几种常用的求值域方法
- 格式:doc
- 大小:260.05 KB
- 文档页数:7
函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。
2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。
3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。
4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。
5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。
6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。
7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。
8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。
9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。
10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。
值域常见方法总结一、单调性法例1、求函数y x =的值域。
例2、求函数y =的值域。
二、反解法:先反求出关于x 的表达式,利用求已知函数的反函数的定义域解不等式,从而求出值域。
例3、求函323-+=x x y 的值域。
例4、求函数1251+-=x y 的值域。
三、分离常数法:例5、求11+-=e ex x y 的值域。
例6、求函数2332x y x +=-的四、 基本不等式法:要注意“一定,二正,三相等”,利用重要不等式ab b a 2≥+,()+∈R b a ,求出函数的最值而得出值域的方法。
此法的题形特征是:当解析式是和式时,要求积是定值;当解析式是积式时,要求和是定值;为此解答时,常需要对解析式进行恒等变形,具体讲要根据问题本身的特点进行拆项、添项;平方等恒等变形。
例7、求函数2302++-=x x x y 的值域。
例8、函数)2(log log 2x x y x +=的值域。
例9、求228x x y -=的值域。
五、换元法(一定要注意新元的取值范围)1、 x 的次数有梯次的,常换成二次的。
2、若是其次的,常进行三角换元。
例10、求函数y x = 例11、求x x y 312+-=的值域。
六、数形结合法1、 当题目是比值的形式,常采用求斜率k 的范围来求值域。
2、 利用点到直线的距离或点到点的距离来结合图形来求值域。
例12:求函数31y x x =--+的值域。
例13、求x x y sin 1cos 3-+=的值域。
例14、求5sin 4sin cos 2cos 22+-+-=x x x x y 的值域。
七、导数法:高次函数和混合函数常用导数法来做。
例15、求255345+---=x x x y 在区间[]4,2-上最大值和最小值。
例16、求)1ln(2+-=x x y 的值域。
八、一次分函数 形如ax by cx d +=+0,d c x c ⎛⎫≠≠- ⎪⎝⎭ 例17、求132-+=x x y 的值域。
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
例说求函数值域的十种基本方法求函数值域是数学中的一个重要问题,涉及到了函数的性质和特点。
接下来,我将为您介绍求函数值域的十种基本方法。
1.函数特性法首先,我们可以通过函数的特性来判断其值域。
例如,如果函数是线性函数,那么它的值域是整个实数集;如果函数是二次函数,那么它的值域可以通过求解二次方程得到。
2.函数图像法通过绘制函数的图像,可以直观地看出函数的值域。
值域可以通过观察函数图像的最高点、最低点以及其他特殊点得出。
3.函数解析式法通过函数的解析式,可以对其进行分析,确定函数的值域。
例如,对于一个多项式函数,可以通过求导,找出函数的极值点,从而得到值域。
4.函数区间法将函数的定义域划分为若干个区间,在每个区间内分别求出函数的最大值和最小值,然后取这些最值的并集,即可得到函数的值域。
5.函数性质法根据函数的性质,判断其值域。
例如,若函数是奇函数,那么其值域与定义域对称;若函数是周期函数,那么值域只需要求出一个周期内的值。
6.函数导数法通过求函数的导数,可以找出函数的极值点,然后确定函数的值域。
导数为零的点是函数的极值点,其中最大值和最小值即为函数的值域的上界和下界。
7.函数符号法通过研究函数的符号变化,可以确定函数值域。
例如,对于一个有理函数,可以研究当自变量趋于正无穷和负无穷时,函数值的变化情况。
8.函数求导法对于一些复杂的函数,可以通过对函数进行求导,并求出导函数的零点,从而找到函数的极值点。
极值点即为函数的值域的边界点。
9.函数的逆函数法若函数的逆函数存在,可以通过研究逆函数的定义域来确定函数的值域。
逆函数与原函数的值域相同,因此可以求出函数的逆函数,然后通过研究逆函数的值域来确定函数的值域。
10.函数的一些特点法对于一些具有特殊特点的函数,可以通过对这些特点进行分析,来确定函数的值域。
