判别式法求函数值域
- 格式:doc
- 大小:96.00 KB
- 文档页数:2
四类换元法1、一般换元;2、双换元;2、三角换元; 4、整体换元。
一、一般换元例1、求函数1--=x x y 的值域。
二、三角换元两个重要公式 1cos sin 22=+x xx x 22cos 1tan 1=+(常出现在竞赛中) 例2、求函数22x x y -+=例3、(2011高中联赛)函数11)(2-+=x x x f 的值域为_____________三、双换元例4、求函数31++-=x x y 的值域例5、求函数x x y -+-=363的值域。
四、整体换元例6、求函数5)4)(3)(2)(1(+++++=x x x x y 的值域。
判别式法/万能K 法原理:方程有解:一、分式型的值域形如fex dx c bx ax y ++++=22(d a ,不同时为零)的二次分式函数,可转化成如0)()()(2=++y c x y B x y A 的形式,视为关于x 的一元二次方程,对y 使用判别式0≥∆,可得y 的取值范围。
例1、求函数12222++-=x x x y 的值域。
例2、求函数122+++=x x xx y 的值域例3、求函数xx x x y ++-=2222在)2,2(-上的值域/最大、最小值。
例4、若函数18log )(223+++=x n x mx x f 的定义域为R ,值域为]2,0[,求n m ,的值。
二、可化为分式型的值域 形如2222fyexy dx cy bxy ax M ++++=(d a ,不同时为零)的式子,分子分母同除2y 齐次化后得到f yx e y x d c y x b y x a M ++++=)()()()(22,令t y x =,则化为一元的二次型分式f et dt c bt at M ++++=22。
例5、设+∈R y x ,,则代数式y x y y x x 222+++的最大值为______________.例6、若对任意非零实数y x ,不等式xy x y x a 4)5(222+≤+恒成立,则a 的最大值为___________(两种方法)例7、若R y x ∈,,求561045),(22++-+-=y x y xy x y x f 最小值。
重难2-1 函数值域的求法8大题型函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有 (1)y cx d=+或cx d y ax b +=+的结构,可用cx d t +=”换元;(2)y ax b cx d =+±+,,,a b c d 均为常数,0,0a c ≠≠),可用“cx d t +=”换元;(3)22y bx a x =-型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x =+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b+(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如0)y ax b ac =+<的函数可用函数单调性求值域;(2)形如by ax x=+的函数,当0ab >时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解; 当0ab <时,by ax x=+在(,0)-∞和(0,)+∞上为单调函数,可直接利用单调性求解。
百花园地新课程NEW CURRICULUM判别式法是求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域的常用方法。
但是很多学生在学习和运用判别式法的过程中,发现运用判别式法求值域时,有时候是对的,有时候又是错的,其中的原因究竟为何并不清楚,后来干脆不用判别式法而改用其他方法。
其实只要你掌握了判别式法的理论依据及易错点,一般来说,求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域还是比较方便的。
下面就本人对判别式法的一些理解,来分析一下为什么用判别式法有时是对的,有时候又是错的。
首先,让我们通过一道例题来看一下,判别式法求形如y =ax 2+bx+c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数值域的一般步骤及其理论依据。
例1:求函数y =x 2+x -1x 2+x -6的值域。
解:由y =x 2+x -1x 2+x -6可得(y -1)x 2+(y -1)x -6y +1=0★10当y -1=0即y =1时,★式可化为-5=0显然不成立。
20当y -1≠0即y ≠1时,★式为关于x 的一元二次方程Δ=(y -1)2-4(y -1)(1-6y )≥0得y ≥1或y ≤15由10、20可得y ∈(-∞,15)∪(1,+∞)即所求函数的值域为y ∈(-∞,15)∪(1,+∞)。
例2:求函数y =2x 2-x +1x 2+2x -3的值域。
解:由y =2x 2-x +1x 2+2x -3可得(y -2)x 2+(2y +1)x -3y -1=0★10当y -2=0即y =2时,★式可化为5x -7=0得x =75因为函数y =2x 2-x +1x 2+2x -3的定义域为(-∞,-3)∪(-3,1)(1,+∞)而x =75∈(-∞,-3)∪(-3,1)(1,+∞)所以,y =2符合题意。
