判别式法求函数值域
- 格式:doc
- 大小:96.00 KB
- 文档页数:2
四类换元法1、一般换元;2、双换元;2、三角换元; 4、整体换元。
一、一般换元例1、求函数1--=x x y 的值域。
二、三角换元两个重要公式 1cos sin 22=+x xx x 22cos 1tan 1=+(常出现在竞赛中) 例2、求函数22x x y -+=例3、(2011高中联赛)函数11)(2-+=x x x f 的值域为_____________三、双换元例4、求函数31++-=x x y 的值域例5、求函数x x y -+-=363的值域。
四、整体换元例6、求函数5)4)(3)(2)(1(+++++=x x x x y 的值域。
判别式法/万能K 法原理:方程有解:一、分式型的值域形如fex dx c bx ax y ++++=22(d a ,不同时为零)的二次分式函数,可转化成如0)()()(2=++y c x y B x y A 的形式,视为关于x 的一元二次方程,对y 使用判别式0≥∆,可得y 的取值范围。
例1、求函数12222++-=x x x y 的值域。
例2、求函数122+++=x x xx y 的值域例3、求函数xx x x y ++-=2222在)2,2(-上的值域/最大、最小值。
例4、若函数18log )(223+++=x n x mx x f 的定义域为R ,值域为]2,0[,求n m ,的值。
二、可化为分式型的值域 形如2222fyexy dx cy bxy ax M ++++=(d a ,不同时为零)的式子,分子分母同除2y 齐次化后得到f yx e y x d c y x b y x a M ++++=)()()()(22,令t y x =,则化为一元的二次型分式f et dt c bt at M ++++=22。
例5、设+∈R y x ,,则代数式y x y y x x 222+++的最大值为______________.例6、若对任意非零实数y x ,不等式xy x y x a 4)5(222+≤+恒成立,则a 的最大值为___________(两种方法)例7、若R y x ∈,,求561045),(22++-+-=y x y xy x y x f 最小值。
重难2-1 函数值域的求法8大题型函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有 (1)y cx d=+或cx d y ax b +=+的结构,可用cx d t +=”换元;(2)y ax b cx d =+±+,,,a b c d 均为常数,0,0a c ≠≠),可用“cx d t +=”换元;(3)22y bx a x =-型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x =+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b+(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如0)y ax b ac =+<的函数可用函数单调性求值域;(2)形如by ax x=+的函数,当0ab >时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解; 当0ab <时,by ax x=+在(,0)-∞和(0,)+∞上为单调函数,可直接利用单调性求解。
百花园地新课程NEW CURRICULUM判别式法是求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域的常用方法。
但是很多学生在学习和运用判别式法的过程中,发现运用判别式法求值域时,有时候是对的,有时候又是错的,其中的原因究竟为何并不清楚,后来干脆不用判别式法而改用其他方法。
其实只要你掌握了判别式法的理论依据及易错点,一般来说,求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域还是比较方便的。
下面就本人对判别式法的一些理解,来分析一下为什么用判别式法有时是对的,有时候又是错的。
首先,让我们通过一道例题来看一下,判别式法求形如y =ax 2+bx+c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数值域的一般步骤及其理论依据。
例1:求函数y =x 2+x -1x 2+x -6的值域。
解:由y =x 2+x -1x 2+x -6可得(y -1)x 2+(y -1)x -6y +1=0★10当y -1=0即y =1时,★式可化为-5=0显然不成立。
20当y -1≠0即y ≠1时,★式为关于x 的一元二次方程Δ=(y -1)2-4(y -1)(1-6y )≥0得y ≥1或y ≤15由10、20可得y ∈(-∞,15)∪(1,+∞)即所求函数的值域为y ∈(-∞,15)∪(1,+∞)。
例2:求函数y =2x 2-x +1x 2+2x -3的值域。
解:由y =2x 2-x +1x 2+2x -3可得(y -2)x 2+(2y +1)x -3y -1=0★10当y -2=0即y =2时,★式可化为5x -7=0得x =75因为函数y =2x 2-x +1x 2+2x -3的定义域为(-∞,-3)∪(-3,1)(1,+∞)而x =75∈(-∞,-3)∪(-3,1)(1,+∞)所以,y =2符合题意。
20当y -2≠0即y ≠2时,★式为关于x 的一元二次方程Δ=(2y +1)2+4(y -2)(3y+1)≥0得y ≥2+11√4或y ≤2-11√4由10、20可得y ≥2+11√4或y ≤2-11√4即所求函数的值域为(-∞,2-11√4]∪[2+11√4,+∞)注:由上述例1和例2可以看出,用判别式法求值域大致可分为四步:1.将分式形如y =ax 2+bx +c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数转化为关于x 的整式方程(dy-a )x 2+(ye-b )x +yf -c =0★。
用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程...(2..y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法就是要验证△=0时对应的y 值,该文中就是这样的说明的:由于函数变形为方程时不就是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不就是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不就是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3与-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程,显然可以验证x=3与x= -1不就是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y)≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R ,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程(....2.y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3 求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3和-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程, 显然可以验证x=3和x= -1不是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y )≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
判别式法求函数值域 [6]
把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0∆≥,从而求得原函数的值域,这种方法叫做判别法。
形如
2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为的函数常用此法。
此类问题分为两大类:一类为分子和分母没有公因式一般可使用判别式0∆≥解得,但要注意判别式∆中二次项系数为零和不为零两种情况;另一类为分子和分母中有公因式,约去因式回到上述方法解决。
但值得注意的是函数的定义域问题。
例1、求函数22y=3
x x +的值域。
分析:函数22y=3x x +形如2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为,且定义域为全休实数,因此可用判别式法求解。
解:由22y=3
x x + 得 2320yx y x +-= 当y = 0 时, x = 0
当0y ≠时,由0∆≥ 得24120y -≥
∴33
y -≤≤
∴函数22y=3x x +的值域为|33y y ⎧⎪-≤≤⎨⎪⎪⎩
⎭。
例2、求函数22(1)(2)(1)
x y x x +=--的值域。
分析:察看函数22(1)(2)(1)x y x x +=
--可知,分子和分母存在公因式1x +,因为分母不为0,则有10x +≠,因此可以分子和分母同时约去公因式1x +。
从而原函数就等价为2(2)(1)
y x x =--,再用判别式法去解。
解:由22(1)(2)(1)x y x x +=--=2(2)(1)x x --=2232
x x -+ 得
23220yx yx y -+-= ∵当0y =时,-2 = 0 ,不成立 当0y ≠时,由0∆≥,得2(3)4(22)y y y ---=280y y +≥ ∴8y ≤-或0y ≥ 由于0y ≠ ∴函数22(1)(2)(1)x y x x +=--的值域为{}|80y y y ≤->或。