运动控制系统
- 格式:docx
- 大小:781.85 KB
- 文档页数:10
知识创造未来
运动控制系统
运动控制系统是指利用电子设备和软件来实现运动控制的一种系统。
它可以用于控制机械设备、机器人、汽车等进行运动控制。
运动控制系统通常包括以下几个部分:
1. 传感器:用于检测实际运动的位置、速度、加速度等参数,并将
其转换为电信号。
2. 控制器:负责接收传感器的信号,并根据预设的控制算法,计算
出相应的控制命令。
3. 执行器:根据控制命令,进行相应的机械运动,如电机、气缸等。
4. 软件系统:包括控制算法、运动规划、通信协议等,用于实现运
动控制的逻辑和功能。
运动控制系统的主要功能包括位置控制、速度控制和力控制等。
通
过调整控制器的参数和算法,可以达到不同的控制效果。
运动控制系统广泛应用于各个领域,如工业自动化、机器人、航空
航天、医疗器械等。
它可以提高设备的精度、稳定性和生产效率,
实现自动化生产和操作。
1。
运动控制系统的组成运动控制系统是指通过控制电机、伺服电机、步进电机等执行器,实现机械运动的系统。
它由多个组成部分构成,下面将逐一介绍。
1. 控制器控制器是运动控制系统的核心部分,它负责接收来自传感器的反馈信号,计算出控制信号,再将信号发送给执行器。
控制器的种类有很多,常见的有PLC、单片机、DSP等。
2. 传感器传感器是用来感知机械运动状态的装置,它可以将机械运动转化为电信号,再通过控制器进行处理。
常见的传感器有编码器、光电开关、压力传感器等。
3. 电机电机是运动控制系统中最常用的执行器,它可以将电能转化为机械能,实现机械运动。
常见的电机有直流电机、交流电机、步进电机、伺服电机等。
4. 驱动器驱动器是用来控制电机运动的装置,它可以将控制信号转化为电能,再通过电机实现机械运动。
常见的驱动器有直流电机驱动器、交流电机驱动器、步进电机驱动器、伺服电机驱动器等。
5. 机械结构机械结构是运动控制系统中最基础的部分,它由各种机械零件组成,用来实现机械运动。
常见的机械结构有滑动轨道、旋转轴、传动装置等。
6. 人机界面人机界面是用来与运动控制系统进行交互的装置,它可以显示机械运动状态、控制参数等信息,同时也可以接收操作者的指令。
常见的人机界面有触摸屏、键盘、鼠标等。
7. 通信接口通信接口是用来与其他设备进行数据交换的装置,它可以将控制信号、反馈信号等信息传输给其他设备,同时也可以接收其他设备的指令。
常见的通信接口有串口、以太网口、CAN总线等。
运动控制系统由控制器、传感器、电机、驱动器、机械结构、人机界面和通信接口等多个组成部分构成。
每个部分都有其独特的功能和作用,只有将它们合理地组合起来,才能实现高效、稳定的机械运动。
1运动控制系统组成:电动机、功率放大与变换装置、控制器及相应的传感器任务:通过控制电动机电压、电流、频率等输入量来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
20 抑制电流脉动的措施:增加整流电路相数或采用多重化技术,设置电感量足够大的平波电抗器。
2转速控制的要求:(1)调速:在一定的最高转速和最低转速范围内,分档地或平滑地调节转速(2)稳速:在一定的精度所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量(2)加减速:频繁启动、制动的设备要求加速减速尽量快以提高生产率,不宜经受剧烈速度变化的机械则要求启动制动尽量平稳。
3 直流调速系统主要性能指标包括静态性能指标和动态性能指标两个部分:静态主要性能指标有调速范围D、静差率s、ΔnN。
动态性能指标分成跟随性能指标和抗扰性能指标。
给定控制信号作用下的动态性能指标有上升时间tr、超调量σ和峰值时间tp和调节时间ts。
扰动信号作用下的动态性能指标有动态降落ΔCmax和恢复时间tv。
3稳态性能指标:调速范围、静差率。
调速范围是最高转速nmax与最低转速nmin之比,静差率是指当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N与理想空载n0之比。
D=n N s /Δn N(1-s) Δn N =RId/Ce4反馈控制系统的作用:抵抗扰动,服从给定。
5比例控制的直流调速系统可以获得比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够调高调速范围,为此需设置电压放大器和转速检测装置。
(1)闭环系统静特性比开环系统机械特性要硬的多(2)闭环系统的静差率要比开环系统小得多(3)如果所要求的静差率一定,则闭环系统可以大大提高调速范围。
6开环系统的转速降落Δn op=RId/Ce。
闭环系统的转速降落Δn cl=RId/Ce(1+K)。
调速范围开环D op=n N s/Δn op(1-s),D cl=n N s/Δn cl (1-s)。
《运动控制系统》课程教学大纲一、教学内容本节课的教学内容来自于《运动控制系统》课程的第五章,主要讲述运动控制系统的组成、原理及其应用。