例如,对于一个增函数,函数的值域是从函数图像的最低点到最高点。
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
几种常用的求值域方法
求值域是指函数在定义域上所能取得的所有可能的值的集合。
在数学中,我们经常需要求出一个函数的值域。
下面是几种常用的求值域方法:
1.图像法:对于一些简单的函数,我们可以通过绘制函数的图像来直观地确定函数的值域。
通过观察函数的图像,我们可以判断出函数在定义域上所能取得的最大值和最小值,从而确定函数的值域。
2.分析法:对于一些复杂的函数,我们可以通过分析函数的特点来求出它的值域。
例如,对于一个多项式函数,我们可以通过求导数和求极值来确定函数的值域。
对于一个有理函数,我们可以通过求解不等式来确定函数的值域。
3.奇偶性:对于一些具有特定奇偶性质的函数,我们可以通过观察函数的奇偶性来确定函数的值域。
例如,对于一个奇函数,它的值域将关于原点对称;对于一个偶函数,它的值域将关于y轴对称。
4.上下界:如果一个函数的定义域有上下界,那么函数的值域也会有上下界。
我们可以通过求解极限来确定函数的上下界,并进而确定函数的值域。
5.距离法:对于一个与其他对象之间存在一定距离关系的函数,我们可以通过计算函数值与目标值之间的距离来确定函数的值域。
例如,对于一个平面上的点到原点的距离函数,它的值域将为非负实数集。
这些求值域的方法在不同的情况下都可以起到一定的作用。
在实际问题中,我们可以根据具体的函数形式和给定的条件选择合适的方法来求解函数的值域。
求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数,可变为解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数就是利用函数和的值域来求。
(3)判别式法:通过对二次方程的实根的判别求值域。
如求函数的值域由得,若,则得,所以是函数值域中的一个值;若,则由得,故所求值域是 (4)分离常数法:常用来求“分式型”函数的值域。
如求函数的值域,因为,而,所以,故(5)利用基本不等式求值域:如求函数的值域当时,;当时,,若,则 若,则,从而得所求值域是(6)利用函数的单调性求求值域:如求函数的值域因,故函数在上递减、在上递增、在上递减、在上递增,从而可得所求值域为 4cos 2sin 2+--=x x y 2)1(cos 4cos 2sin 22+-=+--=x x x y )32(log 221++-=x x y u y 21log =322++-=x x u 22122+-+=x x x y 22122+-+=x x x y 012)1(22=-++-y x y yx 0=y 21-=x 0=y 0≠y 0)12(4)]1(2[2≥--+-=∆y y y 021332133≠+≤≤-y y 且]2133,2133[+-1cos 3cos 2+-=x x y 1cos 521cos 3cos 2+-=+-=x x x y ]2,0(1cos ∈+x ]25,(1cos 5--∞∈+-x ]21,(--∞∈y 432+=x xy 0=x 0=y 0≠x xx y 43+=0>x 4424=⋅≥+xx x x 0<x 4)4()(2)4(4=-⋅-≤-+--=+xx x x x x ]43,43[-])2,1[(2224-∈+-=x x x y )14(22823-=-=x x x x y ])2,1[(2224-∈+-=x x x y )21,1(--)0,21(-)21,0()2,21(]30,815[(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
求函数值域的几种常见方法详解函数的值域是指函数在定义域内所有可能的输出值的集合。
求函数值域的方法有几种常见的途径,包括图像法、公式法、定义域分析法和求导数法等。
下面详细介绍这几种方法:1.图像法:通过绘制函数的图像,我们可以直观地看出函数的值域。
通过观察图像的上下界限以及函数的单调性,我们可以大致确定函数的值域。
这种方法适用于简单的函数,特别是连续的函数。
但对于复杂的函数,这种方法可能不太可行。
2.公式法:有些函数可以通过一些数学公式来表示,例如多项式函数、指数函数、对数函数等。
通过观察这些公式的特点,我们可以得到函数的值域。
例如,指数函数的值域是(0,+∞),对数函数的值域是(-∞,+∞)等。
通过数学推导和分析,我们可以得到更复杂函数的值域。
3.定义域分析法:通过分析函数的定义域和性质,我们可以推断出函数的值域。
例如,当函数的定义域为有界闭区间时,值域也是有界闭区间。
当函数的定义域是无界,但函数是有界的,值域也是有界的。
当函数具有对称性或周期性时,我们可以根据这些性质来推断函数的值域。
4.求导数法:对于可导的函数,我们可以通过求导数来研究函数的单调性。
通过研究导数的正负情况以及极值点,我们可以确定函数的值域。
当导数为正时,函数递增,值域是无穷大。
当导数为负时,函数递减,值域是无穷小。
当导数的正负变化时,函数具有极值点,这些点可能是函数值域的边界。
在求函数值域时,我们还可以结合使用以上多种方法,以得到更准确和完整的结果。
同时,需要注意的是,有些函数的值域是无法用简单的数学方法来确定的,这时我们可以利用数值计算和逼近方法来估算函数的值域。
