初中一对一精品辅导讲义:圆与圆的位置关系.docx
- 格式:docx
- 大小:148.60 KB
- 文档页数:8
《圆与圆的位置关系》1. 外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义:(1) 外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离。
(2) 外切:两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切,这个惟一的公共点叫做切点。
(3) 相交:两个圆有两个公共点,此时叫做这个两个圆相交。
(4) 内切:两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切,这个惟一的公共点叫做切点。
(5) 内含:两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含。
两圆同心是两圆内的一个特例。
2. 两圆位置关系的性质与判定:(1) 两圆外离<===> d>R+r(2) 两圆外切<===> d=R+r(3) 两圆相交<===> R-r<d<R+r (R≥r)(4) 两圆内切<===> d=R-r (R>r)(5) 两圆内含<===> d<R-r (R>r)3. 相切两圆的性质:如果两个圆相切,那么切点一定在连心线上。
4. 相交两圆的性质:相交两圆的连心线垂直平分公共弦。
随堂练习: 1、已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是2、已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是_____________.A BB . 3 1 0 2 4 5 D .3 1 0 245 A . 3 1 0 2 4 5 C .3、已知ABC △的三边分别是a b c ,,,两圆的半径12r ar b ==,, 圆心距d c =,则这两个圆的位置关系是 .4、如图3,⊙ABC 三边与⊙O 分别切于D ,E ,F ,已知AB=7cm ,AC=5cm ,AD=2cm ,则BC=______.5、两圆的圆心坐标分别是(,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是( )A .相离B .相交C .外切D .内切6、已知⊙O 1和⊙O 2的半径分别为1和5,圆心距为3,则两圆的位置关系是( )A .相交B .内含C .内切D .外切7、 如图,施工工地的水平地面上,有三根外径都是1m 的水泥管,两两相切地堆放在一起,其最高点到地面的距离是 .8、一个等腰梯形的高恰好等于这个梯形的中位线.若分别以这个梯形的上底和下底为直径作圆,这两个圆的位置关系是( )A .相离B .相交C .外切D .内切9、三角形三边长分别为5厘米、12厘米、13厘米,以三角形三个顶点为圆心的三个圆两两外切,则此三个圆的半径分别为 .10、两圆半径之比为3:2,当此两圆外切时,圆心距是10cm ,那么,当此两圆内切时,其圆心距为( )A .大于2cm 且小于6cmB .小于2cmC .等于2cmD .非以上取值范围11、已知⊙O 1、⊙O 2的半径分别为6和3,O 1、O 2的坐标分别是(5,0)和(0,6),则两圆的位置关系是( )A .相交B .外切C .内切D .外离12、R 、r 是两圆的半径(R >r ),d 是两圆的圆心距,若方程x 2-2Rx +r 2=d (2r -d )有等根,则以R 、r 为半径的两圆的位置关系是( )A .外切B .内切C .外离D .相交【例4】已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >【例5】已知⊙A 、⊙B 相切,圆心距为10cm ,其中⊙A 的半径为4cm ,求⊙B 的半径.3【例6】定圆O 的半径是4cm ,动圆P 的半径是1cm .当两圆相切时,点P 与点O 的距离是多少?点P 可以在什么样的线上移动?【例7】如图,AB 既是⊙C 的切线也是⊙D 的切线,⊙C 与⊙D 相外切,⊙C 的半径r=1,⊙D 的半径R=3, 求四边形ABCD 的面积。
圆与圆的位置关系(解析版)圆与圆的位置关系(解析版)圆与圆的位置关系是几何学中常见的问题。
在解析几何中,我们可以通过方程和图形的分析来确定两个圆之间的位置关系。
本文将详细介绍圆与圆的位置关系及其解析方法。
I. 两个圆的位置关系当给定两个圆的方程时,我们可以通过以下几种情况来判断它们的位置关系:1. 相离(disjoint)如果两个圆不相交,它们互相分离,也就是说没有公共点。
我们可以通过计算它们的半径之和和两个圆心之间的距离来判断。
如果半径之和小于圆心之间的距离,即 r1 + r2 < d,那么两个圆相离。
2. 外切(tangent exterior)如果两个圆的外部只有一个公共点,我们称它们相切于外部。