具体内容包括:1. 运动控制系统的组成:包括控制器、执行器和传感器等基本组成部分,以及它们之间的相互作用。
2. 运动控制系统的原理:包括控制算法、反馈控制和开环控制等基本原理。
3. 运动控制系统的应用:包括在工业、数控机床和电动汽车等领域的应用实例。
二、教学目标1. 使学生了解运动控制系统的组成、原理及其应用,掌握基本概念和知识点。
2. 培养学生运用运动控制系统的基本原理解决实际问题的能力。
3. 提高学生对运动控制技术在现代工业和科技领域的重要性的认识。
三、教学难点与重点1. 教学难点:运动控制系统的原理和应用。
2. 教学重点:运动控制系统的组成及其在工作中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、白板等。
2. 学具:教材、笔记本、彩色笔等。
五、教学过程1. 实践情景引入:以工业为例,介绍运动控制系统在实际工作中的应用。
2. 知识点讲解:讲解运动控制系统的组成、原理及其应用。
3. 例题讲解:分析运动控制系统在实际工作中的应用案例,引导学生理解并掌握运动控制系统的原理。
4. 随堂练习:让学生结合所学内容,分析并解决实际问题。
5. 课堂讨论:引导学生探讨运动控制系统在现代工业和科技领域的重要性。
6. 板书设计:对本节课的主要知识点进行板书,方便学生复习和巩固。
7. 作业布置:布置相关练习题,巩固所学知识。
六、作业设计1. 题目:分析下列运动控制系统的应用案例,并说明其工作原理。
(1)数控机床;(2)电动汽车;(3)工业。
2. 答案:(1)数控机床:数控机床是一种采用数字控制技术进行运动的机床。
通过控制器预设机床的运动轨迹,执行器按照控制器的指令进行运动,实现对工件的加工。
(2)电动汽车:电动汽车采用电动机作为动力来源,通过控制器调节电动机的转速和扭矩,实现车辆的运动控制。
《运动控制系统》教案第一章:运动控制系统概述1.1 运动控制系统的定义1.2 运动控制系统的作用1.3 运动控制系统的发展历程1.4 运动控制系统的应用领域第二章:运动控制系统的组成2.1 控制器2.2 执行器2.3 传感器2.4 驱动器2.5 运动控制器与执行器的接口第三章:运动控制算法3.1 PID控制算法3.2 模糊控制算法3.3 神经网络控制算法3.4 自适应控制算法3.5 预测控制算法第四章:运动控制系统的性能评估4.1 动态性能评估4.2 静态性能评估4.3 稳态性能评估4.4 鲁棒性评估4.5 节能性能评估第五章:运动控制系统的应用案例5.1 运动控制5.2 数控机床运动控制5.3 电动汽车运动控制5.4 无人机运动控制5.5 生物医学运动控制第六章:运动控制系统的建模与仿真6.1 运动控制系统的数学建模6.2 运动控制系统的计算机仿真6.3 仿真软件的选择与应用6.4 系统建模与仿真的实际案例6.5 建模与仿真在运动控制系统设计中的应用第七章:运动控制系统的故障诊断与容错控制7.1 运动控制系统的常见故障及诊断方法7.2 故障诊断算法及其在运动控制系统中的应用7.3 容错控制策略及其在运动控制系统中的应用7.4 故障诊断与容错控制在提高运动控制系统可靠性方面的作用7.5 故障诊断与容错控制的实际案例分析第八章:运动控制系统的优化与调整8.1 运动控制系统的性能优化方法8.2 控制器参数的整定方法8.3 系统调整过程中的注意事项8.4 优化与调整在提高运动控制系统性能方面的作用8.5 运动控制系统优化与调整的实际案例第九章:运动控制系统在工业中的应用9.1 运动控制系统在制造业中的应用9.2 运动控制系统在自动化生产线中的应用9.3 运动控制系统在技术中的应用9.4 运动控制系统在电动汽车技术中的应用9.5 运动控制系统在其他工业领域中的应用第十章:运动控制系统的发展趋势与展望10.1 运动控制系统技术的发展趋势10.2 运动控制系统在未来的应用前景10.3 我国运动控制系统产业的发展现状与展望10.4 运动控制系统领域的研究热点与挑战10.5 面向未来的运动控制系统教育与人才培养重点和难点解析重点一:运动控制系统的作用和应用领域运动控制系统在现代工业和科技领域中起着至关重要的作用。
一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。
分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。
(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。
(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。
二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。
三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。
在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。
