六年级上册-数与代数-知识点梳理
- 格式:docx
- 大小:37.89 KB
- 文档页数:5
六年级数与代数知识点一、整数基本概念与运算整数是由正整数、0和负整数组成的数集合。
在整数中,0是唯一的。
整数之间可以进行加法、减法和乘法运算。
1. 整数的表示方法整数可以用数轴表示,正整数在数轴右侧,负整数在数轴左侧,0则在数轴上。
2. 整数的加法和减法整数的加法和减法遵循以下规则:- 正数与正数相加、相减,结果仍为正数。
- 负数与负数相加、相减,结果仍为负数。
- 正数与负数相加,按照数值大小来进行减法,并将结果的符号与较大数值的符号保持一致。
3. 整数的乘法整数的乘法遵循以下规则:- 正数与正数相乘,结果仍为正数。
- 负数与负数相乘,结果仍为正数。
- 正数与负数相乘,结果为负数。
二、分数概念与运算分数是指有限小数或无限小数的前者代表有理数。
分数由分子和分母组成,分子表示被分的份数,分母表示分成的份数。
1. 分数的表示方法分数可以用分数线表示,分子位于分数线上方,分母位于分数线下方。
2. 分数的加法和减法分数的加法和减法需要先寻找它们的公共分母,然后对于分子进行相应的加法或减法运算,最后得到的分数再进行约分。
3. 分数的乘法和除法分数的乘法只需要将分子与分子相乘,分母与分母相乘,最后得到的结果再进行约分。
分数的除法可以转化为乘以倒数的形式,即将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,最后得到的结果再进行约分。
三、小数概念与运算小数是指小数点后有限或无限位数字的数。
小数可以是有限小数或循环小数。
1. 小数的表示方法小数将整数部分与小数部分用小数点连接起来。
例如:3.14、0.25等。
2. 小数的加法和减法小数的加法和减法与整数和分数的加法和减法类似,需要对齐小数点,进行相应位数的加法或减法运算。
3. 小数的乘法和除法小数的乘法和除法可以转化为整数的乘法和除法进行运算,最后再确定小数点的位置。
四、代数式与代数方程1. 代数式代数式是由数或字母和运算符号通过运算规则连接而成的式子。
人教版六年级数学上册教材分析数与代数的学习重点数与代数是人教版六年级数学上册重要的知识点,本文将从以下三个方面进行分析这一学习重点:一、数与代数的定义和概念数是指用来计数、量度或标记的基本符号,代数是指用字母(或其他符号)表示数的一种数学分支。
在人教版六年级数学上册中,数和代数的学习重点包括了数的认识、数码的意义、数的大小比较、正数、负数、绝对值、代数的概念以及变量等。
其中,绝对值是数与代数中一个比较重要的概念,是限制我们对于数和代数的理解的关键。
二、数与代数的基本运算数学中的运算包括加减乘除四个方面,其中乘除是加减的拓展。
在数与代数的学习中,人教版六年级数学上册将重点介绍了整数加减、正数加减、小数加减、乘除法的计算、式子和算式的概念以及式子计算等。
在实际生活中,加减乘除的运算与我们的各类交易、计算息利息、计算结束日期等与数学紧密相关的问题不可分割。
三、数与代数的应用数与代数的学习不仅仅是为了能够熟练地掌握数与代数的基本定义和运算,还包括了应用部分。
在人教版六年级数学上册中,数与代数的应用主要指代数式的应用、方程式的应用以及小学数学中的简单问题。
在实际应用过程中,数与代数的应用相当广泛。
例如,在家庭预算中,我们需要对收支情况进行计算,而在商业计算中,我们需要对商业活动进行投资和回报的分析。
以此类推。
总之,学习数与代数是中小学阶段数学学习的必经之路,是其他数学知识的基础和纽带。
人教版六年级数学上册重点分析了学习数与代数的必备概念、基本运算和实际应用,希望对学生们有所帮助,更好地掌握数与代数知识,为今后的学习取得更好的成绩打下坚实的基础。
北师大版六年级上册《数与代数》复习课堂笔记一、数与代数的概念1. 整数:正整数、0和负整数。
2. 分数:正分数和负分数。
3. 小数:有限小数和无限小数。
4. 实数:有理数和无理数。
5. 代数:含有未知数的数学表达式。
二、数的运算1. 加法:同号相加,异号相减。
2. 减法:减去一个数等于加上它的相反数。
3. 乘法:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数,0乘以任何数得0。
4. 除法:正数除以正数得正数,负数除以负数得正数,正数除以负数得负数,0除以任何非零数得0。
5. 乘方:n个相同因数的乘积,其中n是正整数。
6. 平方根:一个数的平方根是指乘以自身等于这个数的非负数。
7. 算术平方根:一个正数的算术平方根是指乘以自身等于这个数的非负数。
