小学六年级奥数课件:代数法解题
- 格式:ppt
- 大小:1.15 MB
- 文档页数:14
第13讲 代数法解题一、知识要点有一些数量关系比较复杂的分数应用题, 用算术方法解答比较繁、难, 甚至无法列式算式, 这时我们可根据题中的等量关系列方程解答.二、精讲精练【例题1】某车间生产甲、乙两种零件, 生产的甲种零件比乙种零件多12个, 乙种零件全部合格, 甲种零件只有54合格, 两种零件合格的共有42个, 两种零件个生产了多少个? 练习1:1、某校参加数学竞赛的女生比男生多28人, 男生全部得优, 女生的43得优, 男、女生得优的一共有42人, 男、女生参赛的各有多少人?2、有两盒球, 第一盒比第二盒多15个, 第二盒中全部是红球, 第一盒中的52是红球, 已知红球一共有69个, 两盒球共有多少个?3、六年级甲班比乙班少4人, 甲班有31的人、乙班有41的人参加课外数学组, 两个班参加课外数学组的共有29人, 甲、乙两班共有多少人?【例题2】阅览室看书的学生中, 男生比女生多10人, 后来男生减少41, 女生减少61, 剩下的男、女生人数相等, 原来一共有多少名学生在阅览室看书?练习2:1、某小学去年参加无线电小组的同学比参加航模小组的同学多5人. 今年参加无线电小组的同学减少51, 参加航模小组的人数减少101, 这样, 两个组的同学一样多. 去年两个小组各有多少人?2、原来甲、乙两个书架上共有图书900本, 将甲书架上的书增加85, 乙书架上的书增加103, 这样, 两个书架上的书就一样多. 原来甲、乙两个书架各有图书多少本?【例题3】甲、乙两校共有22人参加竞赛, 甲校参加人数的51比乙校参加人数的41少1人, 甲、乙两校各有多少人参加?练习3:1、学校图书馆买来文艺书和连环画共126本, 文艺书的比连环画的少7本, 图书馆买来的文艺书和连环画各是多少本?2、某小有学生465人, 其中女生的比男生的少20人, 男、女生各有多少人?【例题4】甲书架上的书是乙书架上的65, 两个书架上各借出154本后, 甲书架上的书是乙书架上的74, 甲、乙两书架上原有书各多少本? 练习4:1、儿子今年的年龄是父亲的61, 4年后儿子的年龄是父亲的41, 父亲今年多少岁?2、某校六年级男生是女生人数的32, 后来转进2名男生, 转走3名女生, 这时男生人数是女生的43. 原来男、女生各有多少人?【例题5】一个班女同学比男同学的32多4人, 如果男生减少3人, 女生增加4人, 男、女生人数正好相等. 这个班男、女生各有多少人?练习5:1、某学校的男教师比女教师的83多8人. 如果女教师减少4人, 男教师增加8人, 男、女教师人数正好相等. 这个学校男、女教师各有多少人?2、某无线电厂有两个仓库. 第一仓库储存的电视机是第二仓库的3倍. 如果从第一仓库取出30台, 存入第二仓库, 则第二仓库就是第一仓库的94. 两个仓库原来各有电视机多少台?三、课后作业1、某车间昨天生产的甲种零件比乙种零件多700个. 今天生产的甲种零件比昨天少101, 生产的乙种零件比昨天增加203, 两种零件共生产了2065个. 昨天两种零件共生产了多少个?2、王师傅和李师傅共加工零件62个, 王师傅加工零件个数的比李师傅的少2个, 两人各加工了多少个?3、第一车间人数的53等于第二车间人数的109, 第一车间比第二车间多50人. 两个车间各有多少人?4、某工厂第一车间的人数比第二车间的人数的54少30人. 如果从第二车间调10人到第一车间, 则第一车间的人数就是第二车间的43. 求原来每个车间的人数.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
六年级奥数思维训练代数法解题
一、尝试练习
1、甲、乙两组共有54人,甲组人数的1/4 与乙组人数的1/5 相等,甲组比乙组少多少人?
2、小明看一本小说,第一天看了全书的1/8 还多16页,第二天看了全书的1/6 少2页,还剩下88页。
这本书共有多少页?
二、训练营地
1、甲、乙两班共有62人参加科技小组活动,甲班参加人数的1/5比乙班参加人数的1/4少2人。
甲、乙两班各有多少人参加科技小组活动?
2、一实验五年级共有学生152人,选出男同学的1/11和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?
