学会砂岩薄片鉴定技术并不难(十)
- 格式:doc
- 大小:1.21 MB
- 文档页数:18
学会砂岩薄片鉴定技术并不难(五)锥光镜下的观察矿物晶体的轴性(一轴晶还是二轴晶)、光性符号(正光性还是负光性)、光轴角(二轴晶2V)、晶体切面方位,是其重要的光学性质,这些在单偏光和正交偏光下都无法鉴定,只有依靠锥光镜来测定。
在下偏光镜之上、载物台之下,加上一个聚光镜,使透出下偏光镜的平行偏光变成锥形偏光,换上高倍物镜(最好是60倍以上目镜),推入勃氏镜或去掉目镜(去掉目镜干涉图更清楚,但不能照相),上偏光镜继续保留,这样构成一个完整的锥光系统。
射入矿片的锥光束,除中央一条光波垂直入射外,其余光波都是倾斜射入,而且越往外倾斜角度越大,不同方向的入射光同时通过矿片,到达上偏光镜后发生的消光和干涉应不相同,在镜下呈现特殊的干涉图,根据这种干涉图可以测出矿物的一些有用的光学性质。
1、一轴晶矿物的干涉图一轴晶矿物的任何切面都会产生某一种干涉图,可以分为垂直光轴、斜交光轴、平行光轴三种类型。
其中以垂直或接近垂直光轴的切面的干涉图易于观察。
垂直光轴的切面,在正交偏光下无论怎么旋转物台都呈黑色或接近黑色,在锥光镜下,其干涉图由一个黑十字与同心圆干涉色色圈组成,黑十字的臂与上下偏光振动方向平行,插入试板,根据四个扇面(象限)中干涉色的升降变化,就能确定Ne(Ne')与No 的相对大小,从而确定矿物的光性符号。
1 这是一张一轴晶垂直光轴切面中光率体椭圆切面半径的分布及光性正负的测定示意图,(A)表示正光性矿物的椭圆切面长半径呈放射状分布;(B)表示负光性矿物的椭圆切面短半径呈放射状分布;(C)表示从二、四象限插入试板时,二、四象限干涉色降低,而一、三象限干涉色升高,为正光性(注意:试板的伸长方向总是与试板内光率体的短轴半径平行的);(D)从二、四象限插入试板时,二、四象限干涉色升高,而一、三象限干涉色降低,为负光性(自赵敬松等《矿物岩石薄片研究基础》)也就是说,当被测试矿物内部椭圆切面的长半径与试板内光率体的短半径相叠置时,矿物的干涉色就会降低;而当被测试矿物内部椭圆的短半径与试板内光率体的短半径相叠置时,矿物的干涉色便会升高。
学会砂岩薄片鉴定技术并不难(四)正交偏光下的观察所谓正交偏光镜(简称正交偏光)就是除了用下偏光镜外,再将上偏光镜插入镜筒,这样,上、下偏光镜的偏光震动面方向互相垂直正交,并分别与目镜十字丝的横丝及纵丝一致。
在正交偏光条件下,如果载物台不放置矿物薄片,视域是黑暗的。
通常,我们通过这一特征来检测上、下偏光是否处于正交位置,因为很多偏光显微镜的上偏光旋钮正好位于手柄处,很易因固定螺丝松动使上偏光位置偏离正交。
当上、下偏光不正交时,矿物的干涉色便会失真,这种问题在初学者中经常可能遇到。
在正交偏光镜下主要研究矿物的消光、双折射率和双折射率所产生的干涉色等光学现象,同时还涉及光率体椭圆半径轴名有关的一些内容,如光率体椭圆半径轴名的测定、消光角、延性符号和双晶等。
1、消光矿物在正交偏光下变黑暗的现象,称为消光。
均质矿物、非晶质矿物和非均质矿物垂直光轴的切面,在正交镜下无论怎么转动物台总是消光的,称为全消光。
均质体矿物全消光,是因为其光性是各向相同的;非晶体消光,是因为它没有光性;非均质体垂直光轴的切面全消光,是因为在该切面上光率体切面为圆形。
常见的均质体矿物有萤石、石榴子石、方沸石等;常见的非晶质如蛋白石、火山玻璃等。
