数学模型第三版课后习题答案.doc
- 格式:doc
- 大小:2.00 MB
- 文档页数:36
规划数学第三版课后习题答案习题1在学习规划数学的过程中,课后习题的解答是巩固知识、深化理解的重要环节。
接下来,我们就一起来探讨规划数学第三版中的习题 1。
习题 1 通常是为了帮助我们熟悉和运用规划数学中的基本概念和方法。
这道题可能涉及到线性规划、整数规划、目标规划或者动态规划等不同的规划类型。
假设习题 1 是一个线性规划问题。
题目可能会给出一组约束条件,例如生产资源的限制、成本的约束等,以及一个需要最大化或最小化的目标函数,比如利润最大化或者成本最小化。
我们先来分析约束条件。
这些条件可能以不等式的形式呈现,比如某两种原材料的使用量之和不能超过特定的数量,或者生产某种产品所需的工时不能超过总工时的限制。
在理解这些约束条件时,我们要清晰地知道它们所代表的实际意义和限制范围。
然后,再来看目标函数。
如果是追求利润最大化,那么目标函数可能是各种产品的利润乘以其产量的总和。
而要实现最小化成本,目标函数则可能是各种成本因素乘以相应的数量之和。
在求解这个线性规划问题时,我们可以采用图形法、单纯形法等方法。
图形法适用于两个变量的情况,通过在坐标系中画出约束条件所形成的可行域,然后找出目标函数在可行域上的最优解。
单纯形法则是一种更为通用和强大的方法,可以处理多个变量的线性规划问题。
如果习题 1 是一个整数规划问题,那么除了要满足线性规划的条件外,还需要所有的决策变量取整数值。
这就增加了问题的复杂性,因为可行解的数量大大减少。
在解决整数规划问题时,可能会用到分支定界法或者割平面法等专门的算法。
假设习题1 是一个目标规划问题。
那么题目中可能会给出多个目标,并且这些目标具有不同的优先级。
我们需要在满足各种约束条件的前提下,尽可能地实现这些目标。
对于动态规划问题,习题 1 可能会描述一个多阶段的决策过程,每个阶段都有若干种选择,并且当前阶段的决策会影响到后续阶段的结果。
解决动态规划问题的关键是找到最优子结构和递推关系。
总之,规划数学第三版课后习题 1 无论属于哪种类型的规划问题,都旨在检验我们对规划数学基本原理和方法的掌握程度。
第八章 8.2.1、8.2.2 第2课时A 级——基础过关练1.对变量x ,y 进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是( )【答案】A 【解析】 用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.2.在回归分析中,R 2的值越大,说明残差平方和( ) A .越大B .越小C .可能大也可能小D .以上均错【答案】B3.甲、乙、丙、丁四位同学在建立变量x ,y 的回归模型时,分别选择了4种不同模型,计算可得它们的决定系数R 2分别如下表:学生甲 乙 丙 丁 R 20.950.500.850.77A .甲B .乙C .丙D .丁【答案】A 【解析】R 2越大,表示回归模型的拟合效果越好.4.若一函数模型为y =sin 2α+2sin α+1,为将y 转化为t 的回归直线方程,则需作变换t 等于( )A .sin 2α B .(sin α+1)2C .⎝⎛⎭⎪⎫sin α+122D .以上都不对【答案】B 【解析】 因为y 是关于t 的回归直线方程,实际上就是y 关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系.5.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:已知y 关于x 的经验回归方程为y =0.5x +0.4,则当销售额为5千万元时,残差为________.【答案】0.1 【解析】当x =5时,y ^=0.5×5+0.4=2.9,表格中对应y =3,于是残差为3-2.9=0.1.6.以模型y =c e kx去拟合一组数据时,为了求出回归方程,设z =ln y ,其变换后得到线性回归方程z =0.3x +4,则c =________.【答案】e 4【解析】由题意,得ln(c e kx)=0.3x +4,所以ln c +kx =0.3x +4,比较两边系数,得ln c =4,所以c =e 4.7.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (单位:万元)和销售量y (单位:万台)的数据如下:(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好.B 级——能力提升练8.2020年初,新冠肺炎疫情暴发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示:由表格可得y 关于x 的非线性经验回归方程为y =6x 2+a ,则此回归模型第4周的残差为( )A .13B .-13C .5D .-5【答案】A 【解析】因为x 2=15(1+4+9+16+25)=11, y -=15(2+17+36+103+142)=60,所以a ^=60-6×11=-6,则y 关于x 的非线性经验回归方程为y ^=6x 2-6.取x =4,得y ^=6×42-6=90,所以此回归模型第4周的预报值为90,则此回归模型第4周的残差为103-90=13.9.已知变量y 关于x 的非线性经验回归方程为y ^=e b ^x -0.5,其一组数据如下表所示:若x =5,则预测y A .e 5B .e 112C .e 7D .e 152【答案】D 【解析】将式子两边取对数,得到ln y ^=b ^x -0.5.令z =ln y ^,得到z =b ^x -0.5,列出x ,z 的取值对应的表格如下:则x =1+2+3+44=2.5,z -=4=3.5.∵(x ,z )满足z =b ^x -0.5,∴3.5=b^×2.5-0.5,解得b ^=1.6,∴z =1.6x -0.5,∴y ^=e 1.6x -0.5.当x =5时,y ^=e 1.6×5-0.5=e 152.10.对两个具有非线性相关关系的变量x ,y 进行回归分析,设μ=ln y ,υ=(x -4)2,利用二乘法得到μ关于υ的经验回归方程为μ=-0.5υ+2,则y ^的最大值是________.【答案】e 2【解析】将μ=ln y ,υ=(x -4)2代入经验回归方程μ=-0.5υ+2,得y ^=e -0.5(x -4)2+2.当x =4时,y ^=e -0.5(4-4)2+2=e 2,故y ^最大值为e 2.C 级——探究创新练11.BMI 指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.在我国,BMI <18.5,认为体重过轻;18.5≤BMI <24,认为体重正常;BMI ≥24,认为体重超重.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如下表所示:(1)根据最小二乘法求得的经验回归方程为y ^=0.8x -75.9,利用已经求得的经验回归方程完善下列残差表,并求变化的贡献值R 2(保留两位有效数字);有人为的错误.已知通过重新采集发现,该组数据的体重应该为58 kg.请重新根据最小二乘法,求出y 关于x 的经验回归方程.。
