第四章平稳时间序列模型的建立
- 格式:pptx
- 大小:1.13 MB
- 文档页数:101
平稳时间序列建模步骤什么是时间序列建模时间序列建模是一种用于分析和预测时间序列数据的统计方法。
时间序列是按照时间顺序排列的一组连续观测值,例如每日销售额、每月气温、每年股票收益等。
通过建立时间序列模型,我们可以探索时间序列的内在规律和趋势,并做出相应的预测。
平稳时间序列建模是时间序列建模的一种常用方法,它假设时间序列的统计特性在时间上是不变的。
平稳时间序列具有恒定的均值、方差和自协方差,这使得我们可以应用各种经典的时间序列模型进行建模和预测。
以下是平稳时间序列建模的步骤:步骤一:数据收集和观察首先,我们需要收集要建模的时间序列数据。
可以从各种数据源获取时间序列数据,包括经济指标、物理测量、金融数据等等。
收集到数据后,我们需要对数据进行观察,检查数据的特点、趋势、异常值等,并做必要的数据清洗和准备工作。
步骤二:时间序列分解时间序列通常由趋势、季节性和随机因素组成。
为了更好地分析和建模时间序列,我们需要先对时间序列进行分解,将其拆分为这些组成部分。
常用的时间序列分解方法有加法模型和乘法模型。
加法模型假设时间序列是趋势、季节性和随机误差之和,而乘法模型假设时间序列是趋势、季节性和随机误差之积。
选择合适的分解模型可以根据时间序列的特点和趋势来确定。
步骤三:平稳性检验平稳性是时间序列建模的前提之一。
在进行建模之前,我们需要对时间序列的平稳性进行检验。
平稳性检验可以通过统计检验方法来进行,例如单位根检验、ADF检验等。
如果时间序列不平稳,我们需要进行差分处理,使其变成平稳序列。
步骤四:模型选择和拟合在确定时间序列的平稳性后,我们可以选择合适的时间序列模型进行拟合。
常见的时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)等。
模型选择可以通过观察自相关图(ACF)和偏自相关图(PACF)来辅助判断。
ACF图可以显示序列之间的相关性,PACF图可以显示去除其他变量的直接相关性。
第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3 )模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2 ),统计检验(T检验,拟合优度检验、F检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4 )模型应用。
例1:在模型中,y某类商品的消费支出,x收入,P商品价格,试对模型进行经济意义检验,并解释A"》的经济学含义。
In X = 0.213 +0.25 In 一0.31£其中参数卩'",都可以通过显著性检验。
经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关\商品消费支出关于收入的弹性为0.25 ( 1心/畑)=0.251】心/仏));价格增加一个单位,商品消费需求将减少31%。
例2 :硏究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化), 尔后会使贫富差距降<氐(好转),成为倒U型。
贫富差距用GINI系数表示,金融发展用(贷款余额/存款总额)表示。
回归结果G/^VZ r =2.34 + 0.641;-1.29x;/模型参数都可以通过显著性检验。
在X的有意义的变化范围内,GINI系数的值总是大于1 ,细致分析后模型变的毫无意义;同样的模型还有:GINI系数的值总是为负= —13.34 + 7.12 兀一14.31#O3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如果—个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。
平稳时间序列建模步骤一、什么是平稳时间序列平稳时间序列是指在统计意义下具有不变性的时间序列。
具体来说,平稳时间序列的均值、方差和自相关函数都不随时间变化而发生显著的改变。
二、为什么要建立平稳时间序列模型建立平稳时间序列模型可以对数据进行预测和分析,从而更好地理解数据背后的规律和趋势。
此外,平稳时间序列模型还可以用于信号处理、金融分析等领域。
三、建立平稳时间序列模型的步骤1.观察数据并进行预处理首先需要观察数据并进行预处理,包括去除趋势、季节性和异常值等。
这有助于使数据更加平滑,并且减少噪声对模型的影响。
2.确定差分阶数如果原始数据不是平稳的,需要进行差分操作使其变成平稳的。
差分阶数可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。
3.选择合适的模型根据差分后得到的数据,可以选择适合该数据集的ARIMA模型。
ARIMA模型包括AR(p)、MA(q)和ARMA(p,q)三种类型。
4.估计模型参数使用最大似然估计(MLE)或最小二乘法(OLS)等方法来估计模型参数。
5.检验模型的拟合程度对于建立的模型,需要对其进行检验,包括残差的自相关性、正态性等。
如果存在问题,则需要调整模型或重新选择模型。
6.预测未来值使用建立好的模型进行未来值的预测,并对预测结果进行评估和修正。
四、总结建立平稳时间序列模型是一个复杂的过程,需要对数据进行观察和处理,选择合适的模型并估计参数,最后对模型进行检验和预测。
在实际应用中,需要根据具体情况灵活运用这些步骤,并结合领域知识和经验来优化建模过程。
时间序列分析方法智慧树知到课后章节答案2023年下哈尔滨工业大学哈尔滨工业大学第一章测试1.英国的工业革命所进行的时间是()。
A:18世纪70年代到19世纪中期 B:18世纪60年代到19世纪上半期 C:18世纪60年代到18世纪末 D:18世纪30年代到18世纪末答案:18世纪60年代到19世纪上半期2.时间序列通常会受到哪些因素的影响()。
A:长期趋势 B:循环波动 C:季节变化 D:随机波动答案:长期趋势;循环波动;季节变化;随机波动3.时间序列分析有助于比较两个或多个序列。
()A:错 B:对答案:错4.可以应用时间序列模型准确地通过对历史数据分析预测未来发生的结果。
()A:错 B:对答案:错5.时间序列往往呈现某种趋势性或出现周期性变化的现象。
()A:错 B:对答案:对6.平稳时间序列差分后还是平稳时间序列。
()A:错 B:对答案:对7.时间序列分析有助于了解企业的行为。
()A:对 B:错答案:对8.一个时间序列的年度数据包含长期和周期性变化。