如何区分均质体切片和非均质矿物垂直光轴切面呢?仅仅应用正交偏光是不行的,必须借助锥光条件(在锥光下均质体切片不出现干涉图,而非均质矿物垂直光轴切面则可出现干涉图)。
非均质矿物除垂直光轴外的其他切面,旋转物台一周,会有四次变暗,即有四次消光,这四个位置称为该矿物的消光位。
消光位是矿物的一个鉴定特征。
当矿物处在消光位时,如果其解理缝、双晶缝、晶形或晶面与目镜十字丝之一平行,称为平行消光;如果二者斜交,则称为斜消光,其交角为消光角;如果目镜十字丝为两组解理或两个晶面夹角的平分线,称为对称消光。
一轴晶矿物,大多数切面为平行消光和对称消光;二轴晶矿物中,斜方晶系矿物大部分切面是平行消光和对称消光,少数可见斜消光,而且消光角一般都较小;单斜晶系矿物,各种消光类型都有,但以斜消光常见;三斜晶系矿物,绝大多数则是斜消光。
砂岩荧光薄片鉴定标题:砂岩荧光薄片鉴定的科学方法与应用在地质研究中,砂岩是一种重要的岩石类型,它包含了丰富的地质信息。
而荧光薄片技术作为一种有效的鉴定手段,可以揭示砂岩内部的微观结构和成分信息,为地质学家提供了宝贵的资料。
本文将详细介绍砂岩荧光薄片鉴定的方法和应用。
一、砂岩荧光薄片鉴定的原理荧光薄片技术是利用某些矿物在紫外线照射下产生特定颜色的荧光效应,从而识别和分析岩石中的矿物组成。
砂岩主要由石英、长石、云母等矿物组成,这些矿物在紫外线下会呈现出不同的荧光反应,因此可以通过观察荧光现象来判断砂岩的矿物组成。
二、砂岩荧光薄片鉴定的步骤1. 样品制备:首先需要采集砂岩样品,并将其研磨成厚度约为30微米的薄片,然后将薄片贴在载玻片上。
2. 荧光激发:使用专门的荧光显微镜,通过短波紫外线(约254纳米)或长波紫外线(约365纳米)激发薄片中的矿物。
3. 荧光观察:在激发后的薄片中,不同矿物会产生不同颜色的荧光,通过观察和记录这些荧光颜色,可以确定矿物的种类。
三、砂岩荧光薄片鉴定的应用1. 地质年代学:砂岩中的某些矿物具有放射性,通过测量其放射性衰变产物,可以推算出砂岩的形成年代。
而荧光薄片技术可以帮助我们准确地定位这些放射性矿物,从而提高测年精度。
2. 矿产资源勘探:砂岩中常常含有各种矿产资源,如金、铀、石油等。
通过对砂岩进行荧光薄片鉴定,我们可以了解其中的矿物组成和分布情况,为矿产资源的勘探提供重要线索。
3. 环境科学研究:砂岩是地下水的重要储藏介质,其内部的矿物组成和结构对地下水的运动和化学性质有重要影响。
通过荧光薄片技术,我们可以深入研究砂岩的微观结构和矿物组成,从而更好地理解地下水的运动规律和化学过程。
四、结语砂岩荧光薄片鉴定是一种强大的地质研究工具,它可以为我们提供砂岩的详细矿物组成和微观结构信息。
随着科学技术的进步,我们期待更多的新技术和新方法应用于砂岩荧光薄片鉴定,以更深入地探索砂岩的秘密,推动地质科学的发展。
砂岩薄片鉴定技术6——石英、长石前面五部分都是搞岩矿必须要了解的显微镜下的基本技能。
一开始接触,可能都会觉得很难,但当你看过一段时间的岩石薄片,或者是在学习过程中遇到过不认识的矿物,曾试着想通过查阅《光性矿物学》等工具书自己鉴定过新矿物的人,就会觉得其实并不难!前面已经介绍了砂岩鉴定报告的主要内容及其有关内容的涵义,下面我们便可以开始试着去鉴定砂岩薄片了。
砂岩是陆源碎屑岩的一种,是主要由母岩风化产物经机械搬运、沉积和成岩作用形成的一类沉积岩。
因此,在学习砂岩薄片鉴定的时候,首先学会认识碎屑组分,要能够分辨是陆源碎屑还是填隙物。