这意味着两个圆心之间的距离等于它们的半径之和,并且没有其他公共点。
我们可以通过计算两个圆心之间的距离和两个圆的半径之和来判断。
如果半径之和等于圆心之间的距离,即 r1 + r2 = d,那么两个圆相切于外部。
3. 内切(tangent interior)如果两个圆的内部只有一个公共点,我们称它们相切于内部。
这意味着两个圆的半径之差等于它们的圆心之间的距离,并且没有其他公共点。
我们可以通过计算两个圆的半径之差和两个圆心之间的距离来判断。
如果圆心之间的距离等于半径之差,即 d = |r1 - r2|,那么两个圆相切于内部。
4. 相交(intersect)如果两个圆有两个公共点,我们称它们相交。
这意味着两个圆心之间的距离小于半径之和,并且有两个公共点。
我们可以通过计算两个圆心之间的距离和两个圆的半径之和来判断。
如果半径之和大于圆心之间的距离,即 r1 + r2 > d,那么两个圆相交。
II. 解析方法在解析几何中,我们可以利用两个圆的方程来求解它们的位置关系。
假设第一个圆的方程为(x - h1)^2 + (y - k1)^2 = r1^2,第二个圆的方程为(x - h2)^2 + (y - k2)^2 = r2^2,其中(h1, k1)和(h2, k2)分别代表两个圆的圆心坐标,r1和r2分别代表两个圆的半径。
3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。
初三数学圆和圆的位置关系知识精讲圆和圆的位置关系1. 基本概念(1)两圆外离、外切、相交、内切、内含的定义;(2)两圆的公切线、外公切线、内公切线、公切线长的定义; (3)两圆的连心线、圆心距、公共弦。
两圆的位置 圆心距d 与两圆的半径R 、r 的关系 外公切线条数内公切线条数公切线条数外离 d R r >+ 2 2 4 外切 d R r =+2 13 相交 R r d R r R r -<<+≥()2 0 2 内切 d R r R r =->()1 0 1 内含d R r R r <->()说明:(1)两圆的位置关系和半径,圆心距的数量关系是互相对应的,即知道位置关系就可以确定数量关系,知道数量关系也可以确定位置关系;(2)如果遇到“相离”或“相切”问题时,都要分两种情况来解决。
3. 相交两圆的性质相交两圆的连心线垂直平分两圆的公共弦。
4. 相切两圆的性质如果两圆相切,那么切点一定在连心线上。
5. 两圆中常引用的辅助线(1)相切:过切点引公切线,引连心线。
(2)相交:引连心线、公共弦(将两圆半径、圆心距、公共弦的一半集中在一个三角形中) (3)遇两条内公切线或外公切线:引过切点的半径,构造直角三角形(将半径、圆心距、例:(1997某某)如图,已知:两圆内切于点A,P是两圆公切线上的一点过P作小圆的割线PBC,连结AB、AC,并延长分别交大圆于D、E,求证:PCPBAEAD=22。
证明:连结DEPA是两圆的公切线,∴∠=∠=∠PAD PCA E∴∴=BC DEAEADACAB//PA是⊙O1的切线,PBC是⊙O1的割线∴=⋅PA PB PC2又 ∠=∠∠=∠PCA PAB CPA APB,∴∴=∆∆PAB PCAACABPCPA~∴=∴==⋅=AEADPCPAAEADPCPAPCPB PCPCPB22222即PCPBAEAD=22说明:相切两圆中公切线是联系两圆中角的最有利条件,利用两圆的公切线,构造两圆的弦切角来进行角的转化。
1、了解圆与圆的五种位置关系;2、经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并运用相关结论解决问题; 第一课时 圆与圆的位置关系知识点梳理1、⊙O 的半径是6,圆心到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定2、如图1,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为( )A 、45㎝B 、25㎝C 、213㎝D 、13㎝3、如图2,已知⊙0的直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的 延长线交于点P ,则么∠P 等于( )A .150B .200C .250D .300图1 图2 图34、如图3,AB 与⊙O 切于点C ,OA=OB ,若⊙O 的直径为8cm ,AB=10cm ,那么OA 的长是( ) A .41 B .40.14.60C D5、已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F . 求证:(1)AD =BD ; (2)DF 是⊙O 的切线.课前检测FEDCBAOB A CO(一)两圆位置关系的定义 注:(1)找到分类的标准:①公共点的个数;②一个圆上的点是在另一个圆的内部还是外部(2)两圆相切是指两圆外切与内切 (3)两圆同心是内含的一种特殊情况(二)两圆位置关系与两圆半径、圆心距的数量关系之间的联系:两圆的半径分别为R 、r ,圆心距为d ,那么两圆外离d > R +r 两圆外切d = R +r两圆相交R -r < d <R +r (R ≥r ) 两圆内切 d = R -r (R > r ) 两圆内含d < R -r (R > r )(三).