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章 多属性决策品P343 第13章博弈论P371 全书420页第1章 线性规划1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品 资源 A B C 资源限量 材料(kg) 1.5 1.2 4 2500 设备(台时) 3 1.6 1.2 1400 利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1:2.5 2 A 2:1.53 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解】 第一步:求下料方案,见下表。
方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2.5 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A21.5120 2 3 900 余料(m) 0 0.5 0.5 1 1 1 010.5第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。
选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
高等数学典型题第三版课后练习题含答案前言高等数学作为一门重要的学科,在各行各业都扮演着重要的角色。
对于数学这个学科而言,典型题是很好的一个学习工具。
本文提供的高等数学典型题第三版课后习题,也是这样一个很好的学习资源。
课后练习题第一章函数与极限1.已知函数f(x)=x−1,求$$\\lim \\limits_{x \\to 1} \\frac{f(x)-f(1)}{x-1}$$答:$\\lim \\limits_{x \\to 1} \\frac{f(x)-f(1)}{x-1} = \\lim\\limits_{x \\to 1} \\frac{x-1}{x-1} = 1$2.已知函数$f(x)=\\sin(\\frac{\\pi}{2}x)$,证明f(x)在x=1处连续。
答:由于$f(1)=\\sin(\\frac{\\pi}{2})=1$,因此我们只需证明$$\\lim \\limits_{x \\to 1}f(x) =f(1)$$由于$\\sin(\\frac{\\pi}{2}x)$在$x \\to 1$时趋于$\\sin(\\frac{\\pi}{2})=1$,因此$\\lim \\limits_{x \\to 1}f(x) = 1$。
因此,f(x)在x=1处连续。
……(此处省略部分题目)第二章导数与微分1.求曲线y=x3−3x+2在(1,0)处的切线方程。
答:首先,我们求出该曲线在点(1,0)处的导数:f′(x)=3x2−3代入x=1,有f′(1)=0。
因此,该曲线在点(1,0)处的切线斜率为0。
又因为在点(1,0)处的曲线的切线方程的系数k为0,因此得到该曲线在点(1,0)处的切线方程为y=02.求函数$f(x)=\\frac{1}{1+x}$在x=0处的导数。
答:$$\\begin{aligned} f'(x)&=\\lim \\limits_{\\Delta x \\to 0}\\frac{f(x+\\Delta x)-f(0)}{\\Delta x }\\\\ &=\\lim \\limits_{\\Delta x \\to 0} \\frac{\\frac{1}{1+\\Delta x}-1}{\\Delta x }\\\\ &=\\lim\\limits_{\\Delta x \\to 0} \\frac{1}{(1+\\Delta x)(1+\\Delta x)}\\\\ &=1 \\end{aligned}$$因此,f(x)在x=0处的导数为1。
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
《数学模型》作业解答第七章( 2008 年 12 月 4 日)1.对于节蛛网模型讨论下列问题:( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取决于 y k ,给出稳定平衡的条件,并与节的结果进行比较.( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格析稳定平衡的条件是否还会放宽 .解:( 1)由题设条件可得需求函数、供应函数分别为:yk 1f xk 1x k)(2x k 1h( y k )在 P 0 (x 0 , y 0 )点附近用直线来近似曲线 f , h ,得到y k 1y 0 (xk 1x k x 0 ),2xk 1x 0( y ky 0 ) ,由( 2)得x k 2 x 0( y k 1y 0 )( 1)代入( 3)得xk 2x 0(xk 1xkx 0 )22x k 2 x k 1 x k 2x 0 2x 0对应齐次方程的特征方程为22() 2 8特征根为1, 24y k 和 y k 1 确定 . 试分(1)( 2)(3)当8 时,则有特征根在单位圆外,设8 ,则1,2( ) 2( ) 2 84224 1,212即平衡稳定的条件为2与 P 207的结果一致 .( 2)此时需求函数、供应函数在P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为:y k 1y 0( x k 1 x kx 0 ),( 4)2xk 1x 0( y ky k 1y 0 ) ,( 5)2由( 5)得, (xx 0) β(yyyk 1y 0)( 6 )2 k 3k 2将( 4)代入( 6),得2( x k 3 x 0 )(xk 2xk 1x 0 )(x k 1xkx 0 )224 x k 3x k 2 2 x k 1x k4 x 04x 0对应齐次方程的特征方程为43 220 (7)代数方程( 7 )无正实根,且αβ ,,24不是( 7)的根 . 