砂岩中的陆源组分主要包括石英类(包括单晶石英和燧石)、长石类、岩石碎屑(包括火成岩屑、变质岩屑及沉积岩屑)及其他组分(如云母、绿泥石、蚀变碎屑、盆屑、重砂、生物碎屑等等);填隙物主要由陆源杂基和胶结物组成,此外还有一些其他组分,如沥青质等。
从理论上讲,母岩中的全部矿物均可能以碎屑的形式出现在砂岩中,但由于各种矿物抗风化的能力相差悬殊,常在碎屑岩中出现的矿物约20余种。
按矿物的比重常将碎屑岩中的矿物碎屑分为轻矿物(比重小于2.86)和重矿物(比重大于2.86),重矿物多是母岩中抗风化能力强的副矿物和暗色矿物,在薄片中含量很少(常小于1%),只有在重砂中才能大量出现。
轻矿物中以石英、长石及岩石碎屑为主,另有部分云母、绿泥石等片状矿物。
在学习砂岩薄片鉴定认识陆源碎屑组分时,首先从认识石英、长石开始的;其次开始逐步认识各类岩石碎屑、其他组分(如云母、绿泥石、蚀变碎屑、盆屑、炭屑、化石碎屑、重砂等)、填隙物组分(包括陆源杂基、粘土矿物、碳酸盐类、硫酸盐类、硅质、长石加大、沸石类、铁矿、凝灰质等)、空间类型;然后学会对砂岩结构构造的观察、描述以及对各类成岩现象的观察;学会应用不同的统计方法对这些组分进行准确的定量统计;最终对砂岩进行岩石定名。
这样,一块砂岩薄片的鉴定工作就算完成了。
下面,让我们先来认识石英类和长石类的碎屑组分。
学会砂岩薄片鉴定技术并不难(一)在野外条件下研究岩石,只能凭借手中的放大镜简单确定岩石的矿物成分及结构构造。
岩石的很多特点都因为组成岩石的组分太小,不能精确鉴定,而从研究者手中滑过或被遗漏。
岩石的薄片研究弥补了这一缺憾!在岩石薄片中可对岩石进行全面的研究,如岩石的物质成分、生物遗体、结构、构造、矿物的次生变化,等等。
并且,薄片除了能够确定岩石现有的成分和组构特点外,还能查明岩石逐步形成的历史。
薄片研究,在很大程度上还能预先决定进一步详细研究整个岩石或岩石中某些部分的物质成分所应采取的方法。
碎屑岩的薄片所提供的资料最丰富。
在这种情况下,不仅可以详尽地研究岩石内部一切主要的矿物组分,空间类型,同时也能解决一系列的成因问题。
如碎屑颗粒的矿物成分,能够判断供给区的特性;碎屑物质成分中,稳定组分或不稳定组分的存在,它们的风化程度,都能提供有关沉积物堆积时环境的概念,如风化性质,侵蚀和堆积速度,碎屑物质在沉积带中停留的久暂,等等。
所以,很多搞沉积的人非常想能够亲自掌握砂岩的薄片鉴定技术。
当然,也有很多人可能会觉得岩石薄片研究技术很难,或苦于会遇到很多困难无处请教,有畏难心理。
其实,对于一个具备一定地学基础的人,一个有着沉积学、岩石学基础的人,一个渴望能够自己学会在显微镜下观察砂岩微观特征的人,一个能在显微镜前安静坐下来的人,是完全可以通过努力掌握砂岩薄片鉴定基本技能的。
首先,让我们了解一些砂岩薄片鉴定资料主要包括哪些内容。
砂岩薄片鉴定报告主要包括以下四项主要内容:1、砂岩的组分及含量;2、砂岩的结构特征;3、砂岩的空间类型及可见孔面孔率;4、岩性描述及砂岩的定名。
这是一张空白的砂岩薄片鉴定原始记录其次,让我们来逐一解剖这张砂岩薄片鉴定表中所涉及的内容。
学习砂岩薄片鉴定,让我们先从这张鉴定表开始。
1、砂岩的组分:(1)碎屑组分(骨架颗粒),通常包括:石英类(石英、燧石)、长石类、岩石碎屑及其他陆源组分。
其他陆源组分包括云母、绿泥石、重矿物(含量小于1%时不作统计)。
砂岩碎屑组分统计法
碎屑岩的碎屑组分统计是确定岩石类型、沉积物母岩组合,研究源区古气候、古环境等信息的主要方法之一。
目前,砂岩组分统计常常采用的方法有目估法、面积法、直线法(或线测法)和点计法几种。