借助数轴进一步理解两圆位置关系与量关系之间的联系知识梳理O 1O 2O 1O 2O 1O 2O 1O 2O 1O 2⇔⇔第二课时 圆与圆的位置关系典型例题一、圆与圆位置关系的确定例1.右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系( )A .内含B .相交C .相切D .外离变1.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A .内含B .外切C .相交D .外离例2.右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是A .外离B .相交C .外切D .内切变2.如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是.例3.图中圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种变3.(1)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( )A .外离B .外切 C.相交 D .内含(2)已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )A .相交B .内含C .内切D .外切 (3)已知1O ⊙与2O ⊙的半径分别为5cm 和3cm ,圆心距127cm O O ,则两圆的位置关系是( )A .外离B .外切C .相交D .内切典型例题O 3O 2O 1例4.如图,点A B ,在直线MN 上,11AB =厘米,A B ,的半径均为1厘米.A 以每秒2厘米的速度自左向右运动,与此同时,B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为1r t =+(0)t ≥.(1)试写出点A B ,之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?变4.如图,A B 、⊙⊙的圆心A B ,在直线l 上,两圆半径都为1cm ,开始时圆心距4cm AB =,现A B ⊙⊙,同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,A ⊙运动的时间为秒.二、圆与圆位置关系的性质例5.已知1O 和2O 外切,它们的半径分别为2cm 和5cm ,则12O O 的长是( )A .2cmB .3cmC .5cmD .7cm变5.O 的半径为3cm ,点M 是O 外一点,4OM cm =,则以M 为圆心且与⊙O 相切的圆的半径是cm .例6.1O ⊙和2O ⊙相切,1O ⊙的直径为9cm ,2O ⊙的直径为4cm .则12O O 的长是_________.变6.如图,1O ,2O ,3O 两两相外切,1O 的半径11r =,2O 的半径22r =,3O 的半径33r =,则123O O O △是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形例7.若A ⊙和B ⊙相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为_______________.NMB A PO 2O 1BA l。
2.5.2圆与圆的位置关系一、圆和圆的位置关系1.圆与圆的五种位置关系的定义 两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离. 两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点. 两圆相交:两个圆有两个公共点时,叫做这两圆相交. 两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点. 两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系: 设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则: 两圆外离d>r1+r2 两圆外切d=r1+r2 两圆相交r1-r2<d<r1+r2(r1≥r2) 两圆内切d=r1-r2(r1>r2) 两圆内含d<r1-r2(r1>r2)要点: (1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点; (3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.A .2种B .3种C .4种D .5种【答案】A 【解析】由图形可以看出,有两种位置关系,相交和内切.故选A.