设( 7)的三个非零根分别为 1, 2, 3,则12341 22 331212 34对( 7)作变换:, 则123q 0,p其中 p1(22 2), q1(833 2 2)412412361q( q ) 2 ( p ) 3q( q )2( p33) 32232 23用卡丹公式:2w 3q( q ) 2 ( p )3 w 2 3q( q ) 2 ( p ) 322322 3 3w23q( q ) 2 ( p )3w 3q( q ) 2 ( p ) 3223223其中 w1i 3 ,2求出 1,2,3 ,从而得到1 ,2 ,3 ,于是得到所有特征根 1的条件 .2.已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g(yky k 1) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g (yky k 1 ) .2设曲线 f 和 g 相交于点 P 0 (x 0 , y 0 ) ,在点 P 0 附近可以用直线来近似表示曲线f 和g :y k y 0 ( x k x 0 ) ,----------------------( 1)x k1x 0( y ky k 1 y 0 ) , 0--------------------( 2)2从上述两式中消去y k 可得2x k 2xk 1x k 2(1)x 0 , k 1,2, , -----------(3)上述( 3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:2 2容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2( ) 28----------- ( 5)44从而 22,2 在单位圆外.下面设8 ,由 (5) 式可以算出1, 22要使特征根均在单位圆内,即1, 21 ,必须2 .故 P 0 点稳定平衡条件为2 .3. 已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y k 1f (xk1x k) 和 x k 1g ( y k ) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y k1f ( x k 1x k) 和 x k 1 g( y k ) .2设曲线 f 和 g 相交于点( x 0 , y 0 ),在点 0 附近可以用直线来近似表示曲线f 和g :P Py k 1y 0(xk 12 x kx 0 ) ,0 --------------------( 1)x k1x 0 ( y ky 0 ) ,--- ----------------( 2) 由( 2)得 x k2 x 0( y k1y 0 )--------------------( 3)( 1)代入( 3),可得 x k2x 0( x k1x kx 0 )22x k2x k 1x k 2x 0 2 x 0 , k 1,2, , --------------(4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑( 4)对应的齐次差分方程的特征方程:22容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2 ( ) 2 8----------- ( 5)4 4从而22, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1 ,必须 2 .故 P0点稳定平衡条件为 2 .《数学模型》作业解答第八章( 2008 年 12 月 9 日)1.证明节层次分析模型中定义的n 阶一致阵 A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明:(1)由一致阵的定义知: A 满足a ij a jk a ik , i, j , k 1,2, , n于是对于任意两列i, j ,有a ika jka ij ,k 1,2, ,n . 即i列与j 列对应分量成比例.从而对 A 作初等行变换可得:b11 b12 b1n初等行变换0 0 0A B0 0 0这里 B 0.秩B1 ,从而秩 A 1再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P,使 PA B ,于是c 11 c12c1nPAP 1 BP 1 0 0 0 C0 0 0易知 C的特征根为c11,0, ,0 (只有一个非零特征根).又A ~C ,A 与 C 有相同的特征根,从而 A 的非零特征根为 c 11 ,又 对于任意矩阵有12 nTr Aa11a22ann1 11n . 故 A 的唯一非零特征根为 n .a 1k, a2kT1,2, , n(2)对于 A 的任一列向量, , a nk , k有na 1 jajkna 1kna 1 kj 1 j 1na 2 jajk na2 kna 2 kTn a 1k , a 2kTA a 1k , a 2k , , a nkj 1 j 1, , a nknnna nka njajkankj 1j 1A 的任一列向量 a 1k , a 2k , , a nk T 都是对应于 n 的特征向量 .7. 右下图是 5 位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出 5 位选手的名次 .解:这个 5 阶竞赛图是一个5 阶有向 Hamilton 图 . 其一个有2向 Hamilton 圈为 314523. 所以此竞赛图是双向连通的 .4 5 1 2 32 4 53 11353 1243 14 52等都是完全路径 .此竞赛图的邻接矩阵为0 1 0 1 00 0 1 1 05A1 0 0 040 0 1 0 11 1 1 0 0令 e 1,1,1,1,1 T,各级得分向量为S1Ae 2,2,1,2,3 T,S2AS S 3AS 27,6,4,7,9 T ,S 4AS14,3,2,4,5 T ,313,11,7,13,17 T由此得名次为5, 1( 4), 2,3(选手1和4名次相同).