着色问题
- 格式:pdf
- 大小:170.13 KB
- 文档页数:9
塑胶产品着色时一般出现的问题及处理方法
1.产品表面起粒:主要原因:
①料筒及模头有杂质;
②温度不正确;
③原料在料筒内加热停留时间太长;
④色母或色粉的分散性未处理好;
⑤过滤网已穿孔。
处理方法:把塑机温度调至低于正常温度10 -20℃,开动塑机,用原色塑料树脂以最慢速度重新进行清理工作,必要时把模头拆开清理,并调整好温度,及时更换过滤网。
改用分散良好的色母或色粉重新调试。
2.扩散不均匀:主要原因:
①混料不均匀;
②温度不适当;
③色母和原料相溶性差;
④塑机本身塑化效果差;
⑤色母投放比例太小。
处理方法:充分搅拌、温度调整适当、更换色母或原材料、更换其他机台生产、调整色母投放比例。
3.经常断料主要原因:
①温度不正确;
②原料亲和性差;
③色母分散太差;
④色母投放比例太高。
处理方法:把温度调较准确、更换所用原料、更换分散优良的色母、降低色母使用比例。
4.颜色有变化:主要原因:
①使用的原材料底色不一致;
②塑机未清洁干净;
③所用的色母或色粉耐温程度低,温度过高时消色;
④下料门未清洁干净;
⑤加工工艺改变;
⑥色母或色粉本身有色差;
⑦水口料搭配不当;
⑧混料机未清洁干净或混料时间未控制好
处理方法:使用与打板时颜色一致的原料及调整好水口料的搭配比例;把塑机、下料门及混料机彻底清洁干净;改用耐温适当、颜色一致的色母或色粉;使用稳定的加工工艺。
图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。
用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。
求一个图的最小色数 m 的问题称为m-着色优化问题。
二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。
在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。
如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。
具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。
2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。
3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。
4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。
此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。
5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。
6. 重复步骤2至5,如果最终 step 为0则代表无解。
2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。
三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。
题型一、着色问题【例1】将红、黄、绿、黑四种不同的颜色涂入如图所示的五块区域,要求相邻的两块区域的颜色都不相同,则有多少种不同的涂色方法?解:方法一:给区域标上记号A 、B 、C 、D 、E 如图所示,则A 区域图有4种不同的涂色方法,B 区域有3种不同的涂色方法, C 区域有2种不同的涂色方法,D 区域的涂色方法就要合理分类,由于E 区域同时接邻A 、C 、D 三个区域,所以它的颜色依赖于A 与D 的涂色,如果A 与D 颜色相同,则E 区域有2种涂色方法,若A 与D 颜色不相同,则E 区域只有1种涂色方法,因此应该先分类后分步.(1) 当A 、D 颜色相同时,根据分步乘法计数原理有4×3×2×1×2=48(种);(2) 当A 、D 颜色不同时,根据分步乘法计数原理有4×3×2×1×1=24(种). 