(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的分类及其原理。
3. 熟悉运动控制系统的应用领域和发展趋势。
4. 培养学生对运动控制系统的兴趣和创新能力。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的功能2. 运动控制系统的分类开环运动控制系统闭环运动控制系统混合运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理力控制原理4. 运动控制系统的应用领域工业数控机床电动汽车航空航天5. 运动控制系统的发展趋势智能化网络化绿色化三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和应用。
2. 案例分析法:分析具体运动控制系统的实例,加深学生对运动控制系统的理解。
3. 讨论法:引导学生探讨运动控制系统的发展趋势及其在我国的应用前景。
4. 实践操作法:安排实验室参观或动手实践,让学生亲身体验运动控制系统的工作原理。
四、教学安排1. 第1-2课时:运动控制系统概述2. 第3-4课时:运动控制系统的分类和原理3. 第5-6课时:运动控制系统的应用领域4. 第7-8课时:运动控制系统的发展趋势5. 第9-10课时:实验室参观或实践操作五、教学评价1. 课堂问答:检查学生对运动控制系统基本概念的理解。
2. 课后作业:巩固学生对运动控制系统知识的掌握。
3. 小组讨论:评估学生在探讨运动控制系统发展过程中的创新能力。
4. 实践报告:评价学生在实验室参观或实践操作中的表现。
六、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的基本概念、原理、应用和趋势3. 视频资料:运动控制系统的实际应用案例4. 实验室设备:的运动控制系统实验装置5. 网络资源:关于运动控制系统的相关论文和新闻七、教学过程1. 导入:通过一个运动控制系统的实际应用案例,引发学生对运动控制系统的兴趣。
2. 讲解:结合教材和课件,详细讲解运动控制系统的基本概念、原理、应用和趋势。
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常见类型及其原理。
3. 学会分析运动控制系统的性能指标。
4. 能够运用运动控制系统的基本原理解决实际问题。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的应用领域2. 运动控制系统的类型模拟运动控制系统数字运动控制系统单片机运动控制系统计算机运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理加速度控制原理4. 运动控制系统的性能指标稳态性能指标动态性能指标系统误差指标5. 运动控制系统的硬件组成控制器执行器反馈元件辅助元件三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和性能指标。
2. 案例分析法:分析实际运动控制系统的应用案例,加深学生对运动控制系统的理解。
3. 实验法:安排实验室实践环节,让学生亲自动手操作运动控制系统。
4. 小组讨论法:分组讨论运动控制系统的设计和优化方法。
四、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的图片、图表、动画等。
3. 实验室设备:运动控制系统实验装置。
4. 网络资源:相关学术论文、企业案例等。
五、教学评价1. 平时成绩:课堂表现、作业、实验报告等。
2. 考试成绩:期末考试,包括选择题、填空题、计算题和论述题。
3. 实践能力:实验室操作运动控制系统的表现。
4. 综合素质:小组讨论、课堂提问、问题解答等。
六、教学安排1. 课时:本课程共计32课时,包括16次课堂讲授,8次实验操作,8次小组讨论。
2. 授课方式:课堂讲授与实验操作相结合,小组讨论与个人作业相辅相成。
3. 进度安排:按照教材和课件内容,依次讲解各个章节,安排实验和小组讨论。
七、实验环节1. 实验目的:通过实际操作,让学生深入了解运动控制系统的原理和应用。
2. 实验内容:包括运动控制系统的搭建、调试和性能测试。
八、小组讨论1. 讨论主题:运动控制系统的设计与优化。
运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的核心技术和应用领域。
3. 培养学生的动手实践能力和团队协作精神。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的分类2. 运动控制系统的核心技术与原理位置控制技术速度控制技术力控制技术3. 运动控制系统的应用领域工业数控机床电动汽车生物医疗设备4. 运动控制系统的硬件组成控制器执行器传感器5. 运动控制系统的软件设计与编程软件设计流程编程语言与工具程序调试与优化三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和应用。