注:给 5 位网球选手排名次也可由计算 A 的最大特征根和对应特征向量S 得到:1.8393,S0.2137,0.1794,0.1162,0.2137,0.2769 T数学模型作业( 12 月 16 日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层越海方案的最优经济效益准则层省收岸间当地建筑时入商业商业就业方案层建桥梁修隧道设渡轮2.简述层次分析法的基本步骤 . 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪 3 个层次?具体内容分别是什么?答:层次分析法的基本步骤为:( 1).建立层次结构模型;( 2).构造成对比较阵;( 3).计算权向量并做一致性检验;( 4).计算组合权向量并做组合一致性检验.对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3 个层次 .目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位 3 等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪 3 个层次?试给出一致性指标的定义以及n 阶正负反阵 A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这 3 个层次;一致性指标的定义为:CIn .n阶正互反阵A 是一致阵的充要条件为:A 的最大特征根n 1=n .第九章( 2008 年 12 月 18 日)1.在 9.1节传送带效率模型中 , 设工人数 n 固定不变 . 若想提高传送带效率D, 一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子, 其它条件不变, 于是每个工人在任何时刻可以同时触到两只钩子, 只要其中一只是空的, 他就可以挂上产品, 这种办法用的钩子数量与第一种办法一样. 试推导这种情况下传送带效率的公式, 从数量关系上说明这种办法比第一种办法好.解: 两种情况的钩子数均为2m .第一种办法是 2m 个位置,单钩放置2m 个钩子;第二种办法是 m 个位置,成对放置 2m 个钩子.① 由 9.1节的传送带效率公式,第一种办法的效率公式为2m 1nD11n2m当n较小, n1时,有2mD2m 1 11 n n 1 1 n 1n2m 8m 24mD 1 E,nE4m② 下面推导第二种办法的传送带效率公式:对于 m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的 m 个钩对.任一只钩对被一名工人接触到的概率是1 ;m 1任一只钩对不被一名工人接触到的概率是1;1, q 1 1m记 p.由工人生产的独立性及事件的互不相容性.得,任一钩对为空m m的概率为 q n,其空钩的数为2m ;任一钩对上只挂上1件产品的概率为npq n 1,其空钩数为 m .所以一个周期内通过的2m 个钩子中,空钩的平均数为2m q n m npq n 1 m 2q n npq n 1于是带走产品的平均数是2m m 2q n npq n 1 ,未带走产品的平均数是n 2m m 2q n npq n 1 )此时传送带效率公式为m 2q n npq n 1 nn 1n 1D ' 2m m 2 2 1 1 1n n m m m ③ 近似效率公式:nn n n 1 1 n n 1 n 2 1 由于 11 1m 2 m2 6 m3m1 n 1n 1 n 1 n 2 11 1m m 2 m2D ' 1 n 1 n 2 6m2当 n 1时,并令 E' 1 D' ,则E'n26m 2④ 两种办法的比较:由上知: En , E' n 26m24mE'/ E 2n ,当 m n 时,2n 1 ,E' E .3m 3m所以第二种办法比第一种办法好.《数学模型》作业解答第九章( 2008 年 12 月 23 日)一报童每天从邮局订购一种报纸,沿街叫卖. 已知每100 份报纸报童全部卖出可获利7 元. 如果当天卖不掉,第二天削价可以全部卖出,但报童每100 份报纸要赔 4 元 . 报童每天售出的报纸数 r 是一随机变量,其概率分布如下表:售出报纸数 r (百份)0 1 2 3 4 5 概率 P(r ) 0. 05试问报童每天订购多少份报纸最佳( 订购量必须是100 的倍数 ) ?解:设每天订购 n 百份纸,则收益函数为f ( r ) 7r ( 4)(n r ) r n 7n r nn收益的期望值为G(n) = (11r 4n) P( r ) + 7n P(r )r 0 r n 1现分别求出n = 0,1,2,3,4,5 时的收益期望值.G(0)=0 ; G(1)= 4 × +7× +7×( +++) =;G(2)= ( 8 0.05 3 0.1 14 0.25 ) 14 (0.35 0.15 0.1) 11.8; G(3)=( 12 0.05 1 0.1 10 0.25 21 0.35 ) 21 (0.15 0.1) 14.4G(4)=( G(5)=16 0.05 5 0.1 6 0.25 17 0.35 28 0.15 ) 28 0.1 13.15 20 0.05 9 0.1 2 0.25 13 0.35 24 0.15 35 0.1 10.25当报童每天订300 份时,收益的期望值最大.数模复习资料第一章1.原型与模型原型就是实际对象. 模型就是原型的替代物. 所谓模型 ,按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象. 如航空模型、城市交通模型等.直观模型如玩具、照片等形象模型如某一试验装置物理模型模型思维模型如某一操作抽象模型符号模型如地图、电路图数学模型2.数学模型对某一实际问题应用数学语言和方法, 通过抽象、简化、假设等对这一实际问题近似刻划所得的数学d 2 x结构 , 称为此实际问题的一个数学模型 . 例如力学中着名的牛顿第二定律使用公式F m dt 2 来描述受力物体的运动规律就是一个成功的数学模型. 或又如描述人口N t 随时间 t 自由增长过程的微分dN t方程rN t .dt3.数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程. 更具体地说 , 数学建模是指对于现实世界的某一特定系统或特定问题, 为了一个特定的目的, 运用数学的语言和方法, 通过抽象和简化 , 建立一个近似描述这个系统或问题的数学结构 ( 数学模型 ), 运用适当的数学工具以及计算机技术来解模型 , 最后将其结果接受实际的检验 , 并反复修改和完善 .