20当y -2≠0即y ≠2时,★式为关于x 的一元二次方程Δ=(2y +1)2+4(y -2)(3y+1)≥0得y ≥2+11√4或y ≤2-11√4由10、20可得y ≥2+11√4或y ≤2-11√4即所求函数的值域为(-∞,2-11√4]∪[2+11√4,+∞)注:由上述例1和例2可以看出,用判别式法求值域大致可分为四步:1.将分式形如y =ax 2+bx +c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数转化为关于x 的整式方程(dy-a )x 2+(ye-b )x +yf -c =0★。
用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程...(2..y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法就是要验证△=0时对应的y 值,该文中就是这样的说明的:由于函数变形为方程时不就是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不就是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程...(.y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少有一.........根不为...2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不就是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3与-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程,显然可以验证x=3与x= -1不就是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y)≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
用判别式法求函数值域的方法例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21>0 ∴函数的定义域为R ,将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0,我认为在此后应加上:关于..x .的方程(....2.y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解....例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用....,同时也暴露出作者的思维过程,不能略去。
思考之二:对于形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。
但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢?我认为有关形如y=fex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3 求函数求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3}由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少.......有一根不为.....2.且不为...-.3.(1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1(2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52 由上可知:原函数的值域为{y|y ≠1, y ≠52} 上述作题步骤也适用于分子分母没有公因式的情况,例4 求函数y=32122--+-x x x x 的值域 解:由已知得x ≠-1且x ≠3,将原函数化为(y-1)x 2-(2y-1)x-3y-1=0由题意得关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0有解且至少有一解不为3和-1(1)当y=1时,x= -4,∴y 可以取1(2)当y ≠1时,关于x 的方程(y-1)x 2-(2y-1)x-3y-1=0为一元二次方程, 显然可以验证x=3和x= -1不是该方程的解因此只需△≥0即可,以下过程略思考之三:该方法的适用范围不仅适用于分式形式,对于二次函数....同样适用, 如:求函数y=x 2-3x+5的值域解:由已知得关于x 的方程x 2-3x+5-y=0有实数解,因此△≥0即(-3)2-4(5-y )≥0∴y ≥411 ∴所求函数的值域为{y| y ≥411} 练习: 求函数322122+-+-=x x x x y 的值域。
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