2. 案例分析法:分析实际应用中的运动控制系统案例,加深学生对知识的理解。
3. 实验法:引导学生动手实践,培养实际操作能力。
4. 小组讨论法:分组讨论问题,培养团队合作精神。
四、教学准备1. 教材:运动控制系统相关教材。
2. 课件:制作精美的课件,辅助教学。
3. 实验设备:运动控制系统实验装置。
4. 编程软件:运动控制系统编程软件。
五、教学评价1. 课堂表现:考察学生的出勤、发言、讨论等参与程度。
2. 课后作业:布置相关练习题,检验学生对知识的掌握。
3. 实验报告:评估学生在实验过程中的操作技能和问题解决能力。
4. 期末考试:全面测试学生的运动控制系统知识水平和应用能力。
六、教学安排1. 课时:本课程共32课时,包括16次课,每次2课时。
2. 授课方式:理论课与实验课相结合,各占一半课时。
3. 授课顺序:先讲解基本概念和原理,进行案例分析,进行实验操作。
七、教学案例1. 案例一:工业关节运动控制学习目标:了解工业的运动控制系统及其编程。
案例内容:分析工业的关节运动控制原理,学习相关编程指令。
2. 案例二:数控机床速度控制学习目标:掌握数控机床的速度控制方法。
案例内容:探讨数控机床速度控制的技术要点,分析实际应用中的问题。
八、实验环节1. 实验一:运动控制系统基本原理验证实验目的:验证运动控制系统的原理和功能。
1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺与其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的分类及其特点。
3. 熟悉运动控制系统的主要组成部分及其功能。
4. 理解运动控制系统在实际应用中的重要性。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类与特点2.1 模拟运动控制系统2.2 数字运动控制系统2.3 现代运动控制系统3. 运动控制系统的主要组成部分及其功能3.1 控制器3.2 执行器3.3 传感器3.4 反馈环节4. 运动控制系统在实际应用中的重要性4.1 运动控制系统在工业生产中的应用4.2 运动控制系统在交通运输中的应用4.3 运动控制系统在生物医学中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、分类、特点及应用。
2. 案例分析法:分析实际应用中的运动控制系统案例,加深学生对运动控制系统的理解。
3. 讨论法:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。
四、教学准备1. 教材:《运动控制系统》相关章节。
2. 课件:制作涵盖教学内容的课件。
3. 案例材料:收集运动控制系统在实际应用中的案例。
五、教学过程1. 导入:简要介绍运动控制系统的基本概念,激发学生兴趣。
2. 讲解:详细讲解运动控制系统的组成、分类、特点及应用。
3. 案例分析:分析实际应用中的运动控制系统案例,让学生理解运动控制系统的作用。
4. 讨论:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统概念、组成、分类和应用的理解。
2. 练习题:布置课后练习题,评估学生对运动控制系统知识的掌握程度。
3. 案例分析报告:评估学生在案例分析环节的思考深度和分析能力。
七、教学拓展1. 介绍运动控制系统领域的最新研究成果和技术发展动态。
第1章绪论1.什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M )系统的组成:纯滞后环节,一阶惯性环节。
2.V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D 和静差率s 。
D =??(1-??),额定速降??,D =????,s =????04.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:t 0n cd 1tU U 比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7.数字测速方法:M 法测速、T 法测速、M/T 法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10.直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
第一章1. 电机学、电力电子技术、微电子技术、计算机控制技术、控制理论、信号检测与处理技术等多门学科相互交叉的综合性学科2. 信号检测:电压、电流、转速和位置等信号信号转换:电压匹配、极性转换、脉冲整形等 数据处理:信号滤波3. 转矩控制是运动控制的根本问题要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