数学建模过程流程图为:实际抽象、简化、假设数学地、数值地归结问题确定变量、参数求解模型数学模型估计参数否检验模型是( 用实例或有关知评价、推广并交付使用符合否?产生经济、社会效益识 )4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类, 常见的有:人口模型交通模型环境模型(污染模型)a. 按模型的应用领域分类数学模型生态模型城镇规划模型水资源模型再生资源利用模型b.按建模的数学方法分类初等数学模型几何模型微分方程模型数学模型图论模型组合数学模型概率模型规划论模型描述模型分析模型预报模型c. 按建模目的来分类数学模型优化模型决策模型控制模型d. 层次分析法的基本步骤: 1. 建立层次结构模型2. 构造成对比较阵 3. 计算权向量并作一致性检验 4. 计算组合权向量并作组合一致性检验阶正互反正 A 是一致阵的充要条件为 A 的最大特征值为nf. 正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变. 试构造模型并求解 .解:设椅子四脚连线呈长方形ABCD. AB与 CD的对称轴为x轴,用中心点的转角表示椅子的位置 . 将相邻两脚 A、B与地面距离之和记为 f ( ) ;C、D与地面距离之和记为g ( ) .并旋转 1800 . 于是,设f (0) 0, g(0) 0, 就得到 g 0, f 0.数学模型:设 f 、 g 是0,2 上的非负连续函数. 若0,2 , 有f g 0 , 且 g 0 0, f 0 0, g 0, f 0 , 则0 0,2 , 使f 0g 0 0 .模型求解: 令h( ) f ( ) g( ). 就有h(0) 0,h( ) f ( ) g( ) 0 g( ) 0 .再由 f , g 的连续性 , 得到h 是一个连续函数 . 从而 h 是 0, 上的连续函数. 由连续函数的介值定理:0 0, , 使h 00 .即00,, 使f0g00 .又因为0,2, 有f g0 .故 f0g00 .9.(1)某甲早8: 00 从山下旅店出发,沿一条路径上山,下午5: 00 到达山顶并留宿.次日早 8:00 沿同一路径下山,下午5:00 回到旅店 . 某乙说,甲必在两天中的同一时刻经过路径中的同一地点. 为什么?(2) 37 支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束 . 问共需进行多少场比赛,共需进行多少轮比赛 . 如果是n支球队比赛呢?解:( 1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程x(t) 可用曲线()表示,第二天的行程x(t) 可用曲线()表示,()()是连续曲线必有交点p0 (t0 , d 0 ),两天都在 t0时刻经过 d0地点.xd方法二:设想有两个人,()一人上山,一人下山,同一天同p0时出发,沿同一路径, 必定相遇 .d0()t早 8t0晚5 方法三:我们以山下旅店为始点记路程, 设从山下旅店到山顶的路程函数为 f (t ) (即t时刻走的路程为 f (t) ) ,同样设从山顶到山下旅店的路函数为g (t) ,并设山下旅店到山顶的距离为 a ( a >0).由题意知: f (8) 0, f (17) a , g (8) a , g(17) 0 .令 h(t) f (t) g(t) ,则有 h(8)f (8) g (8)a 0 , h(17) f (17) g (17 ) a0 ,由于 f (t ) , g (t ) 都是时间 t 的连续函数,因此h(t )也是时间 t 的连续函数,由连续函数的介值定理,t0[8,17] , 使 h(t0 ) 0 ,即 f (t0 )g(t0 ) .( 2)36 场比赛,因为除冠军队外,每队都负一场; 6 轮比赛,因为 2 队赛 1 轮, 4 队赛 2轮,32队赛 5轮. n 队需赛n 1 场,若2k 1 n 2k ,则需赛k 轮.2.已知某商品在k 时段的数量和价格分别为x k和 y k,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为yk 1 f (xk 1xk ) 和 x k1g ( y k ) .试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为y k 1 f ( x k 1xk ) 和 x k 1 g( yk ) .2设曲线 f 和g相交于点 P0 (x0 , y0 ) ,在点 P0 附近可以用直线来近似表示曲线 f 和g:y k 1y0 ( x k 1 x k x0 ) , 0 -------------------- ( 1)2x k 1 x0 ( y k y0 ) , 0 --- ---------------- ( 2)由( 2)得x k 2 x0 ( y k 1 y0 ) -------------------- ( 3)( 1)代入( 3),可得x k 2 x0 (xk 1 x k x0 )22x k 2 xk 1 x k 2x0 2 x0 , k 1,2, , -------------- (4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求 P0点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:2 2 0容易算出其特征根为( ) 2 8( 5)1,2 4 ---------------当8 时,显然有2 ( ) 2 8----------- ( 6)4 4从而 2 2, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1,必须 2 .故 P 0 点稳定平衡条件为 2 .3.设某渔场鱼量 x(t ) ( 时刻 t 渔场中鱼的数量 ) 的自然增长规律为:dx(t) rx(1 x )其中 r 为固有增长率 , N` 为环境容许的最大鱼量dth . N . 而单位时间捕捞量为常数( 1).求渔场鱼量的平衡点 , 并讨论其稳定性 ;( 2).试确定捕捞强度 E m , 使渔场单位时间内具有最大持续产量Q m , 并求此时渔场鱼量水平 x *0 .