目估法:是使用一套标准碎屑含量图案作为比较标准,在偏光显微镜下,用肉眼近似地估计出各种碎屑的百分含量。
该方法主观性强,碎屑组分含量估计不够准确,但是特别省时,如果工作要求精度不高,可采用此方法。
这是我在电脑上拍的一张标准碎屑含量图案,供参考
需要指出的是,这张被很多砂岩薄片鉴定资料引用的标准图,在实际工作中并不实用,因为这是理想中的,是在低倍镜下才能看到的碎屑的含量分布比例,一般情况下,在这样的低倍镜下,砂岩的碎屑类型是很难识别的,也就说鉴定人员可能很难借助此图来目估不同类
型碎屑组分的含量。
面积法:是根据岩石薄片中各种碎屑组分所占得面积百分比,近似于碎屑组分在岩石中所占的体积百分比。
具体是根据各种碎屑组分在显微镜视域中所占方格数,确定出每种碎屑组分所占面积的百分比。
这种方法精度较高,但比较耗时。
直线法(即线测法):是以岩石薄片中各碎屑组分的总长度之比,近似表示各碎屑组分的体积之比。
通常需要逐个测量测线所通过颗粒的长度,测线方向尽可能垂直层理,测线间距取平均粒径的两倍,测线总长不少于5cm,或垂直样片测至少3
条测线。
点计法:是用碎屑颗粒的数量之比近似地表示体积之比,即不论碎屑颗粒粒径的大小,只要与测线相交的碎屑颗粒,不论碎屑颗粒的大小和测线所切碎屑颗粒的长度,都记为一个点,从而不再记录碎屑颗粒所占的格数和长度。
测线间隔可以根据碎屑颗粒粒径大小来确定,一般与直线法相同,即取平均粒径的两倍;测点的间隔取粒状碎屑的平均粒径便可;统计点数一般300~500个点。
其实在日常薄片鉴定当中,目估法和面积法通常被相结合在一起使用着,对含量较少的组分可以对比含量图案来进行,而对于含量稍高的组分则要结合面积法来进行,至少须统计
3~4个视域才能相对准确。
在没有目镜网格的情况下可以用数“单位颗粒大小”和拼面积的方法来进行碎屑相对含量统计。
单位颗粒大小,指与样片内粒状碎屑的平均粒径基本等同的单个碎屑大小,统计之前,先要在一个视域内大致确定单位颗粒大小,然后数出视域内各类碎屑组分所占据的单位颗粒数,再计算出它们的相对含量;拼面积则是在镜下目估某种碎屑组分在单个视域内所占的面积,例如某种碎屑组分在一个视域中占据了1/8,则该矿物的含量大约为12.5%左右;若占整个视域的1/4,则该矿物的含量大约为25%左右;若占整个视域的1/2,则矿物的大约为50%左右。
而用直线法和点计法统计组分时,在统计的基础上,还需要结合对整个样片的镜下观察,对分布不均一及含量较少矿物的含量进行微调,尽量避免漏项及减少统计误差。
在上述方法中,直线法、面积法的统计计算复杂、费时,而且易使目力疲劳,相比之下点计法操作更加简单方便。
合肥工业大学资源与环境工程学院储书武、李双应老师在“两种砂岩碎屑组分统计方法的比较”文章中,用误差分析、相关分析和Dickinson源区构造背景判别三角图法,比较了直线法和点计法之间的区别认为:二种测量结果之间差异微小,但点计法具有简单、方便、省时的特点。
是砂岩薄片鉴定统计方法中最值得提倡的方法。
在对一块砂岩薄片内的碎屑组分进行准确的统计之后,我们便可以根据现行的行业标准对其进行岩石命名了。
石油系统的行业标准目前仍在使用的是
ST/T5368--2000。
本文将该标准附于文后便于大家参考。
关于“学会砂岩薄片鉴定技术并不难”系列历经近三个月时间,在此基本完成,由于实际困难使该系列的编辑拖延的时间太久,以至于有些内容可能衔接的不好,还请博友能够体谅和谅解。