4. 磁链控制同样重要为了有效地控制电磁转矩,充分利用电机铁芯,在一定的电流作用下尽可能产生最大的电磁转矩,必须在控制转矩的同时也控制磁通(或磁链)。
5. 恒转矩负载:位能性、反抗性第二章1.2. 三种调节电动机转速的方法:(1)调节电枢供电电压; 主要 (2)减弱励磁磁通;(3)改变电枢回路电阻。
3. 直流调速系统用的可控直流电源:a. 晶闸管整流器-电动机系统 V-Mb. 直流PWM 变换器-电动机系统晶闸管整流器-电动机系统 V-M4. 在理想情况下,U d 和U c 之间呈线性关系:(2-1)式中, U d ——平均整流电压, U c ——控制电压, K s ——晶闸管整流器放大系数。
5. 抑制电流脉动的措施:(1)增加整流电路相数,或采用多重化技术; (2) 设置电感量足够大的平波电抗器。
6. 当电流波形连续时,V-M 系统的机械特性方程式 式中,C e ——电动机在额定磁通下的电动势系数7. 在电流连续区,显示出较硬的机械特性;在电流断续区,机械特性很软,理想空载转速翘得很高。
8. 电流断续区与电流连续区的分界线是 的曲线,当 时,电流便开始连续了。
9. 晶闸管触发和整流装置的放大系数和传递函数Φ-=e K IR U n c s d UK U =N e d d d e K R I R I U C n φ-=-=0d 0U )(1Ne e K C φ=32πθ=32πθ=ssond U U T t U ρ==◆ 在设计调速系统时,只能在一定的工作范围内近似地看成线性环节, ◆ 得到了它的放大系数和传递函数后,用线性控制理论分析整个调速系统。
放大系数Ks10. 晶闸管整流器运行中存在的问题 (1)晶闸管是单向导电的。
(2)晶闸管对过电压、过电流和过高的du/dt 与di/dt 都十分敏感。
(3)晶闸管的导通角变小时会使得系统的功率因数也随之减少,称之为“电力公害”。
直流PWM 变换器-电动机系统11. 脉宽调制变换器(PWM )的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速。
12. PWM 变换器电路有多种形式,总体上可分为不可逆与可逆两大类。
(可不可以向电网回馈) 13. 简单的不可逆PWM 变换器-直流电动机系统电路原理图 电压和电流波形描述电路运行(简答)⏹ 在一个开关周期T 内,⏹ 当 时,U g 为正,VT 饱和导通,电源电压U s 通过VT 加到直流电动机电枢两端。
⏹ 当 时, U g 为负, VT 关断,电枢电路中的电流通过续流二极管VD 续流,直流电动机电枢电压近似等于零。
14. 直流电动机电枢两端的平均电压为改变占空比 ,即可实现直流 电动机的调压调速。
令 为PWM 电压系数,则在不可逆PWM 变换器中 .15. 右图a 为有制动电流通路的不可逆PWM 变换器-直流电动机系统,分析工作的三种状态 cd s U U K ∆∆=on t t <≤0T t t on <≤()10≤≤ρρs dU U =γργ=● 一般电动状态(右图为电压、电流波形)◆在一般电动状态中,i d 始终为正值(其正方 向示于图2-11(a)中)。
◆在0≤t<t on 期间,VT 1导通,VT 2关断。
电流 i d 沿图中的回路1流通。
◆在t on ≤t<T 期间,VT 1关断,i d 沿回路2经二 极管VD 2续流。
◆VT 1和VD 2交替导通,VT 2和VD 1始终关断。
● 制动状态(右图为电压、电流波形)◆ 在t on ≤t<T 期间,V g2为正,VT 2导通,在感应电动势E 的作用下,反向电流沿回路3能耗制动。
◆ 在T≤t<T+t on (即下一周期的0≤t<t on )期间, V g2 为负, VT 2关断,-i d 沿回路4经VD 1续流,向电源回馈能量。
◆VT 2和VD 1交替导通, VT 1和VD 2始终关断。
● 轻载电动状态(右图为电流波形)◆在VT 1关断后,i d 经VD 2续流。
◆还没有到达周期T ,电流已经衰减到零, ◆在t =t 2时刻,VT 2导通,使电流反向,产 生局部时间的制动作用。
◆轻载时,电流可在正负方向之间脉动, 平均电流等于负载电流,一个周期分成四个 阶段。
t0i t on4123Tt 2t 416. 对于调速系统转速控制的要求:(1)调速——在一定的最高转速和最低转速范围内调节转速;(2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动;(3)加、减速——频繁起、制动的设备要求加、减速尽量快;不宜经受剧烈速度变化的机械则要求起、制动尽量平稳 17.1、调速范围⏹ 生产机械要求电动机提供的最高转速n max 和最低转速n min 之比称为调速范围,用字母D 表示,即(2-27)⏹ n max 和n min 是电动机在额定负载时的最高和最低转速,⏹ 对于少数负载很轻的机械,也可用实际负载时的最高和最低转速。