解:( 1) . x(t) 变化规律的数学模型为dx(t )xhdtrx(1)N记f ( x) rx(1 x ) h , 令 rx (1 x) h 0 ,即r x 2rx h 0 ---- ( 1 )N NN4rh4hN1 4h N r 2r (r, ( 1)的解为:x1, 2rNN)2N① 当0 时,( 1)无实根,此时无平衡点;②当0 时,( 1)有两个相等的实根,平衡点为f '(x) r (1x )rx r 2rx , f '( x 0 ) 0N N Nx ) rN 但 xx 0及 x x 0 均有 f ( x) rx(1N 4N x 0.2不能断定其稳定性 .0 ,即 dx 0 x 0不稳定;dt ③ 当 0 时,得到两个平衡点:4h 4h N N 1N N 1rN rN x 1, x 222易知 x 1N x 2Nf ' (x 1 ) 0 , f ' ( x 2 ), 22平衡点 x 1 不稳定 ,平衡点 x 2 稳定 .(2).最大持续产量的数学模型为:max hs.t. f (x) 0即 max hrx (1 x ) , 易得 x 0*N 此时 hrN,但 x 0*N这个平衡点不稳定 .N242要获得最大持续产量,应使渔场鱼量x N , 且尽量接近 N , 但不能等于 N.2 2 2 5.某工厂生产甲、乙两种产品 , 生产每件产品需要原材料、 能源消耗、劳动力及所获利润如下表所示:品种原材料能源消耗(百元)劳动力(人)利润(千元)甲214 4乙362 5 现有库存原材料1400 千克;能源消耗总额不超过2400 百元;全厂劳动力满员为2000 人. 试安排生产任务( 生产甲、乙产品各多少件), 使利润最大 , 并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S. 则此问题的数学模型为max S 4x 5ys.t .2x 3 y 1400x 6 y 24004x 2 y 2000x 0, y 0, x, y Z模型的求解:用图解法 . 可行域为:由直线l 1 : 2 x 3 y 1400l2: : x 6 y 2400l 3 : 4 x 2 y 2000及 x 0 , y 0组成的凸五边形区域 .直线 l : 4x 5y C 在此凸五边形区域内平行移动. 易知:当l过l1与l3的交点时, S 取最大值 . 由2 x 3y 1400400, y 200 4 x 2 y解得: x2000Smax 4 400 5 200 2600 (千元).故安排生产甲产品400 件、乙产品 200 件, 可使利润最大 , 其最大利润为2600 千元 .6.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(立方米 / 箱)(百斤 / 箱)(百元 / 箱)甲 5 2 20乙 4 5 10 已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解 .可行域为:由直线l 1 : 5x 1 4x 2 24l 2 : 2x 1 5x 2 13 及 x 10, x 20 组成直线 l : 20x 1 10x 2c 在此凸四边形区域内平行移动 .x 2l 1易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值l 2x 15x 14x 224x 1 4解得由5x 213x 212x 1lzmax20 4 10 1 90 .7. 深水中的波速 v 与波长 、水深 d 、水的密度和重力加速度g 有关,试用量纲分析方法给出波速 v 的表达式 .解 :设 v ,,d , , g的关系为 f (v, , d , , g ) =0. 其量纲表达式为[ v ]=LM 0T -1 ,0 0, [ d0 0]=L -3, [g0 -2,其中 L ,M ,T 是基本量纲.[]=LM T ]=LMT , [ MT ]=LM T ---------4分量纲矩阵为11 13 1(L )A=0 0 01 0 (M )1 0 02 (T )( v) ( )(d)( ) ( g)齐次线性方程组 Ay=0 ,即y 1y 2 y 3 3y 4y 5y 4- y 1- 2y 5的基本解为 y 1 = (1,1,0,0,1), y 2 = (0, 1,1,0,0)2211由量纲 P i 定理 得v2g 211d2∴ v g1,1( 2),2dv g ( d) ,其中是未定函数 .第二章 (2) (2008年 10 月 9日15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是,用量纲分析方法确定风车获得的功率 P 与 v 、S 、的关系 .解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, )0 , 其量纲表达式为 :[P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[]= ML 3 , 这里 L, M ,T 是基本量纲 .量纲矩阵为:A=齐次线性方程组为:21 2 3 ( L )1 0 0 1 (M )3 10 0(T)(P) (v) (s) (2 y 1 y 2 2y3 3y4 0y 1y 4 03y 1y 2它的基本解为 y ( 1,3 ,1,1)由量纲 P i 定理得P 1v 3 s 11 ,Pv 3s 1 1, 其中 是无量纲常数 .16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解 :设 v ,,, g的关系为 f ( v ,,,g ) =0. 其量 纲表达式为 [ v ]=LM 0T -1 ,-3-2-1 -1-1 -2-2 -2-1-10 -2[ ]=L MT , []=MLT ( LT L ) L =MLL T T=L MT , [ g ]=LM T , 其中 L , M ,T 是基本量纲 .量纲矩阵为13 1 1 (L)11 0 (M) A=1 012(T)(v) ()()(g )齐次线性方程组 Ay=0 ,即y 1 - 3y 2 - y 3 y 4 0 y 2y 3 0 - y 1 - y 3 - 2y 4的基本解为 y=(-3 ,-1 ,1 ,1)由量纲 P i 定理 得v31g .v3g,其中 是无量纲常数.16 * .雨滴的速度 v 与空气密度、粘滞系数 、特征尺寸 和重力加速度g 有关,其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解:设 v ,, , , g 的关系为 f (v, , , , g) 0 . 