总之,求函数值域是函数分析中的一个重要步骤,可以帮助我们了解函数的性质和行为。
通过应用图像法、公式法、定义域分析法和求导数法等方法,我们可以推断和确定函数的值域。
不同的函数可能适用不同的方法,因此需要根据具体情况综合应用多种方法来进行分析。
求函数值域的几种常见方法详解函数的值域是函数在定义域内所有可能的输出值组成的集合。
确定函数的值域是数学中一项重要任务,有很多方法可以用来确定函数的值域。
本文将详细介绍几种常见的确定函数值域的方法。
方法一:图像法利用函数的图像可以直观地确定函数的值域。
首先,我们画出函数的图像,并观察图像的上下限。
对于连续函数,可以通过观察图像的最高点和最低点来确定值域的上下限。
对于不连续函数,我们需要注意断点的位置,并观察每个断点的左右极限值。
通过观察图像的上下限和断点的左右极限值,我们可以确定函数的值域。
方法二:代数法利用函数的代数性质可以推导出函数的值域。
例如,对于一次函数$f(x)=ax+b$,其中$a$和$b$为常数,当$a>0$时,函数的值域为$(-\infty, +\infty)$;当$a<0$时,函数的值域为$(+\infty, -\infty)$。
对于二次函数$f(x)=ax^2+bx+c$,可以使用完全平方公式将函数转化为标准形式,然后根据二次函数的图像特点确定函数的值域。
方法三:符号法利用符号法可以确定函数的值域。
考虑到函数的定义域,我们可以分析函数的符号情况。
例如,对于一个定义在实数集上的有理函数$f(x)=\frac{P(x)}{Q(x)}$,其中$P(x)$和$Q(x)$是多项式,我们需要考虑分母为零的情况。
当分母$Q(x)$在一些区间内为零时,该区间的端点将是函数的极限点。
通过分析$P(x)$和$Q(x)$的符号变化,我们可以确定函数的值域。
方法四:反函数法对于一些特定的函数,可以利用其反函数来确定函数的值域。
具体方法是,首先求出函数的反函数,然后确定反函数的定义域,最后通过计算反函数的函数值来得到原函数的值域。
方法五:微积分法微积分方法可以用来求解特定函数的最大值和最小值,从而确定函数的值域。
首先,求出函数的导数并令其为零,得到函数的驻点。
然后,比较驻点和函数的端点的函数值,找出函数的最大值和最小值。
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。
找到函数的值域可以帮助我们了解函数的整体走势和性质。
下面是一些常见的方法帮助我们求函数值域。
1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。
例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。
如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。
2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。
例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。
3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。
4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。
例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。
5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。
通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。
6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。
例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。
7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。
首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。
8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。
下面将介绍求函数值域的十三种方法。
一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。
例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。
二、代数法代数法是通过运用代数运算的方法求函数值域。
例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。
三、图像法图像法是通过绘制函数的图像来求函数值域。
通过观察图像的变化趋势,可以确定函数的值域。
例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。
四、导数法导数法是通过求函数的导数来求函数值域。
通过分析导数的增减性和极值点,可以确定函数的值域。