8. 立方根:一个数的立方根是指乘以自身两次等于这个数的数。
三、代数的运算1. 代数加减法:同号相加,异号相减。
2. 代数乘除法:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数,0乘以任何数得0,负数除以正数得负数,正数除以负数得负数,0除以任何非零数得0。
3. 代数乘方:同底数幂相乘,指数相加;同底数幂相除,指数相减。
4. 代数根式:平方根、立方根等。
四、方程与不等式1. 方程:含有未知数的等式。
2. 一元一次方程:未知数的最高次数为1的方程。
3. 一元二次方程:未知数的最高次数为2的方程。
4. 不等式:表示两个数不相等的式子。
5. 一元一次不等式:未知数的最高次数为1的不等式。
6. 一元二次不等式:未知数的最高次数为2的不等式。
五、函数1. 函数:依赖关系的数学模型。
2. 一次函数:形式为y=kx+b的函数,其中k和b是常数,k≠0。
3. 二次函数:形式为y=ax^2+bx+c的函数,其中a、b、c是常数,a≠0。
4. 反比例函数:形式为y=k/x的函数,其中k是常数。
六、实数与数轴1. 实数:有理数和无理数的集合。
2. 数轴:用来表示实数大小关系的直线。
六年级数与代数知识点数与代数是六年级数学学科中的一个重要知识点。
学好数与代数,可以帮助我们更好地理解和运用数学知识,提高解题能力和逻辑思维能力。
本文将从数的分类、数的运算和代数表达等几个方面,详细介绍六年级数与代数的知识点。
一、数的分类1.自然数:自然数是从1开始,依次向上无限延伸的数,用N表示。
2.整数:整数是由自然数及其相反数组成,包括自然数、0和负整数,用Z表示。
3.分数:分数是由一个整数除以一个正整数得到的数,分数的特点是有分子、分母,分母不为0,用Q表示。
4.小数:小数是有限小数和无限循环小数两种形式。
有限小数是小数部分有限位数的小数,无限循环小数是小数部分有限位数,并在某一位之后开始重复的小数。
二、数的运算1.加法:加法是数的合并运算,对于整数和小数,加法的结果为两数之和;对于分数,加法的结果需要先找到分母的最小公倍数,然后分别将分子乘以对应倍数,最后将分子相加即可。
2.减法:减法是数的相减运算,对于整数和小数,减法的结果为被减数减去减数;对于分数,减法同样需要先找到分母的最小公倍数,然后按照加法的步骤进行计算。
3.乘法:乘法是数的相乘运算,对于整数和小数而言,乘法的结果为两数之积;对于分数,乘法的结果为分子相乘得到新的分子,分母相乘得到新的分母。
4.除法:除法是数的相除运算,对于整数和小数而言,除法的结果为被除数除以除数;对于分数,除法的结果为分子乘以除数的倒数,分母乘以除数的倒数。
三、代数表达代数是一种用字母和数混合表示数的方法,通过代数表达可以简化复杂的计算过程,提高计算效率。
1.代数式:代数式是由数和字母根据代数运算符号组成的式子,如a+b、3a-2b等。
2.代数方程:代数方程是一个等式,其中包含有未知数,如2x+3=7。
通过解方程,可以求出未知数的具体值。
3.代数不等式:代数不等式是一个不等式,其中包含有未知数,如2x+3<7。
通过求解代数不等式,可以找出未知数的取值范围。
第一部分数与代数(一)数的认识知识点一:数的意义和分类自然数、整数、正数和负数、分数、百分数、小数知识点二:计数单位和数位1、计数单位:个、十、百……以及十分之一、百分之一、千分之一……都是计数单位。
“一”是基本单位,其他单位又叫做辅助单位。
2、十进制计数法3、数位:在计数时,计数单位要按照一定的顺序排列起来,它们所在的位置叫做数位。
4、数位顺序表知识点三:数的大小比较知识点四:数的性质1、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
2、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
3、小数点位置移动引起小数大小变化的规律知识点五:因数、倍数、质数、合数1、因数和倍数已知a、b、c均为正整数,且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。
倍数和因数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它的本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
一个数既是它自身的因数,又是它自身的倍数。