其量纲表达式为 [ v 0 -1 , ]=L -30, -2( -1 -1 )-1 -2 -2 -2 -1-1 , 0 0 , 0 -2]=LM T [ MT [ ]=MLT LT L L =MLL T T=L MT [ ]=LM T[ g ]=LM T 其中 L , M , T 是基本量纲 .量纲矩阵为11 31 1 (L)A=0 11 0 ( M )10 012 (T )(v) ( ) ( ) ( ) ( g)齐次线性方程组 Ay=0 即y 1y 2 3y 3y 4 y 5 0y 3 y 4 0y 1y 4 2 y 5的基本解为y 1 (1,1 ,0,0, 1)22y 2(0,3, 1,1, 1 )2 2得到两个相互独立的无量纲量1v1/ 2g 1 / 223 / 21g 1 / 2即vg 1 ,3 / 2g 1 / 21 1(1,2)0, 得( 21)2. 由 1g (3 / 2g 1 / 2 1 ) ,其中 是未定函数 .20. 考察阻尼摆的周期, 即在单摆运动中考虑阻力, 并设阻力与摆的速度成正比 . 给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.解:设阻尼摆周期 t ,摆长l ,质量m , 重力加速度g ,阻力系数k 的关系为f (t, l , m, g, k)其量纲表达式为:[ t]L 0 M0T ,[ l ]LM0T0 , [m]L 0MT 0,[ g]LM0T2 ,[k ][ f ][ v]1MLT2( LT1)1L 0MT 1, 其中 L ,M ,T 是基本量纲 .量纲矩阵为0 1 0 1 0 ( L )0 0 1 0 1 (M )A=0 021 (T )1(t ) (l ) ( m) (g) (k )齐次线性方程组y 2 y 4 0y 3y 5 0y 12 y 4y 5的基本解为Y 1 (1, 1 ,0, 1,0)22Y 2 (0,1, 1,1,1)22得到两个相互独立的无量纲量tl1/ 2g 1/ 21l 1/ 2m 1 g 1 / 2 k2∴ tl 1 ,1( 2 ) ,2kl 1 / 2gmg 1/ 2∴ tl ( kl 1/ 2 ) ,其中 是未定函数 .g mg 1 / 2考虑物理模拟的比例模型,设g 和 k 不变,记模型和原型摆的周期、摆长、质量分别为1 /2 t , t ' ; l , l ' ; m , m '.又 tl ( kl1 /2 )g m g当无量纲量ml 时, 就有 tl gl . mlt gll第三章 1( 2008 年 10 月 14 日)1. 在节存贮模型的总费用中增加购买货物本身的费用, 重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解: 设购买单位重量货物的费用为k , 其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:c 1 c 2 rTC(T )krT2 dC c 1 c 2rdT T 22令 dC0 ,解得T *2c1dTc 2 r由 QrT ,得 Q2c 1 r rTc 2与不考虑购货费的结果比较,T、Q的最优结果没有变.2 0 对于允许缺货模型,每天平均费用为:1 c 2Q 2c 3 (rT Q) 2kQC(T,Q)c 12r2rTC c 1 c 2Q 2 c 3 r c 3Q 2 kQ T T 2 2rT 22 2rT 2T 2C c 2Q c 3Q kQ c 3TrT rTCT令, 得到驻点:CQT2c 1 c 2 c 3 k 2rc 2c 3c 2 c 3Q2c 1 r c 3 c 3 k 2 r 2 krc 2 c 2 c 3 c 2 (c 2 c 3 ) c 2c 3与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数 r ,k r .在每个生产周期T内, 开始的一段时间0 t T 0 一边生产一边销售, 后来的一段时间 (T 0t T ) 只销售不生产, 画出贮存量 g(t ) 的图形 . 设每次生产准备费为 c 1 ,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k r 和 k r 的情况.解:由题意可得贮存量g(t ) 的图形如下:gg(t)k rrO n T0 T t (k r )T0 T贮存费为Tc2 lim g( i ) t i c2 0 g(t)dt c22i 1t 0又(k r )T0 r (T T0 )T0 rT , 贮存费变为c2 r (k r )T T k 2k于是不允许缺货的情况下,生产销售的总费用(单位时间内)为C(T ) c1 c2 r ( k r )T 2 c1 r ( k r )T T 2kT T c2 2kdC c1 c2 r (k r ) . dT T 2 2k令dC0 , 得 T2c1k dT c2 r (k r )易得函数 C (T )在 T 处取得最小值,即最优周期为:2c1 k Tr )c2 r ( k当k r时,T 2c1 . 相当于不考虑生产的情况 .c2r当 k r 时,T . 此时产量与销量相抵消,无法形成贮存量.第四章( 2008 年 10 月 28 日)1. 某厂生产甲、乙两种产品, 一件甲产品用A原料1 千克 , B原料5 千克;一件乙产品用A原料2千克, B原料4 千克. 现有A原料 20 千克, B 原料70千克.甲、乙产品每件售价分别为20 元和 30元. 问如何安排生产使收入最大?解:设安排生产甲产品x 件 , 乙产品 y 件,相应的利润为S则此问题的数学模型为:max S=20x+30yx 2y 20. 5x 4 y 70x, y 0, x, y Z这是一个整线性规划问题,现用图解法进行求解可行域为:由直线 l1:x+2y=20, l2:5x+4y=70l2y以及 x=0,y=0 组成的凸四边形区域 .直线 l :20x+30y=c在可行域内l平行移动 .易知:当 l 过l1与l2的交点时,l1x S 取最大值 .x 2y 20解得x 10由4 y 70 y 55x此时 S m ax=2010 30 5 =350(元)2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(百斤 / 箱)(百元 / 箱)(立方米 / 箱)甲 5 2 20乙 4 5 10已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解.