题型2:根据圆与圆的位置关系求半径4.已知1O e 与2O e 相切,若1O e 的半径为3cm ,127cm O O =,,则2O e 的半径为( )A .4cm 或12cmB .10cm 或6cmC .4cm 或10cmD .6cm 或12cm【答案】C【分析】根据圆与圆的位置关系,内切时()2121d r r r r =->,外切时12d r r =+,计算即可.【解析】解:两圆内切时,2O e 的半径7310=+=(cm),外切时,2O e 的半径734=-=(cm),∴2O e 的半径为4cm 或10cm .故选:C .【点睛】本题考查了圆与圆的位置关系,熟练掌握知识点是解题的关键.5.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为( )A .1、10B .5、8C .25、40D .20、30【答案】D【分析】先由两圆有两个交点得到两圆相交,然后根据半径与圆心距之间的关系求解即可.【解析】∵两圆有两个交点,∴两圆相交,∵圆心距为13∴两圆的半径之差小于13,半径之和大于13.A .1101113+=<,故不符合题意;B .5813+=,故不符合题意;【点睛】此题重点考查圆与圆的位置关系、线段的垂直平分线的性质、勾股定理以及数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.9.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距A.0<d<3B.0<d<7C.3<d<7A.45°B.30°【答案】B【分析】连接O1O2,AO2,O1B,可得【解析】解:连接O1O2,AO2,O∵O 1B = O 1A∴112112O AB O BA AO O Ð=Ð=Ð ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO O 是等边三角形,【点睛】本题考查了相交两圆的性质以及等边三角形的判定与性质,得出21AO O D 是等边三角形是解题的关键.题型5:分类讨论13.已知圆1O 、圆2O 的半径不相等,圆1O 的半径长为5,若圆2O 上的点A 满足15AO =,则圆1O 与圆2O 的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【答案】A【分析】根据圆与圆的位置关系,分类讨论.【解析】解:如图所示:当两圆外切时,切点A 能满足15AO =,当两圆相交时,交点A 能满足15AO =,当两圆内切时,切点A 能满足15AO =,当两圆相离时,圆2O 上的点A 不能满足15AO =,所以,两圆相交或相切,故选:A .【点睛】本题考查了由数量关系来判断两圆位置关系的方法.14.如图,长方形ABCD 中,4AB =,2AD =,圆B 半径为1,圆A 与圆B 外切,则点C 、D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆C .点C 在圆A 上,点D 在圆【答案】A 【分析】先根据两圆外切求出圆A 的半径,连接【解析】解:∵4AB =,圆B 半径为【点睛】本题考查了点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.15.如图,1O e ,2O e 的圆心 1O ,128cm O O =.1O e 以 1cm /s 的速度沿直线A .外切B .相交C .内切D .内含【答案】D 【分析】先求出7s 后,两圆的圆心距为1cm ,结合两圆的半径差即可得到答案.【解析】解:∵1O e 的半径为 2cm ,2O e 的半径为 3cm ,128cm O O =.1O e 以 1cm /s 的速度沿直线 l 向右运动,7s 后停止运动.∴7s 后,两圆的圆心距为1cm ,此时两圆的半径差为321cm -=,∴此时两圆内切,∴在此过程中,1O e 与 2O e 没有出现的位置关系是:内含,故选D .【点睛】本题主要考查圆与圆的位置关系,掌握d R r =+,则两圆外切,d R r =-,则两圆外切,是关键.题型6:圆的位置关系综合16.如图,∠MON =30°,p 是∠MON 的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆ON 相切,如果以Q 为圆心半径为r 的圆与P Q 相交,那么r 的取值范围是( )A .4<r <12B .2<r <12C .4<r <8D .r >4【答案】A 【分析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,得到四边形ABPQ 是矩形,QA=PB=4,根据∠MON =30°求出OQ=2QA=8,根据平行线的性质及角平分线的性质得到PQ=8,再分内切与外切两种求出半径r ,即可得到两圆相交时的半径r 的取值范围.