()A:错 B:对答案:对9.在计算年度数据的季节性指数时,删除最高和最低的实际滑动平均,减少了季节性变化。
()A:错 B:对答案:错10.一个时间序列的变化模式每年都会重复出现,这叫做季节性变化。
()A:错 B:对答案:对11.时间序列数据中的连续观测是独立且同分布的。
()A:错 B:对答案:错第二章测试1.纯随机序列的均值是零,方差是定值。
()A:错 B:对答案:错2.对于各种时间序列的ADF平稳性检验,其拟合方程式应该都相同。
()A:错 B:对答案:错3.由于观察值序列的有限性,纯随机序列的样本自相关系数可能不为零。
()A:对 B:错答案:对4.严平稳序列一定是宽平稳序列。
()A:错 B:对答案:错5.宽平稳序列一定是严平稳序列。
()A:错 B:对答案:错6.宽平稳序列的二阶矩一定存在。
()A:对 B:错答案:错7.当序列服从正态分布时,宽平稳和严平稳等价。
平稳时间序列模型的建立概述第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第二步是对预处理后的序列进行统计特性分析。
这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。
通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。
第三步是根据统计分析结果选择适合的时间序列模型。
常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。
选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。
第四步是模型参数的估计与诊断。
对于选定的时间序列模型,需要估计模型的参数。
这可以通过最大似然估计或最小二乘估计等方法进行。
估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。
常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。
第五步是模型预测与评估。
通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。
预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。
若模型的预测效果较好,则可应用该模型进行实际预测。
总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。
通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。
平稳时间序列模型的建立概述(续)第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
平稳序列建模过程
平稳序列建模是一种常用的时间序列建模方法,用于根据已获得的数据来归纳研究和预测随时间变化的趋势。
它在经济、财务、商业和管理研究中都有广泛的应用。
第一步,分析时间序列数据。
在分析之前,首先要确定所要研究的时间序列数据,然后收集、整理所需的数据,并对其进行分析。
必要时,也可以进行转换,如对数据进行标准化或加权计算。
第二步,检验序列的平稳性。
在建模之前,必须先检验序列的平稳性,即序列的历史平均值和方差是否一致,以及序列中是否存在显著变化。
第三步,建模。
建模方法是非常广泛的,包括线性模型、非线性模型、Box-Jenkins 模型、ARMA模型和Transfer Function模型等,其中最常用的是ARMA模型。
使用这些模型,可以通过最小二乘法估计模型参数,并用模拟结果验证模型的可靠性。
第四步,测试模型的有效性和强度。
为了确定建模的有效性和强度,可以使用检验方法对建模结果进行检验,具体检验方法有均方根误差、标准误差和R2等效。
第五步,进行预测。
模型的预测结果主要是通过模拟过程得出的,可以根据虚拟系统中的状态变量来预测序列的未来趋势或通过更新参数模型来做出预测,从而获得预测值。
最后,对预测结果进行评估。
即对模型的准确性作出评价,以某种均衡方式来确定模型的有效性,因为预测结果不可能是完美的,最终需要根据预测结果做出实质性的调整和相应的决策。
时间序列分析及应用R语言第二版教学设计一、前言时间序列数据已经在各个领域得到了广泛的应用,例如金融领域的股票预测、气象领域的天气预测等等。
R语言是一种功能强大且易于使用的编程语言,在时间序列分析中具有很大的优势。
本教学设计旨在向学生介绍时间序列分析的基本知识和R语言的应用。
二、教材及参考书目教材•Brockwell, P. J., & Davis, R. A. (2002). Introduction to Time Series and Forecasting (2nd ed.). Springer.参考书目•Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd ed.). OTexts.•Cowpertwt, P. S. P., & Metcalfe, A. V. (2009). Introductory Time Series with R (1st ed.). Springer.•Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples (4th ed.). Springer.三、教学目标•理解时间序列的基本概念和性质,能够进行时间序列的可视化和数据处理。
•掌握时间序列模型的建立和评估方法,能够应用ARIMA、季节性ARIMA和指数平滑等方法进行时间序列预测。
•熟悉R语言在时间序列分析中的应用,能够进行时间序列建模和预测。
四、教学内容第一章:时间序列预备知识1.1 时间序列概述1.2 常见时间序列模型1.3 时间序列的可视化和数据处理第二章:时间序列分析基本方法2.1 平稳时间序列模型2.2 自回归模型2.3 移动平均模型第三章:ARIMA模型3.1 ARIMA模型介绍3.2 ARIMA模型求解方法3.3 ARIMA模型的评估和预测第四章:季节性ARIMA模型4.1 季节性ARIMA模型介绍4.2 季节性ARIMA模型求解方法4.3 季节性ARIMA模型的评估和预测第五章:指数平滑法5.1 简单指数平滑法5.2 带趋势的指数平滑法5.3 季节性指数平滑法第六章:R语言在时间序列分析中的应用6.1 R语言基础知识6.2 时间序列数据的导入和可视化6.3 时间序列模型的建立和预测五、教学方法本教学设计主要采用理论授课和实例演示相结合的教学方法。