例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。
五、反函数法反函数法是通过求函数的反函数来求函数值域。
通过求反函数的定义域,可以得到函数的值域。
例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。
六、极限法极限法是通过求函数的极限来求函数值域。
通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。
例如,对于一个无界函数,可以通过求其极限来确定函数的值域。
七、积分法积分法是通过求函数的积分来求函数值域。
通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。
例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。
八、级数法级数法是通过求函数级数的和来求函数值域。
通过分析级数的收敛性和和的性质,可以确定函数的值域。
例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。
九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。
通过求微分方程的解析解或数值解,可以确定函数的值域。
求函数值域的常用方法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1 求函数y = 3 -x 的值域。
解: x ≥0 ∴- x ≤0 3- x ≤3故函数的值域是:[ -∞,3 ]2 、配方法配方法是求二次函数值域最基本的方法之一。
例2 、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 3 、判别式法例3 求函数y = 2211x x x +++的值域。
解:原函数化为关x 的一元二次方程(y-1 )2x -x+(y - 1 )= 0(1)当y ≠1时, x ∈R ,△ = (-1)2-4(y-1)(y-1) ≥0 解得:21≤y ≤23 (2)当y=1,时,x = 0,而1∈[ 21, 23] 故函数的值域为[21,23] 例4求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1) x ∈R ,∴△=4(y+1)2-8y ≥0 解得:1-2≤y ≤1+2但此时的函数的定义域由x (2-x ) ≥0,得:0≤x ≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△ ≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[21,23]。
可以采取如下方法进一步确定原函数的值域。
0≤x ≤2,∴y=x+)2(x x - ≥0,∴y min =0,y=1+2代入方程(1),解得:1x =222224-+∈[0,2],即当1x =222224-+时,原函数的值域为:[0,1+2]。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的方法
求函数值域的方法有图象法,函数单调性法,配方法,平方法,换元法,反函数法(逆求法),判别式法,复合函数法,三角代换法,基本不等式法等。
这些解题思想与方法贯穿了高中数学的始终。
1、求13+--=x x y 的值域
解法一:(图象法)可化为 ⎪⎩
⎪
⎨⎧>-≤≤---<=3,431,221,4
x x x x y
观察得值域{}4
4≤≤-y y
解法三:(利用绝对值不等式)
4
14114)1(134
)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 所以同样可得值
域
2、求函数[]5,0,522∈+-=x x x y 的值域 解: 对称轴 []5,01∈=x
[]
20,420,54
,1max min 值域为时时∴====∴y x y x 3、求函数x x y -+=12 的值域
解:(换元法)设t x =-1,则)0(122≥++-=t t t y
[)(]
4,41,01max ∞-∴==∴+∞∈=值域为,时当且开口向下
,对称轴y t t
4、求函数[])1,0(239∈+-=x y x x 的值域 解:(换元法)设t x =3 ,则 31≤≤t 原函数可化为
[][]
8,28,3;2,13,12
1
,2max min
2值域为时时对称轴∴====∴∉=+-=y t y t t t t y
5、求函数x x y -+-=53 的值域 解:(平方法)函数定义域为:[]5,3∈x
[][][]
[]
2
,24,21,0158,5,315
82)5()3(2
222原函数值域为得由∴∈∴∈-+-∈-+-+-+-=y x x x x x x x y
6、求函数 )0(2≤=x y x 的值域 解:(图象法)如图,值域为(]1,0
7、求函数x
x y 2231+-⎪
⎭
⎫ ⎝⎛= 的值域
解:(复合函数法)令1)1(22
2
+--=+-=x x x t
)1(3≤⎪⎭
⎝=t y 由指数函数的单调性知,原函数的值域为⎪⎭
⎫