2、最大公因数和最小公倍数最大公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
3、质数和合数质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
最小的质数是2。
合数:一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
最小的合数是4。
1既不是质数,也不是合数。
(二)数的运算知识点一:四则运算的意义1、加法的意义:把两个数合并成一个数的运算。
2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。
3、整数乘法的意义:求几个相同加数的和的简便运算。
4、小数乘法的意义:小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;一个数乘小数求这个数的十分之几、百分之几……是多少。
数与代数知识点六年级数与代数是数学的基础,也是六年级学生需要掌握的重要知识点。
本文将从整数、分数、小数、代数式等几个方面详细介绍六年级数与代数的知识点。
一、整数整数是数学中最基本的数,包括正整数、负整数和零。
在六年级数学中,学生需要了解整数的加法、减法、乘法和除法运算规则,并能够灵活运用这些规则解决实际问题。
1. 整数的加法和减法整数的加法遵循“同号相加,异号相减”的原则。
例如,如果两个整数的符号相同,则将它们的绝对值相加,并保持符号不变;如果两个整数的符号不同,则将它们的绝对值相减,并取较大数的符号作为差的符号。
2. 整数的乘法和除法整数的乘法和除法规则与正数相同。
当两个整数相乘时,符号相同则积为正,符号不同则积为负。
当两个整数相除时,符号相同则商为正,符号不同则商为负。
二、分数分数是指一个整体被分成若干等份,其中的一份称为分数。
在六年级数学中,学生需要掌握分数的比较大小、分数的加减乘除等操作。
1. 分数的比较大小当分数的分母相同时,分数的大小取决于分子的大小。
例如,分子较大的分数比较大。
2. 分数的加减乘除分数的加减需要找到它们的公共分母,然后将分子相加或相减。
分数的乘法直接将分子相乘,分母相乘。
分数的除法可以转化为乘以倒数的形式进行计算。
三、小数小数是数的一种表示形式,它比分数更加精确。
在六年级数学中,学生需要理解小数的意义、读写和运算规则。
1. 小数的读写小数的读法可以按照数值逐位读出,小数点后的末位数字一般不读。
例如,0.25读作“二十五百分之一”。
2. 小数的加减乘除小数的加减乘除与整数和分数的运算规则类似。
加减法需要对齐小数点后的位数,乘法直接将小数点前后的数相乘,除法则先将除数乘以适当倍数,使得除数变成整数,再进行除法运算。
四、代数式代数式是一种使用字母和数字表示数的形式。
在六年级数学中,学生需要了解代数式的意义、基本运算法则以及应用。
1. 代数式的意义代数式用字母表示一个未知数或一组未知数,通过变量的取值,可以得到不同的结果。
六年级上册数学知识点思维导图一、数与代数1.1 自然数、零和整数- 自然数和零- 正整数和负整数1.2 分数和小数- 分数的表达和读法- 分数的大小比较- 小数的表示和读法- 小数和分数的转换1.3 数的因数与倍数- 公因数和最大公因数- 公倍数和最小公倍数1.4 等式和不等式- 平方数的性质- 一元一次方程的解法- 一元一次不等式的解法二、图形与几何2.1 直线、线段和射线2.2 角的概念- 角的种类- 角的度量方法2.3 三角形- 三角形的分类- 三角形的性质- 三角形的面积计算2.4 二维和三维图形- 平移、旋转和翻转- 二维和三维图形的展开与拼凑三、数据和统计3.1 数据的收集和整理- 调查和统计- 数据的整理和绘制3.2 数据的分析与应用- 数据的中位数和众数- 数据的均值和范围- 数据的图表分析四、函数关系4.1 函数的概念- 函数的定义和表示- 函数的图像和性质4.2 函数关系与运算- 函数的加法、减法、乘法和除法- 函数的复合和反函数4.3 图像和坐标系- 直角坐标系与函数图像- 图像的平移和变形五、应用题5.1 数学问题的解决方法- 阅读问题和解决问题的步骤5.2 算术和代数问题- 四则运算和代数式的求解- 问题解决中的应用题5.3 几何问题- 图形问题的解决方法- 几何问题中的判断与证明思维导图是一种非常有效的学习工具,可以帮助学生整理复杂的知识点和思路。
本文将以六年级上册数学知识点为例,为您介绍一份思维导图。
本思维导图包含了数与代数、图形与几何、数据和统计、函数关系以及应用题等五个主要部分。