浅析求函数值域的几种办法函数是中学数学的重要内容,函数的值域是函数概念的三要素之一。
一般地,求函数值域的问题可以转化为解不等式、求反函数的定义域、求最值、判断函数的单调区间、一元二次方程有实根的判别式0的应用、用新变量代换函数式中的某些量、函数的有界性、画函数的图像等等,在数学思想方法上是融会贯通的。
一.反函数法利用反函数的定义域求原来函数的值域。
互为反函数的两个函数,原函数的定义域是它的反函数的值域,原函数的值域是它的反函数的定义域,因此只要求出反函数的定义域,就求出了原函数的值域,这样求函数的值域的问题便得以解决。
例1.求y=函数的值域.分析:函数y=的反函数为y=log,且其定义域为.∴函数的值域为.二.不等式法根据完全平方数、算术平方根为非负数等特点,先由函数的定义域,列出满足条件的不等式或不等式组,而后解不等式或不等式组,判断函数的值域,有的题目也可以直接由函数的自变量取值范围观察确定函数的值域。
还有些题目可以直接由均值不等式求出函数的值域。
例2求函数的值域.解:∵,故值域为.三.用求函数最值的方法求函数的值域函数的最大值与最小值是中学数学的知识点,最值问题涉及中学数学的各个分支,融会了众多数学思想和解题方法,构成了中学数学中重要的横向知识体系,它对于求一部分函数的值域有很重要的作用。
例3.求函数y=的值域.解 y=,∴当x=2时,=3;当x=0时,=.∴函数的值域为[].四.单调性法函数的单调性是函数的重要性质,利用函数在给定区间的单调性来求值域是常用的方法,只要知道函数在给定的区间的增减性,就可以首先确定函数的最大值或最小值或最大值与最小值,然后确定函数的值域.例4.求函数的值域,解设,,易知它是定义域内为增函数,从而,.在上也为增函数,而且,故函数的值域为.五.判别式法把已知函数看做是以x为未知数,以y为参数的方程,进行恒等变形,得到关于x的一元二次方程,再利用一元二次方程有实根的判别式,列出关于的不等式,解不等式求函数的值域.例5.求函数的值域.解:整理得.当时,,得;当时,x=-.又当y=1时,x=0;y=时,x=-1,0与-1在定义域内.∴值域为.六.换元求函数值域的方法以新变量代换函数式中的某些量,使函数转为以新变量为自变量的形式。
高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。
例1:求函数y=x+1的值域。
解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。
例2:求函数y=1/x的值域。
解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。
解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。
注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。
二、配方法:配方法式求“二次函数类”值域的基本方法。
形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。
例1:求函数y=x2-2x+5,x∈[-1,2]的值域。
解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。
变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。
解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。
例:已知函数f(x)=sinx+cosx,求函数的值域。
求函数值域的常用方法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1 求函数y = 3 -x 的值域。
解: x ≥0 ∴- x ≤0 3- x ≤3故函数的值域是:[ -∞,3 ]2 、配方法配方法是求二次函数值域最基本的方法之一。
例2 、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 3 、判别式法例3 求函数y = 2211x x x +++的值域。
解:原函数化为关x 的一元二次方程(y-1 )2x -x+(y - 1 )= 0(1)当y ≠1时, x ∈R ,△ = (-1)2-4(y-1)(y-1) ≥0 解得:21≤y ≤23 (2)当y=1,时,x = 0,而1∈[ 21, 23] 故函数的值域为[21,23] 例4求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1) x ∈R ,∴△=4(y+1)2-8y ≥0 解得:1-2≤y ≤1+2但此时的函数的定义域由x (2-x ) ≥0,得:0≤x ≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△ ≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[21,23]。
可以采取如下方法进一步确定原函数的值域。