故根据分类加法计数原理共有48+24=72种方法.方法二:由已知共计4种颜色,5块区域,颜色至少使用3种,最多使用4种颜色.由使用的颜色的种数分为两类第一类:涂色恰好使用了4种颜色,即A 、D 同色或B 、E 同色:有4×3×2×1+4×3×2×1=48(种);第二类:涂色恰好使用3种颜色,即A 、D 同色且B 、E 同色:有4×3×2=24(种). 故根据分类加法计数原理共有48+24=72种方法.温馨提示:为了处理问题方便,解决涂色问题时往往给每一个区域标上相应的序号.本题解决的关键是①着眼点是按区域分步,还是按使用的颜色分类;②注意区域A 、D 和B 、E 可以同色也可以异色,应合理分类讨论.迁移训练1-1将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.解:法一:按顶点S,A,B,依次着色5×4×3=60,顶点C 分为两类:点A 与点C 同色和异色. ① 当点A 与点C 同色时:点S 、A 、C 三个点一共了2种颜色,所以点D 有3种颜色可选. ② 当点A 与点C 异色时:点C 有2种颜色可选,点S 、A 、C 三个点一共了3种颜色,所以点D 有2种颜色可选.所以由分步乘法计数原理得不同的染色方法总数为:5×4×3×(1×3+2×2)=420(种). 法二:由已知四棱锥有5个顶点,可以使用的颜色有5种,按使用颜色的种数分为三类. A B C S D①涂色使用了3种颜色时:此时顶点A和C同色并且B和D同色,由分步乘法计数原理得不同的染色方法总数为5×4×3=60;②涂色使用了4种颜色时:此时顶点A和C同色或B和D同色,由分步乘法计数原理得不同的染色方法总数为(5×4×3×2)×2=240(种);③涂色使用了5种颜色时:5个顶点使用5种不同的颜色,由分步乘法计数原理得不同的染色方法总数为5×4×3×2×1=120.所以由分类加法计数原理得不同的染色方法总数为:60+240+120=420(种).。
初中化学物质着色及沉淀问题液体的颜色1、无色液体:水,双氧水2、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液3、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液4、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液5、紫红色溶液:高锰酸钾溶液6、紫色溶液:石蕊溶液气体的颜色7、红棕色气体:二氧化氮8、黄绿色气体:氯气9、无色气体:氧气、氮气、氢气、二氧化碳、一氧化碳、二氧化硫、氯化氢气体等大多数气体。
固体的颜色10、红色固体:铜,氧化铁11、绿色固体:碱式碳酸铜12、蓝色固体:氢氧化铜,硫酸铜晶体13、紫黑色固体:高锰酸钾14、淡黄色固体:硫磺15、无色固体:冰,干冰,金刚石16、银白色固体:银,铁,镁,铝,汞等金属17、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭)18、红褐色固体:氢氧化铁19、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁沉淀的颜色FeS2 黄色沉淀PbS 黑色沉淀FeCO3 碳酸铁灰色沉淀Ag2CO3 碳酸银黄色沉淀AgBr 浅黄沉淀AgCl 白色沉淀Cu2(OH)2CO3 暗绿色沉淀Fe(OH)2 氢氧化铁红棕色沉淀BaSO3 碳酸亚钡白色沉淀Cu(OH)2 氢氧化铜蓝色沉淀Mg(OH)2 氢氧化镁白色沉淀源-于-网-络-收-集源-于-网-络-收-集 AL(OH)3 氢氧化铝 白色沉淀Fe(OH)3 氢氧化铁 红褐色沉淀Cu(OH)2 氢氧化铜 蓝色沉淀AgCl 氯化银 白色沉淀BaSO4 硫酸钡 白色沉淀BaCO3 碳酸钡 白色沉淀Fr(OH)3 红褐色沉淀AgBr 钡化银 淡黄色沉淀AgI 碘化银 黄色沉淀Ag3PO4 黄色沉淀Cu2OOH-为白色(如Mg(OH)2)CO3 2-为白色(如CaCO3)Fe 3+ 为红褐色Fe 2+ 为绿色Cu 2+ 为蓝色(如Cu(OH)2)NO3-均溶解Cl-只有AgCl 是沉淀SO4-只有BaSO4是沉淀(Ca,Ag 微溶)FeCO3是沉淀 红色初中常见的七种沉淀两种有颜色的氢氧化铁Fe(OH)3红褐色沉淀 氢氧化铜Cu(OH)2 蓝色沉淀白色沉淀五种碳酸钙 CaCO3、 碳酸钡BaCO3 、氯化银 AgCl 、硫酸钡 BaSO4、 氢氧化镁 Mg(OH)2产生这些沉淀方程式很多,各举一个例子。