3、玩具厂三个车间共同做一批玩具。
第一车间做了总数的2/7 ,第二车间做了1600个,第三车间做的个数是一、二车间总和的一半,这批玩具共有多少个?。
在解题时,我们常常用字母(或符号)来表示数量,并根据题中的等量关系列出方程,然后通过解方程来求出问题的解,这种方法叫做代数法。
在用代数法解题的过程中,通过用字母来代替未知数,使其与已知数同等地参与列式、运算,这样有利于由已知向未知的转化,克服了平时必须避开未知数来列式的不足,使某些较复杂的、隐蔽的数量关系变得简单、明显,降低了思维难度。
用代数法解题的一般步骤:(1)审题,用字母表示所求的数量或有关的未知数;(2)找出题中数量问的相等关系,列出方程;(3)解方程;(4)检验并写出答案。
[例1】有一项工程,甲单独做需36天完成,乙单独做需30天完成, 丙单独做需48天完成。
现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天。
那么,丙休息了[例2] 六年级甲、乙两班学生共有109人,已知甲班男生占甲班人数的乙班女生占乙班人数的则两班共有男生多少人?思路剖析依题意,甲班学生数应是11的倍数,设为11x;乙班的学生数应是9 的倍数,设为9y,,从而有11x+9y=109,求出这个不定方程的整数解,问题就可得到解决。
解答设甲班的学生数为llx,乙班的学生数为9y,依题意有llx+9y=109这个方程可以变为9y=109-llx因为左边是自然数,所以x最大等于9。
当x取1、2、3、4、6、7、8、9 时,右边都不是9的倍数;只有当x=5时,右边等于54,是9的倍数,此时y=6,所以x=5,y=6是这个方程惟一的一组解。
甲班有学生11 x 5=55(人),乙班有学生9×6=54(人)两班共有男生答:两班共有男生60人。
[例3】一个人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,问两种盒子各有多少个?思路剖析把大、小盒子的个数都设出来,结合大、小盒子装的数量及弹子的总数就可列出一个不定方程。
解这个不定方程,就可求出两种盒子各有多少个。
在解题时,我们常常用字母(或符号)来表示数量,并根据题中的等量关系列出方程,然后通过解方程来求出问题的解,这种方法叫做代数法。
在用代数法解题的过程中,通过用字母来代替未知数,使其与已知数同等地参与列式、运算,这样有利于由已知向未知的转化,克服了平时必须避开未知数来列式的不足,使某些较复杂的、隐蔽的数量关系变得简单、明显,降低了思维难度。
用代数法解题的一般步骤:(1)审题,用字母表示所求的数量或有关的未知数;(2)找出题中数量问的相等关系,列出方程;(3)解方程;(4)检验并写出答案。
[例1】有一项工程,甲单独做需36天完成,乙单独做需30天完成,丙单独做需48天完成。
现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天。
那么,丙休息了[例2] 六年级甲、乙两班学生共有109人,已知甲班男生占甲班人数的乙班女生占乙班人数的则两班共有男生多少人?思路剖析依题意,甲班学生数应是11的倍数,设为11x;乙班的学生数应是9 的倍数,设为9y,,从而有11x+9y=109,求出这个不定方程的整数解,问题就可得到解决。
解答设甲班的学生数为llx,乙班的学生数为9y,依题意有llx+9y=109这个方程可以变为9y=109-llx因为左边是自然数,所以x最大等于9。
当x取1、2、3、4、6、7、8、9 时,右边都不是9的倍数;只有当x=5时,右边等于54,是9的倍数,此时y=6,所以x=5,y=6是这个方程惟一的一组解。
甲班有学生11 x 5=55(人),乙班有学生9×6=54(人)两班共有男生答:两班共有男生60人。
[例3】一个人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,问两种盒子各有多少个?思路剖析把大、小盒子的个数都设出来,结合大、小盒子装的数量及弹子的总数就可列出一个不定方程。
解这个不定方程,就可求出两种盒子各有多少个。
代数方法解题【引言】在数学领域,代数方法是一种广泛应用于解决各种数学问题的方法。
它不仅可以帮助我们更好地理解问题,还可以简化问题的解决过程。
本文将介绍代数方法解题的基本原理,以及如何在实际问题中运用代数方法。
【代数方法解题的基本原理】代数方法解题的核心是将问题转化为数学表达式,并通过运算和变换来求解。
这包括以下几个步骤:1.分析问题,找出关键信息,明确已知和未知条件。
2.建立数学模型,将问题转化为代数方程或不等式。
3.化简和整理方程或不等式,寻求解法。
4.求解方程或不等式,得到问题的解答。
【常见代数问题的解决方法】在实际解题过程中,常见的代数问题包括方程与不等式的求解、函数与导数、概率与统计等。
针对这些问题,我们可以采用以下方法:1.方程与不等式的求解:利用代数运算、因式分解、配方法、换元法等方法求解方程和不等式。
2.函数与导数:分析函数的性质,如单调性、奇偶性等;求解函数的极值、最值问题;利用导数研究函数的单调性、极值等问题。