在数与代数部分,我们将介绍自然数、零和整数的概念,以及分数和小数的表示及其转换方法。
还会讲解数的因数与倍数的计算方法,以及等式和不等式的解法。
在图形与几何部分,我们会介绍直线、线段和射线的概念,以及角的种类和度量方法。
还会讲解三角形的分类、性质和面积计算。
此外,我们将帮助学生理解二维和三维图形的平移、旋转和翻转等概念。
数与代数六年级知识点数与代数是数学中的重要概念和技巧。
在六年级中,学生将进一步掌握数与代数的应用和运用。
下面将介绍六年级的数与代数知识点。
一、整数运算整数是正整数、负整数和0的集合。
在六年级中,学生需要掌握整数的四则运算,包括加法、减法、乘法和除法。
他们需要学习如何计算整数的和、差、积和商,以及解决涉及整数的问题。
二、小数运算小数是数的一种表达形式,可以表示数轴上除整数之外的任意数。
在六年级中,学生需要学习小数的加减乘除运算,包括如何对齐小数点、对位相加、相减、相乘和相除。
他们还需要学习如何将分数转化为小数和将小数转化为分数。
三、分数运算分数是数的一种表达形式,表示整体被分成若干个相等的部分。
在六年级中,学生需要学习分数的加减乘除运算,以及解决涉及分数的实际问题。
他们还需要学习如何化简分数,并在计算中注意整数与分数的转换。
四、代数式代数式是用字母表示数的式子。
在六年级中,学生需要学习代数式的基本概念和运算法则。
他们将学习如何代入具体的数值计算代数式的值,以及如何进行代数式的加减乘除运算。
此外,他们还需要学习如何应用代数式解决实际问题。
五、方程方程是一个等式,其中包含未知数。
在六年级中,学生将学习如何解一元一次方程,即含有一个未知数的方程。
他们需要学习应用逆运算的方法解方程,以及解决涉及方程的实际问题。
六、比例与相似比例是两个量之间的比较关系,相似是两个图形之间形状和大小的关系。
在六年级中,学生将学习如何求解比例并进行比例运算,以及如何判断图形是否相似。
他们将学习比例和相似的性质,以及运用比例和相似解决实际问题。
七、平方根平方根是一个数的算术平方等于该数的非负实数解。
在六年级中,学生将学习如何计算平方根,以及如何应用平方根解决问题。
通过学习以上数与代数的知识点,六年级的学生将能够更好地理解和应用数学。
他们将能够解决更复杂的数学问题,并将数学知识应用于实际生活中。
数与代数的学习不仅能够培养学生的逻辑思维和问题解决能力,还能够为他们未来的学习打下坚实的基础。
六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。
其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。
下面将对这些知识点进行总结。
一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。
需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。
2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。
此外,还会接触到小数与整数之间的运算和关系。
3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。
此外,还需要掌握分数的化简和比较大小。
4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。
5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。
6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。
这部分内容主要锻炼学生的应用能力和问题解决能力。
二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。
2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。
3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。
学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。
三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。