1. 如右图,对A,B,C,D,E五个区域分别用红黄绿蓝白五种颜色中的某一种来着色,规定相邻的区域着不同色,问有多少种不同的着色方案?【组合十讲P37】2 用红黄蓝三种颜色涂在右图的圆圈中,每个圆圈中,每个圆圈只涂一种颜色,并且要使每条连线两端的圆圈涂上不同颜色,问一共有多少种不同的涂法?3.某植物园计划在A,B,C,D,E五个地块栽种四种不同颜色的郁金香,每个地块内的郁金香必须同色,相邻的(有公共边界的)地块郁金香不能同色,不相邻可以同色,问共有多少种不同的方案?4。
如图对A,B,C,D,E,F,G七个区域分别采用红,黄,绿,蓝,白五种颜色中的某一种来着色,规定相邻的区域不能同色,那么有多少种不同的着色方案?5.用红,黄,蓝,三种颜色把如图的8个小圆圈涂上颜色,每个圆圈只涂一种颜色,并且有连线的两个圆圈不能同色,那么有多少种不同涂色方案?【希望杯P107】6. 一根划分成相等5段的钢管,若要用红,白两种颜色分别对每一段着色,问共有几种不同的涂色方案?(倒置后相同的两种涂色方案视为同种)8。
如图用4种颜色对A,B,C,D,E五个区域涂色,要求相邻的区域涂不同的颜色,那么,共有几种涂法?9。
用三种颜色染正方体的6条边,相邻边不同色,有多少种染法?【教程P133】10. 如图,用红,黄,蓝三种颜色给一个五边形的各个顶点染色,同一边的两段点不能同色,且顶点A 必须染红色,请问:有多少种不同的染色方案?【高斯导引P76】11。
如图一个圆环被分成8部分,先将每一部分染上红,黄,蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种不同染色方案?12. 如图,用4种不同的颜色将图中的圆圈分别涂色,要求有线段连接的两个相邻的圆圈必须涂不同的颜色,共有几种涂法?(不许旋转翻转)13 给一个正四面体的4个面染色,每个面只允许用一种颜色,且4个面的颜色互不相同,现有5种颜色可选,共有多少种不同的染色方案?14. 用4种颜色为一个正方体的6个面染色,要求每个面只能用1种颜色,且乡邻面的颜色必须不同,如果将正方体经过反转后颜色相同视为同一种,那么共有多少种不同的染色方案?17.用红,黄,蓝三种颜色对右图进行染色,要求相邻两块颜色不同,共有多少种不同的染色方案? 【简明读本P191】1。
5.5 着色问题:
用m种颜色为地图着色,
使得地图上的每一个区域着一种颜色,且相邻区域颜色不同。
拓展:19世纪50年代,英国学者提出了任何地图都可以4种颜色来着色的4色猜想问题。
过了100多年,这个问题才由美国学者在计算机上予以证明,这就是著名的四色定理。
例: 4个顶点3着色问题:
解:记顶点为{1,2,3,4},颜色为{A,B,C}:
所有可能的3着色:
O nk
K-COLORING(i,k):()n
O kn
GENERATE-COLOR(i,k):()
例:利用回溯法给下图(a)着色。
1)把5元组初始化为(0,0,0,0,0),从根结点开始向下搜索,以颜色1为
顶点A着色,生成根结点2时,产生(1,0,0,0,0),是个有效着色。
2)以颜色1为顶点B着色生成结点3时,产生(1,1,0,0,0),是个无效着色,
结点3为死结点。
3)以颜色2为顶点B着色生成结点4,产生(1,2,0,0,0),是个有效着色。
4)分别以颜色1和2为顶点C着色生成结点5和6,产生(1,2,1,0,0)和
(1,2,2,0,0),都是无效着色,因此结点5和6都是死结点。
5)以颜色3为顶点C着色,产生(1,2,3,0,0),是个有效着色。
重复上述步
骤,最后得到有效着色(1,2,3,3,1)。