可行域为:由直线l1 : 5x14x224l 2 : 2x15x213及x10, x20 组成直线l : 20x110x2 c 在此凸四边形区域内平行移动 .x2l1l易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值5x 1 4x 2 24 x 1 4由5x 213解得12x 1x 2zmax20 4 10 1 90.3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉 . 已知每台甲型、 乙型微波炉的销售利润 分别为 3 和 2 个单位 . 而生产一台甲型、乙型微波炉所耗原料分别为 2 和 3 个单位 , 所需工时分别为 4 和 2个单位 . 若允许使用原料为100 个单位 , 工时为 120 个单位 , 且甲型、乙型微波炉产量分别不低于6 台和 12台. 试建立一个数学模型 , 确定生产甲型、乙型微波炉的台数 , 使获利润最大.并求出最大利润 .解:设安排生产甲型微波炉 x 件 , 乙型微波炉 y 件 , 相应的利润为 S. 则此问题的数学模型为:max S=3x +2y2x 3 y 100.4x 2y 120x 6, y 12, x, y Z这是一个整线性规划问题 用图解法进行求解可行域为:由直线 l 1 : 2x+3y=100, l 2 :4x+2y = 120及 x=6,y=12 组成的凸四边形区域 .直线 l : 3x+2y=c 在此凸四边形区域内平行移动. 易知:当 l 过 l 1 与 l 2 的交点时 , S取最大值 .2x 3 y 100由2 y 解得4x 120x 20.y 20S m ax = 3 20 2 20 = 100.第五章 2( 2008 年 11 月 14 日)6. 模仿节建立的二室模型来建立一室模型 (只有中心室) ,在快速静脉注射、 恒速静脉滴注(持续时间为)和口服或肌肉注射 3 种给药方式下求解血药浓度,并画出血药浓度曲线的中心室图形 .解: 设给药速率为 f 0 t ,中心室药量为 x t , 血药浓度为 C t , 容积为 V ,排除速率为常数 k, 则 x / t kx tf 0 t , x t VC t .(1) 快速静脉注射 : 设给药量为 D 0 , 则 f 0 t 0, C 0D 0,解得 C tDe k t .VV(2) 恒速静脉滴注 ( 持续时间为): 设滴注速率为 k 0,则 f 0 tk 0 ,C 00, 解得k 0 1 e kt , 0 t C tVkk 0 1 e kt e k t , t Vk(3) 口服或肌肉注射 :f 0 tk 01 D 0 e k 01t 见5.4节(13)式 ,解得k 01De ktek 01t, kk01C tV k 01 k3 种情况下的血药浓度曲线如kD te kt ,kk01V下:(1)(2)(3)Ot4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为a4. b初始兵力 x0与 y0相同.(1)问乙方取胜时的剩余兵力是多少, 乙方取胜的时间如何确定 .(2)若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型, 讨论如何判断双方的胜负 .解 : 用x t , y t表示甲、乙交战双方时刻t 的士兵人数 , 则正规战争模型可近似表示为:dxaydtdybx, 1dtx 0 x0 , y 0 y0现求 (1) 的解 : (1)0 a的系数矩阵为 Aba 2ab 0. abE A 1,2b1 , 2对应的特征向量分别为2 ,21 1x t 2abt 2abt .1 的通解为C1 1 eC2 1 ey t再由初始条件,得x t x0 y0 e abt x0 y0 e ab t 22 2又由 1 可得dybx . dx ay其解为ay 2bx 2k,而k ay02bx02 3(1)当x t1 0时, y t1 k ay02 bx02y0b 3a a 1 y0 .a 23即乙方取胜时的剩余兵力数为y0 .2x0 abt1x0 abt1 0.又令由()得0,2 y0 e y0 ex t122注意到 x0 y0 2 abt1x0 2 y0. e 2 abt1 3, t1ln 3,得 ex0 .2 y0 4b (2)若甲方在战斗开始后有后备部队以不变的速率r 增援.则dxay rdtdy4bxdtx(0) x0 , y 0 y0由 4 得dx ay r,即 bxdx aydy rdy . 相轨线为 ay 2 2ry bx2 k , dy bx2r 2k ay02 2ry 0 bx.20或 a y r bx2 k. 此相轨线比书图11 中的轨线上移了a ar r 2 r 2b 2a . 乙方取胜的条件为k 0, 亦即 y0 a a x0 a 2.第六章( 2008 年 11 月 20 日)1. 在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数 h.(1) 分别就h rN / 4 ,h rN / 4 ,h rN / 4 这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为x t ,则由题设条件知:x t 变化规律的数学模型为dx(t ) xhrx (1 )dt N记 F ( x) rx (1 x ) hN(1).讨论渔场鱼量的平衡点及其稳定性:由 F x 0 ,得rx(1 x) h 0 .N即r x 2 rx h 0 1Nr 2 4rh r (r 4h ) ,N NN 1 4h N(1) 的解为:x1, 2 rN2①当 h rN / 4 ,0,(1) 无实根,此时无平衡点;②当 h rN / 4 ,0 , (1) 有两个相等的实根,平衡点为x0 N. 2x ) rx 2rx, F ' ( x0 )F ' ( x) r (1 r 0 不能断定其稳定性 .N N N但 x x0 及 x x0 均有 F (x)x rNdx0 .x0不稳定;rx (1 ) ,即dtN 4③当 h rN / 4 ,0 时,得到两个平衡点:N 1 4hN 14hN NrNx1 rN ,x22 2易知: x1 N ,x2 N , F ' ( x1 ) 0 , F ' ( x2 ) 02 2平衡点 x1不稳定,平衡点x2稳定.(2)最大持续产量的数学模型为max hs.t. F (x)0即 max h rx (1 x) ,Nh rN / 4h rN / 4h rN / 4rx 1 x / Nx1 N / 2 x2 x。