0≤x ≤2,∴y=x+)2(x x - ≥0,∴y min =0,y=1+2代入方程(1),解得:1x =222224-+∈[0,2],即当1x =222224-+时,原函数的值域为:[0,1+2]。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
Җ㊀山东㊀马建国㊀㊀求解函数值域是函数学习的一个关键环节,正确求解值域对函数的运用和计算都十分重要,如果值域的求解错误,运用过程可能会受到阻碍.因此,在教学中应注重函数值域求解方法的选择,化繁为简,提高解题效率.本文从求解函数值域的三种典型方法着手进行研究.1㊀换元法换元法是指将函数中某个式子看成一个整体,用一个变量去替换它,从而将问题进行简化.在运用换元法求函数值域的过程中,通常是将复杂的复合函数进行换元,然后根据新函数的定义域对函数值域进行求解.例1㊀已知函数y=x2+x2-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x2-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件得出原函数的值域.解㊀令x2-1=t,则x2=t2+1,所以y=t2+t+1.又因为tȡ0,所以y=t2+t+1=(t+12)2+34ȡ1,则函数y=x2+x2-1的值域是[1,+ɕ).例2㊀已知函数y=2x-x-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件,得出原函数的值域.解㊀因为x-1=t,x=t2+1,所以y=2(t2+1)-t=2(t-14)2+158.又因为tȡ0,所以yȡ158,则函数y=2x+x-1的值域是[158,+ɕ).2㊀判别式法判别式法是在一元二次方程中,判断方程有没有根以及有几个根的方法.当b2-4a c<0时,方程无实根;当b2-4a c=0时,方程有两个相等的实根;当b2-4a c>0时,方程有两个不相等的实根.在利用判别式法求值域的过程中,首先要构造出一个一元二次方程(将y看作常数),利用判别式Δȡ0,求得函数的值域.例3㊀已知函数y=2x1+x2,求解该函数的值域.分析㊀通过观察可知目标函数是分母为一元二次函数的分式函数,因此先将函数变形为一元二次方程,即y x2-2x+y=0,然后根据y=0和yʂ0的情况进行分析,同时利用判别式法对一元二次方程的根进行判断,从而可以得出函数的值域.解㊀因为y=2x1+x2,所以y(1+x2)=2x,即y x2-2x+y=0.当y=0时,-2x=0,则x=0.当yʂ0时,根据Δ=4-4y2ȡ0,得-1ɤyɤ1.综上所述,函数y=2x1+x2的值域是[-1,1].例4㊀已知函数y=3x2+3x+1x2+x+1,求解该函数的值域.分析㊀已知函数是分子㊁分母均为一元二次函数的分式函数,可以利用判别式法进行值域求解,先将函数变形为一元二次方程,即(y-3)x2+(y-3)x+y-1,再根据y-3=0和y-3ʂ0的情况分析,从而得出函数的值域.解㊀因为y=3x2+3x+1x2+x+1,所以(y-3)x2+(y-3)x+y-1=0.当y-3=0时,y=3,3-1=0不存在.当y-3ʂ0时,则Δ=(y-3)2-4(y-3)(y-1)ȡ0,13ɤy<3.综上所述,y=3x2+3x+1x2+x+1的值域是[13,3).3㊀分类讨论法分类讨论法指的是在求解一类问题时,有时会遇到多种情况,无法用同一种方法去解决,需要分类进行讨论,最后再归纳总结得出最终结论.求解函数值域4的分类讨论法通常是用在分段函数求值域或者是含绝对值函数求值域,其主要思路是分别根据定义域分类进行值域求解,最终再汇总结果.例5㊀已知函数y =|x +1|+|x -2|,求解该函数的值域.分析㊀通过观察可知函数带有绝对值符号,首先考虑去绝对值符号,从而发现分段区间函数的表达式不同,因此考虑分类讨论法,将函数的定义域求出后,分别代入函数式,就可以得出原函数的值域.解㊀该函数的定义域可分为x ɤ-1,-1<x ɤ2,x >2.在定义域内的函数表达式为y =-2x +1,x ɤ-1,3,-1<x ɤ2,2x -1,x >2.ìîíïïïï当x ɤ-1时,y =-2x +1ȡ3;当-1<x ɤ2时,y =3;当x >2时,y =2x -1>3.综上所述,函数y =|x +1|+|x -2|的值域是[3,+ɕ).例6㊀已知函数y =x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0,{求解该函数的值域.分析㊀观察已知函数,分段区间内函数的表达式不同,因此考虑分类讨论法,求得x 的取值范围,再代入函数式,就可以得出函数值域.解㊀令x 1=2,则y 1=-1,令x 2=-2,则y 2=-1.当0<x <5时,x 2-4x +3的值域为[-1,8);当-3ɤx ɤ0时,x 2+4x +3的值域为[-1,3].综上所述,y=x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0{的值域为[-1,8).换元法㊁判别式法㊁分类讨论法是函数求值域中典型的三种方法,使用这三种方法时,应注意换元后表达式的等价变形㊁判别式的正确使用㊁分段函数的定义域划分等.这三种方法是值域求解的重要方法,应该要求学生要对方法熟练掌握㊁融会贯通.(作者单位:山东临沂高新区高级中学)Җ㊀湖南㊀蒋迎芳㊀㊀高考对集合问题的考查多与函数㊁不等式进行交会,问题难度不大,只要准确理解集合的关系及运算即可. 