⎢⎣⎡+∞,31
8、求函数2
1
+-=
x x y 的值域 解法一:(反函数法){}1121,≠-+=
y y y
y
x x 原函数值域为观察得解出 解法二:(利用部分分式法)由12
3
1232≠+-=+-+=
x x x y ,可得值域{}1≠y y
小结:已知分式函数)0(≠++=
c d
cx b
ax y ,如果在其自然定义域(代数式自身对
变量的要求)内,值域为⎭
⎬⎫
⎩⎨⎧
≠
c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc a
d d
cx c ad
b c a y ≠+-
+
=,用复合函数法来求值域。
9、求函数1
33+=x x
y 的值域
解法一:(反函数法)10013<<∴>-=
y y
y
x
()01原函数的值域为∴
解法二:(复合函数法)设t x
=+13 , 则()11
11
31113113>-=+-=+-+=t t y x
x x 101
1
01<<∴<<∴>y t
t
()01原函数的值域为∴ 10、求函数21x x y -+=的值域 解:(三角代换法) 11≤≤-x
∴设[]πθθ,0cos ∈=x
[]
[]
2
,12,1)4sin(2sin cos sin cos -∴-∈+=+=+=原函数的值域为π
θθθθθy 小结:(1)若题目中含有1≤a ,则可设
)0,cos (2
2
,sin πθθπ
θπ
θ≤≤=≤
≤-
=a a 或设 (2)若题目中含有
122=+b a
则可设θθsin ,cos ==b a ,其中πθ20<≤
(3)若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 (4)若题目中含有21x +,则可设θtan =x ,其中2
2
π
θπ
<
<-
(5)若题目中含有)0,0,0(>>>=+r y x r y x ,则可设
θθ22sin ,cos r y r x ==
其中⎪⎭
⎫
⎝⎛∈2,0πθ
11、
求函数1
1
22+-=x x y 的值域
解法一:(逆求法)110112<≤-∴≥-+=
y y
y
x
[)11-∴原函数的值域为 解法二:(复合函数法)设t x =+12 ,
则 )1(211212≥-=+-=t t x y
(]
1,11
122
01-∴<≤-∴≤<∴≥原函数值域为y t
t 解法三:(判别式法)原函数可化为 010)1(2=++⋅+-y x x y 1) 1=y 时 不成立
2) 1≠y 时,110)1)(1(400≤≤-⇒≥+--⇒≥∆y y y
11<≤-∴y
综合1)、2)值域}11|{<≤-y y 解法四:(三角代换法)∴∈R
x 设⎪⎭
⎫
⎝⎛-∈=2,2tan ππθθx ,则
()(]1,12cos ,22cos tan 1tan 12
2-∈∴-∈-=+--=θππθθθ
θ y ∴原函数的值域为}11|{<≤-y y 12、
求函数3
425
2
+-=
x x y 的值域 解法一:(判别式法)化为0)53(422=-+-y yx yx
1)0=y 时,不成立 2)0≠y 时,0≥∆得
500)53(8)4(≤≤⇒≥--y y y y 50≤<∴y
综合1)、2)值域}50|{≤<y y
解法二:(复合函数法)令t x x =+-3422,则t
y 5
=
11)1(22≥+-=x t
50≤<∴y
所以,值域}50|{≤<y y 13、
函数11
++
=x
x y 的值域 解法一:(判别式法)原式可化为 01)1(2=+-+x y x
(][)∞+-∞-∴-≤≥∴≥--∴≥∆,31,1
30
4)1(02 原函数值域为
或y y y
解法二:(基本不等式法)1)当0>x 时,321
≥∴≥+y x
x 2)0<x 时,12)(1)(1-≤∴-≤⎥⎦⎤⎢⎣
⎡-+--=+
y x x x x
综合1)2)知,原函数值域为(][)∞+-∞-,31, 14、
求函数)1(1
2
22->+++=
x x x x y 的值域 解法一:(判别式法)原式可化为 02)2(2=-+-+y x y x
[)∞+∴-≤∴->-≤≥⇒≥---∴≥∆,2212
20
)2(4)2(02原函数值域为
舍去或y x y y y y
解法二:(基本不等式法)原函数可化为
)1(21
1111)1(2->≥+++=+++=x x x x x y
当且仅当0=x 时取等号,故值域为[)∞+,2
15、求函数)22
1
(1222≤≤-+++=
x x x x y 的值域 解:令t x =+1 ,则原函数可化为)31(1
≤≤-+
=t t
t y 利用函数t t y 1
+=在(]1,0上是减函数,在[)∞+,1上是增函数,得
原函数值域为⎥⎦⎤
⎢⎣
⎡310,2
小结:已知分式函数)0(2222≠+++++=d a f ex dx c
bx ax y ,如果在其自然定义域内
可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取
舍,或者可以化为
)(二次式
一次式
或一次式二次式==
y y 的形式,采用部分分式法,进而用基本不等式法
求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数
)0(≠+=x x
a
x y 的单调性去解。