学习必备欢迎下载六年级数学总复习主要知识点(数与代数部分)总复习主要知识点(数与代数部分)第一章数和数的运算一概念(一)整数1 、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成;1自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数;自然数的个数是无限的,没有最大的自然数;自然数的基本单位:任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位;1也是最小的一位数;“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有;“0”还可以表示起点、分界点等;“0”是最小的自然数;自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数;2正数正数的定义以前学过的8、16、200……..这样的数叫做正数;正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八;“+”号一般可以省略不写;2负数负数的定义像-1、-5、-132……这样的数叫做负数;“一”叫负号;负数的写法和读法负数前面加“一”号,例如:-15读作:负十五;数字越大的负数反而越小;“0”既不是正数,也不是负数;4整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数;2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级;个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿;整数、小数都是按照十进制写出的数,其中一个、十、百…….是整数的;计数单位是按一定顺序排列的;数位各个计数单位所占的位置叫数位;如9357中的“5”在右起第二位,即“5”所在的数位是十位;位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数;十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法;2整数的读法和写法整数的读法读整数时,从高位到低位,一级一级地读,读亿级、万级时,按照个级的读法去读,只要在后面加上“亿”字、“万”字就可以了,每一级末尾的“0”都不读出来,其他数位有一个“0”或连续几个“0”都只读一个零;整数的写法写整数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;3、整数大小的比较比较两个整数的大小,整数数位多的数比较大;整数数位相同的,要从高位依次看相同数位上的数字,相同数位上数字大的数比较大;知识点二小数1、小数的意义把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示;一位小数表示十分之几,表示百分之几,三位小数表示千分之几…….1、小数的读法和写法小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十;2小数的读法和写法读小数时,整数部分按整数的读法读,整数部分是0的读作“零”,小数点读作“点”,小数部分可以顺次读出每个数位上的数字;写小数时,整数部分按整数的写法写,整数部分是零的要写“0”,小数点点在个位的右下角,然后依次写出小数部分每个数位上的数字;3、小数大小的比较比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……4、数的改写与求近似数1数的改写与省略这个数某一位后面的尾数写成近似数的方法为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数;如:2365500=万改写用“万”作单位的数;有时还可以根据需要,省略这个数某一的尾数,写成近似数;如:2365500≈237万省略万位后面的尾数,有时还要求保留一位小数的近似数;如:≈保留一位小数;取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略;2 