数据结构课程设计报告地图着色问题地图着色问题是一个经典的图论问题,涉及到如何用至少的颜色给地图上的各个区域进行着色,使得相邻的区域颜色不同。
在数据结构课程设计报告中,我们将详细介绍地图着色问题的定义、解决方法以及实现过程。
一、问题定义地图着色问题可以用图论的方式来描述。
给定一个地图,地图上的每一个区域可以看做图的一个顶点,而区域之间的邻接关系可以看做图的边。
问题的目标是找到一种着色方案,使得相邻的区域颜色不同,且使用的颜色数至少。
二、解决方法1. 贪心算法:贪心算法是一种简单而有效的解决地图着色问题的方法。
具体步骤如下:a. 选择一个未着色的区域。
b. 遍历该区域的所有邻接区域,记录已经使用的颜色。
c. 选择一个未使用的颜色,给该区域着色。
d. 重复步骤a-c,直到所有区域都被着色。
2. 回溯算法:回溯算法是一种穷举所有可能解的方法,通过逐步试错来找到最优解。
具体步骤如下:a. 选择一个未着色的区域。
b. 遍历所有可用的颜色,尝试给该区域着色。
c. 检查该区域与相邻区域的颜色是否冲突,如果冲突则回溯到上一步。
d. 重复步骤a-c,直到所有区域都被着色。
三、实现过程1. 数据结构设计:在解决地图着色问题时,我们可以使用图的邻接矩阵或者邻接表来表示地图的结构。
邻接矩阵适合于稠密图,而邻接表适合于稀疏图。
此外,我们还需要使用一个数组来记录每一个区域的颜色。
2. 算法实现:根据选择的解决方法,我们可以实现相应的算法来解决地图着色问题。
对于贪心算法,我们可以按照贪心的策略来选择颜色;对于回溯算法,我们可以使用递归来穷举所有可能的解。
3. 算法优化:地图着色问题属于NP彻底问题,因此在实际应用中,对于大规模的地图,穷举所有可能的解是不可行的。
我们可以通过一些优化策略来提高算法的效率,如剪枝、启示式搜索等。
四、实例分析假设我们有一个地图,包含5个区域,相邻区域如下所示:区域1:区域2、区域3区域2:区域1、区域3、区域4区域3:区域1、区域2、区域4、区域5区域4:区域2、区域3、区域5区域5:区域3、区域4我们可以使用贪心算法来解决这个问题。
离散数学中的图着色问题研究与算法设计离散数学是数学的一个分支,研究离散的结构和对象。
在离散数学中,图论是一个重要的研究领域。
图着色问题是图论中的一个经典问题,其研究和算法设计具有重要的理论和实际意义。
图着色问题是指如何用有限种颜色对图中的顶点进行着色,使得相邻的顶点颜色不相同。
这里的相邻顶点是指在图中有一条边连接的顶点。
图着色问题最早由英国数学家弗朗西斯·格斯顿于1852年提出,被称为“四色定理”。
四色定理是图着色问题的一个重要结果。
它指出,任何平面图都可以用至多四种颜色进行着色,使得相邻顶点颜色不相同。
这个定理的证明非常复杂,涉及到大量的数学理论和计算机算法。
直到1976年,美国数学家肯尼思·阿普尔和沃尔夫冈·哈肯提出了一个基于计算机的证明,才最终解决了这个问题。
除了四色定理,图着色问题还有许多其他的研究和算法设计。
其中一个经典的问题是最小顶点着色问题。
最小顶点着色问题是指找到一个最小的颜色数,使得图中的每个顶点都能被染上一种颜色,并且相邻顶点颜色不相同。
这个问题在实际中有着广泛的应用,比如任务调度、频率分配等领域。
解决最小顶点着色问题的算法有许多种。
其中一种常用的算法是贪心算法。
贪心算法的基本思想是每次选择一个顶点,将其染上一个未被使用的颜色,然后继续选择下一个顶点。
如果某个顶点的颜色与相邻顶点相同,则选择另一种颜色进行染色。
通过不断迭代,直到所有的顶点都被染色为止。
贪心算法的时间复杂度较低,但是并不一定能够找到最优解。
除了贪心算法,还有其他的算法可以解决最小顶点着色问题,比如回溯算法、分支定界算法等。
这些算法的时间复杂度较高,但是可以找到最优解。
然而,由于图着色问题是一个NP完全问题,即不存在多项式时间内的算法可以解决该问题。
因此,对于大规模的图着色问题,通常采用近似算法或者启发式算法来求解。
近似算法是一种在多项式时间内找到一个接近最优解的算法。
其中一个常用的近似算法是基于最大度数的着色算法。