【解析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,∵PQ ∥ON ,∴PQ ⊥PB ,∴∠QAB=∠QPB=∠PBA=90°,∴四边形ABPQ 是矩形,∴QA=PB=4,∵∠MON =30°,∴OQ=2QA=8,∵OP 平分∠MON ,PQ ∥ON ,∴∠QOP=∠PON=∠QPO ,∴PQ=OQ=8,当以Q 为圆心半径为r 的圆与P Q 相外切时,r=8-4=4,当以Q 为圆心半径为r 的圆与P Q 相内切时,r=8+4=12,∴以Q 为圆心半径为r 的圆与P Q 相交,4<r<12,故选:A.【点睛】此题考查角平分线的性质,平行线的性质,矩形的判定及性质,两圆相切的性质.17.如图,在Rt ABC V 中,90C Ð=°,4AC =,7BC =,点D 在边BC 上,3CD =,A e 的半径长为3,D e 与A e 相交,且点B 在D e 外,那么D e 的半径长r 可能是( )A .1r =B .3r =C .=5r D .7r =【答案】B 【分析】连接AD 交A e 于E ,根据勾股定理求出AD 的长,从而求出DE DB 、的长,再根据相交两圆的位置关系得出r 的范围即可.【解析】解:连接AD 交A e 于E ,如图1,在Rt ACD V 中,由勾股定理得:则532DE AD AE =-=-=,73BC CD ==Q ,,734BD \=-=,\D e A eA .142r <<B .52r <<【答案】C【分析】过点O 作OE AD ^,勾股定理求得11,OE AB OF AD ==,根据题意,画出相应的图形,即可求解.当圆O 与CD 相切时,过点O 作OF CD ^于点F ,如图所示,则162OF AD ==则1325622r =+=∴O e 与直线AD 相交、与直线CD 相离,且D e 与O e 内切时,作AD⊥BC,以A为圆心,以AD为半径画圆一、单选题1.如果两圆的半径长分别为5和3,圆心距为8,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【答案】D【分析】根据两圆半径的和与圆心距,即可确定两圆位置关系.【解析】解:∵两圆的半径长分别为5和3,圆心距为8,538+=,∴两圆外切,故选:D .【点睛】本题考查了圆与圆的位置关系,解题的关键是掌握:外离,则d R r >+;外切,则d R r =+;相交,则R r d R r -<<+;内切,则d R r =-;内含,则d R r <-.2.两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内切【答案】A【分析】本题直接告诉了两圆的半径及圆心距,根据它们数量关系与两圆位置关系的对应情况便可直接得出答案.【解析】解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选A .【点睛】本题主要考查了圆与圆的位置关系,解题的关键在于能够准确掌握相关知识进行求解.3.已知直径分别为6和10的两圆没有公共点,那么这两个圆的圆心距的取值范围是( )A .d >2B .d >8C .d >8或0≤d <2D .2≤d <8【答案】C【分析】分两种情况讨论:当两圆外离时,两圆没有公共点时,当两圆内含时,两圆没有公共点时,从而可得答案.【解析】解:Q 直径分别为6和10的两圆没有公共点,\ 两圆的半径分别为3和5,当两圆外离时,两圆没有公共点时,8,d >当两圆内含时,两圆没有公共点时,02,d £<综上:所以两圆没有公共点时,8d >或0 2.d £<故选C【点睛】本题考查的是两圆的位置关系,熟练的运用两圆外离与内含的定义解题是解本题的关键.4.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( )【点睛】本题考查了两圆外切的条件,两圆相交的条件,等腰直角三角形的性质和对称性,熟练掌握两圆D .当⊙1O 与⊙2O 没有公共点时,1202O O <≤.【答案】D【分析】根据圆与圆位置关系的性质,对各个选项逐个分析,即可得到答案.【解析】当1224O O <<时,⊙1O 与⊙2O 相交,有两个公共点,故选项A 描述正确;当⊙1O 与⊙2O 有两个公共点时,1224O O <<,故选项B 描述正确;当1202O O <≤时,⊙1O 与⊙2O 没有公共点,故选项C 描述正确;当⊙1O 与⊙2O 没有公共点时,1202O O <≤或124O O >,故选项D 描述错误;故选:D .【点睛】本题考查了圆与圆位置关系的知识;解题的关键是熟练掌握圆与圆位置关系的性质,从而完成求解.9.如图,矩形ABCD 中,AB=4,BC=6,以A 、D 为圆心,半径分别为2和1画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .5B .6C .7D .8【答案】C 【分析】以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD′交BC 于P ,交⊙A 、⊙D′于E 、F′,连接PD ,交⊙D 于F ,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF 最小值.