较大数的“改写”与“求近似数”的异同相同点都是改变原数的计数单位;根据要求用“亿”或“万”作单位;不同点“改写”只改变数的单位,不改变数的大小,用“=”表示;“求近似数”是用四舍五入法或“进一法”、“去尾法”,既改变了数的单位,又改变数的大小,用“≈”表示;5、小数的分类与性质1小数的分类按小数的整数部分是否为0,小数分为纯小数和带小数;纯小数整数部分是0的小数叫做纯小数;带小数整数部不是0的小数叫做带小数;纯小数都小于1,带小数都大于或等于1;按小数部分的倍数是否有限,小数可以分为有限小数和无限小数;有限小数小数部分的位数有限的小数,叫做有限小数;无限小数小数部分的位数无限的小数,叫做无限小数;无限小数又可以分为无限不循环小数和无限循环小数两类;循环小数一个无限小数,从小数部分的某一位起,一个数定或几个数字依次不断地重复出现,这样的小数叫做无限循环小数;循环节一个循环小数的小数部分依次不断地重复出现的数字,叫做这个循环小数的循环节;循环小数的简便写法写循环小数时,为了简便,一般只写出它的第一个循环节,并在循环节的首位和末尾数字上各点一个小圆点;2小数的性质小数的末尾添上“0”或者去掉“0”,小数的大小不变,注意:是在“小数的末尾”而不是“小数点的后面”;3小数点位置的移动引起小数的大小变化小数点向右移动一位、二位、三位、…….小数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……小数就缩小到原来的、、……4常见的质量单位、人民币单位、时间单位及各单位间的坦率5平年、闰年的判断方法公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年;知识点三分数1、分数的意义把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数;2、把单位“1”平均分成若干份,表示其中一份的分数,叫做;3、分数的分类1真分数分子比分母小的分数叫做真分数;2假分数分子比分母大或者与分母相等的分数叫做假分数;4、分数的分子一分母同时乘或除以一个相同的数0除外,分数的大小不变,这叫做;5、分数与除法的关系 1分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号;2在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义;6、约分把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分;7、最简分数分子、分母是互质数的分数叫做最简分数;8、通分把异分母分数分别化成和原来分数相等的同分母分数,叫做通分;9、分数大小的比较分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大;10、分数化小数根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数;分数化小数有两种情况:一般是分子除以分母能除尽,得到有限小数,如=;一种是分子除以分母除不尽,得到无限小数,如=……11、小数化为分数原来有几位小数,就在1的的后面写上几个0母,把原来的小数点去掉作分子,化成分数后,能约分的要约分;12、与小数基本性质的关系分数的基本性质与小数的基本性质是一致的;小数的末尾添上“0”或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大或缩小到原来的10倍或、100倍或、1000倍或……以下数与代数的知识网络图:人教版小学数学六年级数与代数知识梳理二数与代数知识点总结:数的认识1,总览:3、计数单位:个,十,百,千,万,十万,百万,千万,亿……十分之一,百分之一,千分之一,万分之一……4、怎么比较两个数的大小:①整数的大小比较;②小数的大小比较:先比较整数部分,整数部分相同再比较小数部分;③分数的大小比较:同分母的比较分子大小,异分母的先通分再比较,又或者比较;两个数距离到“1”的大小;5、分数的基本性质商不变性质:分子分母同时乘以或除以同一个数,分数大小不变;6、小数的基本性质:在小数末尾注意不是小数点后添加或减去0,小数的大小不变;7、小数点移动对小数大小的影响:小数点向右移动,小数扩大;小数点向左移动,小数缩小;移动一位扩大缩小10倍,两位扩大缩小100倍……8、因数和倍数:如果一个数能表示成两个数的乘积,那么这两个数是这个数的因数,这个数是这两个数的倍数;例:a×b=c