集合 是高中生学习的第一个数学知识,为什么把它放在第一章?因为集合是学习其他模块的基础,与其他知识具有紧密的联系.下面谈一谈笔者的几点感悟,供读者参考.1㊀集合的关系和运算丰富了其他问题的求解视角1)集合之间的关系包括子集㊁真子集㊁相等.2)集合之间的运算包括交㊁并㊁补.集合的关系和运算可应用到其他知识的学习或问题的求解中.例如,集合的关系和运算与充分㊁必要条件之间的关系:若A 是B 的子集,即A ⊆B ,则A 是B 的充分条件;若A =B ,则A 与B 互为充要条件;若A ɘB =∅,则A ,B 之间既不是充分条件,也不是必要条件.再如,集合的关系和运算与概率之间的关系:若A ,B 为互斥事件,则A ɘB =∅;若A ,B 为对立事件,则A ɘB =∅,且B =∁U A ;事件A ,B 至少有一个发生,记为A ɣB ,称为A,B 的和事件;事件A ,B同时发生,记为A ɘB ,称为A ,B 的积事件.例1㊀某高校数学学院举行2020届毕业典礼,主席台上有并排的六个座位,出席典礼的甲㊁乙㊁丙等六位院系的教师可随意就座,则甲㊁乙两位教师的座位均不与丙相邻的概率为.设U ={六位教师任意就座的所有情况},A ={甲㊁丙两位教师的座位相邻的情况},B ={乙㊁丙两位教师的座位相邻的情况},则A ɘB ={全集U 中甲㊁乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲或乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲㊁乙两位教师的座位均不与丙相邻的情况}.本题即求P (A ɣB ),而P (A ɣB )=1-P (A ɣB ),故只需求P (A ɣB ).因为P (A ɣB )=P (A )+P (B )-P (A ɘB ),而5。
用判别式法求函数值域的问题分析江苏省奔牛高级中学 陆超群利用一元二次方程根的判别式求某些函数的值域,由于解题过程中常用到变形,往往导致错误.因此,许多师生认为该种方法不可靠而回避它,或者只有当函数定义域为R 时才使用该方法.那么,到底是什么原因导致错误?解题过程中应注意什么?下面就常见的两类问题作一分析.第一类问题:如果函数()y f x =隐含于方程0)()()(2=++y c x y b x y a 中,因方程有实数根,通过[]0)()(4)(2≥-=∆y c y a y b 求出y 的范围(设为集合M ),若存在0y M ∈,使0()0a y =,为什么有时要从M 中除去0y ,而有时不要? 例1:已知函数)x (f y =满足方程0122=-+-+-y x x xy y x ,求函数)x (f y =的值域.解:原方程可变为)1(01)1()1(2 =-++-+y x y x y ,∵R x ∈,由0∆≥解得35y 1≤≤-.但当1y -=时,方程(1)不成立,说明1y -=不是函数)x (f y =的值,必须除去.因此函数)x (f y =的值域应为513M y y ⎧⎫=-≤⎨⎬⎩⎭p . 例2:已知函数)x (f y =满足方程0x 2y 3x y 4y x 2=-+-,求函数)x (f y =的值域.解:原方程可变为03)24(2=++-y x y yx ,∵R x ∈,由0∆≥解得32y 32y --≤+-≥或.当0y =时0x =,说明0y =是函数)x (f y =的值,因此函数)x (f y =的值域为{}32y 32y y M --≤+-≥=或.结论一:若函数()y f x =隐含于方程)2(0)()()(2=++y c x y b x y a 中,此时可把方程(2)看作x 的二次方程.因方程(2)有实根,所以其判别式[])3(0)()(4)(2≥-=∆y c y a y b ,解不等式(3)所得到的y 的范围(用集合M 表示)有可能是函数()y f x =的值域.但M 是否为函数()y f x =的值域还应分以下两种情况讨论:1.若对于任意的y M ∈,有()0a y ≠,由一元二次方程根的判别式可知,方程(2)有实根与不等式(3)是互为充要的条件,所以()y f x =的值域为M .2.若存在0y M ∈,使0()0a y =,则方程(2)为一次方程'00)2(0)()(=+y c y b ,这时又可分为两种情况讨论:①若0()0b y ≠,方程')2(有解,所以函数()y f x =的值域为M .②若0()0b y =且0()0c y =时,方程')2(为恒等式,显然有解,所以函数()y f x =的值域为M .当0()0b y =且0()0c y ≠时,方程')2(无解,这说明0y 不是函数()y f x =的值,因此函数()y f x =的值域应是M 除去0y 之后得到的集合.第二类问题:当函数()y f x =以分式形式给出时,常见问题的特征及解决问题的方法.问题一:若函数()y f x =以分式形式给出,是否只有当定义域为R 时才可用判别式法求值域?例3:求函数3x 4x x 2y 2+-=的值域.解:两边乘以3x 4x 2+-得)4(03)24(2=++-y x y yx ,当3x 1x ==或时分母虽然为零,但分子o x 2≠,显然3x 1x ==或不是方程(4)的解,因此3x 4x x 2y 2+-=与方程(4)是等价的,以下解法仿照例2.例4: 求函数1x 5x 3x y 2-++=的值域. 