【解析】解:如图,以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD’交BC 于P ,则EF′就是PE+PF最小值;∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,∴AD′=10,EF′=10-2-1=7∴PE+PF=PF′+PE=EF′=7,故选C.【点睛】本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是解答本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1【答案】A【解析】试题分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.考点:相交两圆的性质;轴对称的性质.二、填空题当1O e 位于2O e 外部,且P ,1O ,2O 位于同一条直线上时,如图所示,min 121523r O O PO =-=-=.故答案为:37r ££.【点睛】本题主要考查圆与圆的位置关系,能采用数形结合的方法和分类讨论的思想分析问题是解题的关键.16.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =图),点F 在边BC 上,以点F 为圆心、CF 为半径作F e .如果F e【答案】4116【分析】连接EF ,作FH 股定理得到()(235r r +=-【解析】解:连接EF ,作BQe过点A,且7AB=,由函数图象可知,当即不等式①的解集为同理可得:不等式②【点睛】此题主要考查了相交两圆的性质以及勾股定理,熟练利用正三角形以及正方形的性质是解题关键.20.已知A e ,B e ,C e 【答案】A e 的半径为2厘米,(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 【答案】(1)22111422a ax x p p p -+11求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【答案】(1)8(2)21(2)解:在2Rt AO E △中,由勾股定理得:∴1212426O O O E O E =+=+=∴1111831222O AC S AC O D ==´´=g △,S ∴四边形ACO 1O 2的面积为:S S +(1)如图1所示,已知,点()02A ,,点()32B ,.①在点()()()123011141P P P -,,,,,中,是线段AB 的“对称平衡点”的是___________②线段AB 上是否存在线段AB 的“对称平衡点”?若存在,请求出符合要求的 “对称平衡点若不存在,请说明理由;(2)如图2,以点()02A ,为圆心,1为半径作A e .坐标系内的点C 满足2AC =,再以点作C e ,若C e 上存在A e 的“对称平衡点”,直接写出C 点纵坐标C y 的取值范围.【答案】(1)①1P ,3P ;②不存在,理由见解析(2)02c y ££∴线段AB的“对称平衡点”的是1P,故答案为:1P,3P;②不存在设P为线段AB上任意一点,则它与线段££,PA PB33点P关于x轴的对称点为P¢,它到线段,是线段AB上的任意两点,即若M N∵()()0,2,0,0A O ∴02c y ££【点睛】本题考查了对称平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题.。
教学目标
重点、难点考点及考试要求1、了解圆与圆的五种位置关系;
2、经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并运用相关结论解决问题;
1、位置关系与对应数量关系的运用
2、两圆的位置关系对应数量关系的探索
1、圆与圆的五种位置关系
2、两圆的位置关系与两圆半径、圆心距的数量关系
教学内容
第一课时圆与圆的位置关系知识点梳理
课前检测
1、⊙ O的半径是 6,圆心到直线l的距离为 3,则直线l与⊙ O的位置关系是()
A.相交B.相切C.相离D.无法确定
2、如图 1,AB与⊙ O切于点 B, AO=6 ㎝, AB= 4 ㎝,则⊙ O的半径为()
A、4 5 ㎝
B、25 ㎝
C、2 13㎝
D、13 ㎝
3、如图 2,已知⊙ 0 的直径 AB与弦 AC的夹角为 35°,过 C点的切线 PC与 AB的
延长线交于点 P,则么∠ P 等于()
A.150B.200C.250D.300
图 1图2图3
4、如图 3,AB与⊙ O切于点 C, OA=OB,若⊙ O的直径为 8cm,AB=10cm,那么 OA的长是()
A.41B.40 C. 14 D. 60
5、已知:如图,△ ABC中, AC=BC,以 BC为直径的⊙ O交 AB于点
D,过点 D 作 DE⊥ AC于点 E,交 BC的延长线于点 F.