a,b是c的因数,c是a,b的倍数;注:因数和倍数只针对整数来说,不包括小数,1是任何数的因数;9、求一个数的因数可以用短除法,求多个数的最大公因数或者最小公倍数都可以用短除法求;10、质数,合数:只有1和本身两个因数的数叫质数;除了1和本身外还有其他因数的教合数;注:1既不是合数,也不是质数;11、质因数:既是因数同时也是质数的;12、偶数和奇数:能被2整除的数是偶数,不能被2整除的是奇数;所有数不是奇数就是偶数,0是偶数;13、能被2整除的数的特征:结尾是0、2、4、6、8的数;14、能被3整除的数的特征:各个数位上的数相加是3的倍数的数;15、能被5整除的数的特征:结尾是0或者5的数;数与代数知识点总结:数的运算1、四则运算顺序:有括号的先算括号内的,没有括号的先乘除,后加减;2、小数乘、除法:小数乘、除法和整数乘、除法运算方法类似,可以把小数看成整数,运用整数乘除法计算出来;3、如何快速得出小数乘法得数的位数:小数乘法位数多少取决于两个乘数小数位数的和,但如果小数末尾的数字相乘有0出现的,位数就要减去0的个数;4、如何快速得出整数除法商的位数:商的位数取决于被除数与除数的位数差,如果被除数左边第一位比除数左边第一位小,那么商的位数=被除数与除数的位数差;如果被除数左边第一位比除数左边第一位大,那么商的位数=被除数与除数的位数差+1.5、分数除法:除以一个数等于乘以这个数的倒数;6、运算定律:①加法交换律:a+b=b+a②加法结合律:a+b+c=a+b+c③乘法交换律:a×b=b×a④乘法结合律:a×b×c=a×b×c⑤乘法分配律:a×c+b×c = a+b×c7、添括号及去括号对于运算顺序的影响:当式子中只有同级运算时,那么如果括号前是加法或者乘法时,去括号,括号内符号不改变;如果括号前是减法或者除法时,去括号,括号内符号改变;如果所添加的括号前面是加法或者乘法是,括号内符号不改变,如果所添加括号前是减法或除法时,括号内符号改变;。
六年级上册数与代数总结
一、数与代数的基础概念
1. 整数:包括正整数、0和负整数。
整数的加减法、乘除法等基本运算是数与代数中的基础运算。
2. 分数:表示部分与整体的数,有真分数、假分数和带分数等形式。
分数的加减法、乘除法等也是数与代数中的重要运算。
3. 小数:表示十分之几、百分之几、千分之几的数。
小数的加减法、乘除法等运算也是数与代数中的基础运算。
4. 数的四则运算:包括加法、减法、乘法和除法。
在数与代数中,四则运算是基础中的基础,对于后续的学习至关重要。
二、数的性质和运算律
1. 数的交换律、结合律和分配律:这些运算律是数与代数中的基本性质,对于理解复杂的数学问题至关重要。
2. 数的倍数和因数:理解倍数和因数的概念,有助于解决与分数和小数相关的问题。
3. 数的最大公约数和最小公倍数:对于整数,两个数的最大公约数和最小公倍数是解决许多问题的关键。
三、代数式与方程
1. 代数式:用字母表示的数学表达式,包括单项式、多项式等。
理解代数式的概念,是理解和解决代数问题的关键。
2. 方程:含有未知数的等式。
解方程是代数中的基本技能,对于解决实际问题具有重要意义。
3. 方程的解法:包括代入法、消元法等基本方法,这些方法在解决复杂的代数问题时非常有用。
四、总结
六年级上册的数与代数内容是数学学习的基础,对于学生来说非常重要。
掌握整数、分数、小数的基本概念和四则运算,理解数的性质和运算律,掌握代数式与方程的概念和解法,都是为后续的数学学习打下坚实的基础。
在学习过程中,学生应积极思考,多做练习,提高自己的数学思维能力。
新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。
性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。
此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。
例子:比较分数3/4和6/8。
虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。
2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。
乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。
例子:计算1/2 + 1/3。
首先通分,得到3/6 + 2/6 = 5/6。
3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。
转换:百分数可以方便地转换为小数和分数,反之亦然。
例如,25%等于0.25或1/4。
例子:某班有50名学生,其中40名通过了数学考试。
求该班的通过率。
根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。
(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。