解:两边乘以1x -得)5(05)3(2=++-+y x y x ,当1x =时分母虽然为零,但分子05x 3x 2≠++,显然1x =不是方程(5)的解,因此1x 5x 3x y 2-++=与方程(5)是等价的.∵R x ∈,由0∆≥解得11y ≥或1y -≤.∴函数)x (f y =的值域为{}1y 11y y M -≤≥=或.分析:类似于例3、例4的问题,虽然函数)(x f 的定义域不为R ,但去分母前后两个方程是等价的,故仍可用判别式法求函数的值域.问题二:若函数()y f x =以分式形式给出,当分子、分母有公因式时,应注意什么?例5:求函数3x 4x 4x 2x 2y 22+--+=的值域. 解:)3x )(1x ()2x )(1x (23x 4x 4x 2x 2y 22--+-=+--+=,∵由函数的定义域知1x ≠,∴)6(342-+=x x y 由函数(6)易知 2y ≠,因为1x ≠,所以把1x =代入(6)所求得的y 的值3-必须除去.所以函数3x 4x 4x 2x 2y 22+--+=的值域应该为{}3y 2y y M -≠≠=且.例6:2321x x y x -+=- 解:)7(2)1)2)(1(-=---=x x x x y ,由(7)易知R y ∈,但因为1x ≠,所以把1x =代入(7)所求得的y 的值1-必须除去.所以函数2321x x y x -+=-的值域应该为{}1M y y =≠-.分析:类似于例5、例6的问题,函数以分式形式给出,分子分母有公因式。
1.直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1.求函数的值域。
解:∵?∴显然函数的值域是:2.配方法?配方法是求二次函数值域最基本的方法之一。
例2.求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3.判别式法例3.求函数的值域。
解:两边平方整理得:(1)∵?∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由?求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵?∴∴代入方程(1)解得:?即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4.求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5.函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5.求函数的值域。
解:由原函数式可得:,可化为:?即∵?∴即?解得:故函数的值域为6.函数单调性法例6.求函数的值域。
解:令?则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7.求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7.换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作?例8.求函数的值域。
解:因即故可令∴∵∴∴故所求函数的值域为例9.求函数的值域。
判别式法求函数值域 [6]
把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0∆≥,从而求得原函数的值域,这种方法叫做判别法。
形如
2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为的函数常用此法。
此类问题分为两大类:一类为分子和分母没有公因式一般可使用判别式0∆≥解得,但要注意判别式∆中二次项系数为零和不为零两种情况;另一类为分子和分母中有公因式,约去因式回到上述方法解决。
但值得注意的是函数的定义域问题。
例1、求函数22y=3
x x +的值域。
分析:函数22y=3x x +形如2111122222
(,0)a x b x c y a a a x b x c ++=++不同时为,且定义域为全休实数,因此可用判别式法求解。
解:由22y=3
x x + 得 2320yx y x +-= 当y = 0 时, x = 0
当0y ≠时,由0∆≥ 得24120y -≥
∴33
y -≤≤
∴函数22y=3x x +的值域为|33y y ⎧⎪-≤≤⎨⎪⎪⎩
⎭。
例2、求函数22(1)(2)(1)
x y x x +=--的值域。
分析:察看函数22(1)(2)(1)x y x x +=
--可知,分子和分母存在公因式1x +,因为分母不为0,则有10x +≠,因此可以分子和分母同时约去公因式1x +。
从而原函数就等价为2(2)(1)
y x x =--,再用判别式法去解。
解:由22(1)(2)(1)x y x x +=--=2(2)(1)x x --=2232
x x -+ 得
23220yx yx y -+-= ∵当0y =时,-2 = 0 ,不成立 当0y ≠时,由0∆≥,得2(3)4(22)y y y ---=280y y +≥ ∴8y ≤-或0y ≥ 由于0y ≠ ∴函数22(1)(2)(1)x y x x +=--的值域为{}|80y y y ≤->或。