求证:( 1) AD=BD;(2)DF是⊙ O的切线.
知识梳理
(一)两圆位置关系的定义
注:( 1)找到分类的标准:
①公共点的个数;
②一个圆上的点是在另一个圆的内部还是外部
(2)两圆相切是指两圆外切与内切
(3)两圆同心是内含的一种特殊情况
(二)两圆位置关系与两圆半径、圆心距的数量关系之间的联系:两圆的半径分别为R、r ,圆心距为 d,那么
两圆外离 d > R+r
两圆外切 d =R+r
两圆相交R- r< d < R+ r ( R≥ r )
两圆内切 d =R-r (R > r )
两圆内含 d < R-r (R > r )
(三) . 借助数轴进一步理解两圆位置关系与量关系之间的联系
第二课时圆与圆的位置关系典型例题典型例题
一、圆与圆位置关系的确定
例 1. 右图是北京奥运会自行车比赛项目标志,A.内含B.相交 C .相切
图中两车轮所在圆的位置关系
( D .外离
)
变 1.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是()A.内含B.外切C.相交D.外离
例 2.右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是
A.外离B.相交
C.外切D.内切
变 2.如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系
是.
例 3.图中圆与圆之间不同的位置关系有()
A.2 种B.3 种C.4 种D. 5 种
变 3. ( 1)大圆半径
为A.外离6,小圆半径为 3,两圆圆心距为10,则这两圆的位置关系为()B.外切C.相交D.内含
(2)已知⊙ O1的半径r为 3cm,⊙ O2的半径 R 为 4cm,两圆的圆心距 O1O2为 1cm,则这两圆的位置关系是()
A.相交B.内含C.内切D.外切
( 3)已知⊙O1与⊙O2的半径分别为5cm和3cm,圆心距O1O27cm ,则两圆的位置关系是()A.外离B.外切C.相交D.内切
例 4. 如图,点A,B在直线MN上,AB11厘米,A B 的半径均为1厘米. A 以每秒2厘米的速度自左向右运动,与此同时, B 的半径也不断增大,其半径r (厘米)与时间t(秒)之间的关系式为r 1 t (t≥0).
(1)试写出点A,B之间的距离d ( 厘米 ) 与时间t ( 秒 ) 之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
M A B N
变 4. 如图,的圆心
A ,
B 在直线
l
上,两圆半径都为
1cm
,开始时圆心距
AB 4cm
,现
⊙ A ,⊙ B
⊙ A 、⊙ B
同时沿直线 l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙ A 运动的时间为秒.
O
1P O
2A B
l
二、圆与圆位置关系的性质
例 5. 已知O1和O
2外切,它们的半径分别为2cm
和
5cm,则O
1O2的长是()
A. 2cm B.3cm C.5cm D.7cm
变 5.O 的半径为 3 cm ,点M是O 外一点, OM 4 cm ,则以M为圆心且与⊙O相切的圆的半径是cm .
例 6. ⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是 _________.
变 6.如图,O1, O2, O3两两相外切, O1的半径 r1 1 , O2的半径 r2 2 , O3的半径 r3 3 ,则△O1O2 O3是()O2
A.锐角三角形B.直角三角形O3
O1
C.钝角三角形D.锐角三角形或钝角三角形
例 7.若⊙ A 和⊙ B 相切,它们的半径分别为 8cm 和 2cm ,则圆心距AB为_______________.
变 7. 已知两圆半径分别为 2 和 3,圆心距为d,若两圆没有公共点,则下列结论正确的是( ) A.0 d 1B.d5C.0 d 1或 d 5D.0≤d 1 或 d5
例 8. 一条皮带安装在半径是 14和 4 的两只皮带轮上 ( 皮带紧绷且不相交 ) ,若皮带在两只轮子切点间的距离是 24,那么两轮圆心间的距离是 ___________.