2、静差率s⏹ 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比:3. (简答)调速范围、静差率和额定速降之间的关系⏹ 对于同一个调速系统,Δn N 值是定值。
⏹ 要求s 值越小时,系统能够允许的调速范围D 也越小。
⏹ 一个调速系统的调速范围,是指在最低速时还能满足所需静差率的转速可调范围。
18.例题2-1 (选择、填空、会改数)某直流调速系统电动机额定转速为n N =1430r/min ,额定速降Δn N =115r/min ,当要求静差率s ≤30%时,允许多大的调速范围?如果要求静差率s ≤ 20%,则调速范围是多少?如果希望调速范围达到10,所能满足的静差率是多少?解 在要求s ≤ 30%时,允许的调速范围为若要求s ≤ 20%,则允许的调速范围只有若调速范围达到10,则静差率只能是19.例题2-2 某龙门刨床工作台拖动采用直流电动机,其额定数据如下:60kW ,220V ,305A ,1000r/min ,采用V-M 系统,主电路总电阻R =0.18Ω,电动机电动势系数C e =0.2V min/r 。
如果要求调速范围D=20,静差率s≤5%,采用开环调速能否满足?若要满足这个要求,系统的额定速降Δn N 最多能有多少?解: 当电流连续时,V-M 系统的额定速降为开环系统在额定转速时的静差率为minmax n n D =0n n s N ∆=)1(s n s n D N N -∆=3.5)3.01(1153.01430)1(=-⨯⨯=-∆=s n s n D N N 1.3)2.01(1152.01430=-⨯⨯=D %6.44446.011510143011510==⨯+⨯=∆+∆=N N N n D n n D s 3050.18=275r/min 0.2dN N eI R n C ⨯∆==2750.21621.6%N n s ∆====如要求 , ,即要求20. 开环系统机械特性和比例控制闭环系统静特性的关系⏹ 开环机械特性为式中, 表示开环系统的理想空载转速, 表示开环系统的稳态速降。
⏹ 比例控制闭环系统的静特性为式中, 表示闭环系统的理想空载转速, 表示闭环系统的稳态速降。
(1)闭环系统静特性可以比开环系统机械特性硬得多 在同样的负载扰动下, 开环系统的转速降落 它们的关系是闭环系统的转速降落(2)闭环系统的静差率要比开环系统小得多 闭环系统的静差率为 当 时,开环系统的静差率为(3)如果所要求的静差率一定,则闭环系统可以大大提高调速范围 如果电动机的最高转速都是n N ,最低速静差率都是s ,可得开环时,闭环时,比例控制直流调速系统能够减少稳态速降的实质在于它的自动调节作用 21.例题2-3 在例题2-2中,龙门刨床要求D =20,s ≤5%,已知 K s =30,α= 0.015Vmin/r ,C e =0.2Vmin/r ,采用比例控制闭环调速系统满足上述要求时,比例放大器的放大系数应该有多少? 解: 开环系统额定速降为 =275 r/min ,闭环系统额定速降须为 2.63 r/min ,由式(2-48)可得 则得 即只要放大器的放大系数等于或大于46。
22. 反馈控制规律(1)比例控制的反馈控制系统是被调量有静差的控制系统 (2)反馈控制系统的作用是:抵抗扰动, 服从给定 (3)系统的精度依赖于给定和反馈检测的精度 20=D %5≤s 10000.052.63/min(1)20(10.05)N N n s n r D s ⨯∆=≤=-⨯-opop ed e n s p e d d n n C RI CU K K C R I Un ∆-=-=-=0*0op n 0op n ∆clcl e d e n s p n n K C RI K CU K K n ∆-=+-+=0*)1()1(0cl n cl n ∆e d op C RI n =∆)1(K C RI n e d cl +=∆cl clcl n n s 0∆=opop op n n s 0∆=cl op n n 00=)1(s n sn D opN op -∆=)1(s n sn D cl N cl -∆=op cl D K D )1(+=op n ∆≤∆cl n 6.103163.22751=-≥-∆∆=cl op n n K 462.0/015.0306.103/=⨯≥=e s p C K K K α闭环调速系统的给定作用和扰动作用24. 比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。
25. 微机数字控制系统的两个特点:信号的离散化、数字化26.香农(Shannon)采样定理:如果模拟信号的最高频率为f max,只要按照f>2f max采样频率进行采样,取出的样品序列就可以代表(或恢复)模拟信号。
27.M法测速适用于高速,T法测速适用于低速28.习题集第三章1.2. 转速、电流反馈控制直流调速系统的动态过程分析起动过程分析-----P63 ⏹ 电流I d 从零增长到I dm ,然后在一段时间内维持其值等于I dm 不变,以后又下降并经调节后到达稳态值I dL 。