3.概率与统计:运用概率论的基本原理和方法解决随机事件、条件概率等问题;运用统计学方法分析数据,得出结论。
【代数方法在实际应用中的案例分析】以下是一个代数方法在实际问题中的应用案例:问题:一家公司生产的产品销售额与广告投入之间存在一定关系。
已知去年销售额为200万元,广告投入为10万元,今年销售额为250万元,广告投入为15万元。
请问广告投入与销售额之间是否存在线性关系?解答:步骤1:分析问题,找出关键信息。
已知去年和今年的销售额及广告投入金额。
步骤2:建立数学模型。
设广告投入与销售额之间的线性关系为:销售额= a * 广告投入+ b。
步骤3:利用已知条件求解方程。
将去年和今年的数据代入方程,得到以下方程组:200 = a * 10 + b250 = a * 15 + b步骤4:解方程组,求得参数a和b的值。
步骤5:验证线性关系。
将求得的参数a和b带入原方程,分析广告投入与销售额之间的线性关系。
代数法解题1.熟悉代数法解题的基本步骤;2.理解代数法解题的意义,建立用代数法解题的思维方式;3.能较熟练地使用代数法解题。
1.学会利用代数法的思维方式解题是本节课的重点;2.在用代数法解题时,根据题意找到准确的等量关系式是本次课的难点;3.根据题意正确列方程和解方程是本次课的重点和难点。
有一些数量关系比较复杂的应用题,用算术方法解答比较繁、难,甚至无法列式算式,这时我们可根据题中的等量关系列方程解答。
代数法解题,就是用列方程解题。
它以布列方程为前提,先不考虑求得数,只把所求未知数设x。
一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。
列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。
正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。
代数法常用于解决一般应用题、分数和百分数应用题以及行程问题。
在用代数法解应用题时,我们应注意以下几点:(1)认真审题,找准等量关系式列方程。
(2)算出最后的结果最好把答案带入题中进行验算,以此检验方程是否列对以及计算过程中是否出错。
代数法解一般应用题用代数法解一般应用题,最重要的是根据题意找等量关系式。
认真审题是关键。
注意:等量关系式应符合下列关系式:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。
例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?练习1.一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?(1)注意要审题认真,根据题目意思准确找出等量关系式;(2)列出方程并解出来后要注意题目要求的是什么,有两个问题时注意不要漏算,漏答。
第13讲 代数法解题一、知识要点有一些数量关系比较复杂的分数应用题,用算术方法解答比较繁、难,甚至无法列式算式,这时我们可根据题中的等量关系列方程解答。
二、精讲精练【例题1】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有54合格,两种零件合格的共有42个,两种零件个生产了多少个?练习1:1、某校参加数学竞赛的女生比男生多28人,男生全部得优,女生的43得优,男、女生得优的一共有42人,男、女生参赛的各有多少人?2、有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中的52是红球,已知红球一共有69个,两盒球共有多少个?3、六年级甲班比乙班少4人,甲班有31的人、乙班有41的人参加课外数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?【例题2】阅览室看书的学生中,男生比女生多10人,后来男生减少41,女生减少61,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?练习2:1、某小学去年参加无线电小组的同学比参加航模小组的同学多5人。
今年参加无线电小组的同学减少51,参加航模小组的人数减少101,这样,两个组的同学一样多。
去年两个小组各有多少人?2、原来甲、乙两个书架上共有图书900本,将甲书架上的书增加85,乙书架上的书增加103,这样,两个书架上的书就一样多。
原来甲、乙两个书架各有图书多少本?【例题3】甲、乙两校共有22人参加竞赛,甲校参加人数的51比乙校参加人数的41少1人,甲、乙两校各有多少人参加?练习3:1、学校图书馆买来文艺书和连环画共126本,文艺书的比连环画的少7本,图书馆买来的文艺书和连环画各是多少本?2、某小有学生465人,其中女生的23比男生的45少20人,男、女生各有多少人?【例题4】甲书架上的书是乙书架上的65,两个书架上各借出154本后,甲书架上的书是乙书架上的74,甲、乙两书架上原有书各多少本?练习4:1、儿子今年的年龄是父亲的61,4年后儿子的年龄是父亲的41,父亲今年多少岁?2、某校六年级男生是女生人数的32,后来转进2名男生,转走3名女生,这时男生人数是女生的43。