运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。
例子:计算3 + 5 - 2 = 6。
2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。
性质:小数可以表示分数和非整数的有理数,具有十进制的特点。
运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
六年级上册数学知识点总结一、数与代数1. 分数的基本概念- 理解分数的意义,分子、分母和分数线的表示。
- 掌握分数的读法和写法。
- 了解真分数、假分数和带分数的区别。
2. 分数的四则运算- 分数的加法和减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先找公共分母,再进行计算。
- 分数的乘法:分子乘分子,分母乘分母,结果化简为最简分数。
- 分数的除法:除以一个分数等于乘以这个分数的倒数。
- 混合运算:按照先乘除后加减的顺序进行计算,括号内的运算优先。
3. 小数的基本概念- 理解小数的意义,小数点的表示。
- 掌握小数的读法和写法。
4. 小数的四则运算- 小数的加法和减法:对齐小数点进行加减。
- 小数的乘法:按整数乘法规则计算,然后根据小数位数确定小数点位置。
- 小数的除法:除数变为倒数,按分数除法规则进行计算。
5. 比例与百分数- 理解比例的概念,掌握比例的表示方法。
- 学会解比例,即根据已知比例关系求解未知数。
- 理解百分数的意义,掌握百分数的读法和写法。
- 学会将百分数转换为分数或小数。
6. 代数初步- 理解用字母表示数的概念。
- 学会列代数式,如 a+b、2a 等。
- 掌握等式的基本性质,如等式两边同时加减同一个数或同一个代数式,等式仍然成立。
二、几何1. 平面图形的认识- 认识正方形、长方形、三角形、圆等基本图形。
- 理解图形的对称性,能够识别轴对称图形。
2. 面积的计算- 掌握长方形和正方形的面积公式:面积 = 长× 宽。
- 学会计算三角形的面积:面积 = 底× 高÷ 2。
- 了解圆的面积公式:面积= π × 半径²。
3. 体积的计算- 掌握长方体和正方体的体积公式:体积 = 长× 宽× 高。
- 了解圆柱体的体积公式:体积 = 底面积× 高。
4. 角度的初步认识- 理解角的概念,学会用量角器测量和作图。
人教版数学六年级上册思维导图全册第一章数与代数1.1 整数的认识1.2 分数的认识1.3 小数的认识1.4 数的运算1.5 方程与不等式第二章几何与图形2.1 线段、射线、直线2.2 角的认识2.3 三角形的认识2.4 四边形的认识2.5 圆的认识2.6 立体图形的认识第三章统计与概率3.1 数据的收集与整理3.2 数据的表示3.3 数据的分析3.4 概率的初步认识第四章实践与综合应用4.1 实践活动4.2 综合应用题4.3 数学探究第五章复习与检测5.1 复习内容5.2 检测题5.3 解答与提示人教版数学六年级上册思维导图全册第一章数与代数1.1 整数的认识正整数、负整数、零整数的比较整数的加减法1.2 分数的认识分数的意义分数的表示方法分数的加减法1.3 小数的认识小数的意义小数的表示方法小数的加减法1.4 数的运算四则运算运算顺序估算与精算1.5 方程与不等式等式与不等式的概念一元一次方程的解法不等式的解法第二章几何与图形2.1 线段、射线、直线定义与性质相交、平行、垂直2.2 角的认识角的分类角的度量角的计算2.3 三角形的认识三角形的分类三角形的性质三角形的面积2.4 四边形的认识四边形的分类四边形的性质四边形的面积2.5 圆的认识圆的定义与性质圆的周长与面积圆的割线、切线、弦2.6 立体图形的认识立体图形的分类立体图形的性质立体图形的体积与表面积第三章统计与概率3.1 数据的收集与整理数据的收集方法数据的整理与分类3.2 数据的表示表格、图表、图形数据的对比与分析3.3 数据的分析平均数、中位数、众数数据的波动与趋势3.4 概率的初步认识概率的定义概率的计算概率的应用第四章实践与综合应用4.1 实践活动实际问题解决实验与探究4.2 综合应用题多步骤问题解决实际应用题4.3 数学探究探究方法与技巧数学规律的发现与应用第五章复习与检测5.1 复习内容各章节重点知识回顾知识点之间的联系与区别5.2 检测题选择题、填空题、解答题各章节综合应用题5.3 解答与提示试题解答步骤与思路易错点与注意事项这份思维导图涵盖了人教版数学六年级上册的主要知识点,希望对你有所帮助。