窑内温度分布情况。虽然旋流内风所占比例较小,旋流强度不大,但煤粉喷出后的着火不仅需要靠外风对高温二次空气的卷吸作用来预热煤粉,而且要与内风进行混合。由图(a)(b)所示,内外风量比由增大到,由于内风量的增加使得内风速度增加了15m/s,有利于径向上烟气和煤粉的混合,但外风量的减小使得外风速度降低了6m/s,降低了外风对高温二次风的卷吸,但旋流程度大大增强,而卷吸影响相对较小,的内外风量比使得窑内高温区域在径向和轴向都能扩展,火焰变粗变短,黑火头长度适中,可较好地保护燃烧器喷嘴,窑内火焰形状及其温度分布都能满足窑头冷却带、燃烧带的温度要求,可保证水泥熟料的烧成质量。保持内风量不变,通过降低外风量增大内外风量比。随着内外风量比进一步增大,由图 (c)所示,的内外风量比,外风道速度降低了69m/s,图 (d)所示,的内外风量比使得外风速度降低了129m/s,大大降低了外风对高温二次风的卷吸作用,延迟了煤粉的点火时间,使火焰变细变长,黑火头较长,轴向流动和温度衰减加快,窑内温度分布不利于强化生产。可根据水泥工艺对火焰形状和温度分布的要求选择不同的内外风量比。