变 8. ( 1)已知相切两圆的半径分别为 5cm 和 4cm ,这两个圆的圆心距是
OO 的取值范
( 2)已知⊙ O
和⊙ O 的半径分别为
1 和 ,如果两圆的位置关系为相交,那么圆心距
1 2
4 1 2
围在数轴上表示正确的是
.
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
A
B
C
D
第三课时
圆与圆的位置关系课堂检测
课堂检测
1、⊙ O 和 ⊙O, 的半径分别是 3 ㎝和 4 ㎝,如果 OO =7 ㎝,则这两圆的位置关系是(
)
1
2
1 2
A .内含
B 相交
C 外切
D 外离
. .
.
、如图,平面直角坐标系中,⊙ O 半径长为
,点 P a
,0)
,⊙ P 的半径长为
,把⊙ P 向左平移,
2
1
(
2
当⊙ P 与⊙ O 相切时, a 的值为(
)
A .3
B .1
C .1,3
D .± 1,± 3
3、如图,⊙ M 与⊙ N 外切,MNl cm ,若⊙ M 的半径
为
cm ,则⊙ N 的半径为
cm 。
= 0
6
cm 的两个点 A 、B 在直线 l 上.它们分别以
2 cm s 和
1 cm s 的速度在 l 上同时向右
4、如图,相距 2
/ /
平移,当点 A ,B 分别平移到点 A 1,B 1 的位置时,半径为 1cm 的⊙ A 1,与半径为 BB 1 的⊙ B 相切.则
点 A 平移到点 A 1 ,所用的时间为 s .
5、已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线 y=3
x 相切,设
3
半圆 C1、半圆 C2、半圆 C3的半径分别是 r 1、r 2、 r 3,则当 r 1=1 时, r 3=
6、已知⊙O1与⊙O2的半径 r1、 r2分别是方程 x 26x8 0 的两实根,若⊙O1与⊙O2的圆心距d=
5.则⊙O1与⊙ O2的位置关系是 ___________.
、如图,以M(-
5,0)为圆心、
4
为半径的圆与 x 轴交于 A、B 两点, P 是⊙ M上异于 A、B 的一动
7
点,直线PA、PB分别交 y 轴
于C、D,以 CD为直径的⊙ N 与与 x 轴交于 E、F 两点,则 EF 的长()
A.等于
4 2B等于C等于
6
D 随 P 点位置的变化而变化. 4 3..
8、以数轴上的原点O为圆
心,
3
为半径的扇形中,圆心角∠ AOB°,另一个扇形是以点 P 为圆心,
=90
5 为半径,圆心角∠
CPD °,点 P 在数轴上表示实数 a,如图.如果两个扇形的圆弧部分(弧 AB =60
和弧 CD)相交,那么实数 a 的取值范围是.、如图,⊙O、⊙O相交于点 P、Q两点,其中
⊙O的半径 r ,⊙O的半径 r
=2 ,过点Q作CD⊥PQ
9=2,,分别交⊙ O和⊙ O于点 C、D,连结 CP、 DP,过点 Q任作一直线 A 交⊙ O和⊙ O于 A、B,连结AP、
BP、AC、 DB,且 AC与 DB的延长线交于点
E,
()求证:PA
2;()若PQ ,试求∠ E度数。
12=2
PB
10、如图,在 Rt△ABC中,∠ ACB=90°, AC=6cm,BC=8cm. P 为 BC的中点,动点 Q从点 P 出发,沿
射线 PC方向以 2cm/ s 的速度运动,以 P 为圆心, PQ长为半径作圆.设点Q运动的时间为t s.(1)当 t =1.2 时,判断直线 AB与⊙ P 的位置关系,并说明理由;
(2)已知⊙ O为△ ABC的外接圆.若⊙ P 与⊙ O相切,求 t 的值.。