《伺服运动控制技术》1.1运动控制系统的基本概念
- 格式:pdf
- 大小:1.94 MB
- 文档页数:13
运动控制系统的简介摘要: 本文介绍了运动控制的定义,产生背景,发展与应用历程,以及与其他学科的联系。
对其某些控制手段和方式进行简单介绍,其中矢量控制篇幅较多。
关键词运动控制;控制方式;矢量控制;直接转矩控制1.运功控制背景运动控制起源于早期的伺服控制。
“伺服”(Servo)一词最早出现在1873年法国工程师Farcot的一本书《Le Servo-Motor on Moteur Asservi》,描述了在轮船引擎上由蒸汽驱动的伺服马达的工作原理。
H.Hazen完成了伺服控制理论的基础研究并发表在1934年9月的Franklin Institute 杂志上。
1940年G.S. Brown在MIT创立了世界上第一个伺服机构实验室,并在1952研制出了世界上第一台数控铣床。
1958年Kearney &Trecker开发了NC加工中心,同年,日本富士通和牧野 FRAICE公司开发成功NC铣床。
1961 年G. Devol研制成功世界第一台机器人。
随后被称为机器人之父的G.T. Engeleberger将其商业化成立了世界第一家机器人公司Unimation。
1968年日本Kawasaki公司从Unimation 买进技术。
机器人技术体现了运动控制和驱动传感器以及运动机构一体化的新思想。
日本安川公司的工程师把这叫做机电一体化技术。
自1973 年的石油危机以后,电气伺服成为市场主导,随着微电子技术和微型计算机技术的发展,交流伺服日趋成熟,为适应市场的多品种小批量的需求,以计算机控制为核心的FMS (Flexible Manufacturing System) CIMS 和 FA (Factory Automation)技术应运而生(1975)。
为适应电子芯片制造的需求,机电一体化技术和运动控制技术被广泛应用。
由国家组织的开放式运动控制系统的研究始于1987年,美国空军在美国政府资助下发表了著名的NGC下一代控制器研究计划,该计划首先提出了开放体系结构控制器的概念,其内容之一便是提出了开放系统体系结构标准规格(OSACA)。
第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。
1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。
伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。
1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部份、误差放大部份、部份及被控对象组成。
1.1.3 伺服系统性能的基本要求1 )精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2 )稳定性好。
稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3 )快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。
4)调速范围宽。
调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。
5 )低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。
【运动控制】运动控制系统基本概念介绍一个运动控制系统普通包括:处理运动算法和信号的控制器;一个能增加信号、可供给执行器提供运动输出;反馈(/变送器)系统,可基于输出和输入的比较值,调整过程变量。
系统还包括一个操作员界面或主机终端前端处理(front-end)设备。
反馈意味着大多数运动控制系统是闭环系统;但是,也不排解一些是开环系统,特殊是系统中。
执行器有各种形式--、汽缸、螺旋线圈等,可以是电气的、液压的、气动的或其他类型的设备。
轴:机械或系统的任何可移动的部分,需要被控制的运行。
不少的运动轴能合并在一个同等的多轴系统中;圆弧形补间运动:两个自立的运动轴的协调运动可产生一个圆形的运动。
它通过软件算法以一系列的近似直线来实现;换相:电动机线圈的延续的激励可在转子和定子磁场中维持相对的相位角,在规定的范围内,控制电动机的输出。
在有刷DC电动机中,这一功能由机械整流器和碳刷完成;在无刷电动机中,以转子位移反馈完成;齿轮:通过电子方式模拟机械传动的一种办法,以变量比喻式"强制"一个闭环回路轴从动于另一个轴(开环或闭环回路);:一个反馈设备,能说明机械运动,以电子信号表现执行器的位移。
增量和肯定编码器较为常用,型号多样;同样,它们的输出也表示出位移的增强和肯定转变值;前馈:一种办法,按照电动机、驱动器或负荷特性得出的已知的误差,提前补偿一个控制回路,以提高响应。
它仅取决于命令,而不是测量误差;分度器:一个电子单元,可未来自于主机、或操作员面板的高层指令转换为步进电机驱动器所需的阶跃和指向脉冲信号;回路带宽:控制回路能响应控制参数变量的最大速率。
它体现了回路的性能,以Hz表示;第1页共2页。
伺服控制知识点总结一、基本概念1. 伺服系统伺服系统是由伺服执行元件、位置传感器、控制器和电源组成的控制系统。
其中,伺服执行元件一般为电机,位置传感器用于检测电机的位置,控制器用于根据传感器的反馈信号控制电机的运动,电源用于为电机提供动力。
2. 伺服电机伺服电机是一种能够根据外部控制信号精确控制位置、速度和力的电机。
常见的伺服电机有直流伺服电机、交流伺服电机和步进伺服电机等。
3. 位置传感器位置传感器用于检测伺服电机的位置,并将检测到的位置信息反馈给控制器。
常见的位置传感器有编码器、光栅尺、霍尔传感器等。
4. 控制器控制器是伺服系统中的核心部件,其主要功能是根据传感器的反馈信号计算出电机的控制指令,并将指令输出给电机驱动器。
5. 电机驱动器电机驱动器接收控制器输出的控制指令,通过控制电机的电源电压和频率来控制电机的转速和扭矩。
二、伺服控制原理1. 闭环控制伺服控制采用闭环控制的原理,即通过不断地检测输出和反馈,在控制过程中校正误差,从而实现精确的位置、速度和力控制。
在闭环控制系统中,控制器通过比较实际输出和期望输出之间的差距,不断调整控制指令,使输出逐渐趋近期望值。
2. PID控制PID控制是伺服控制中常用的一种控制算法,即比例、积分、微分控制算法的组合。
比例控制用于根据误差的大小调整控制输出;积分控制用于消除持续的误差;微分控制用于预测误差的变化趋势,并及时做出调整。
PID控制算法可以根据实际情况进行调整,适用于各种伺服控制场景。
3. 伺服控制系统的设计伺服控制系统的设计需要考虑多个因素,包括伺服系统的要求、控制器的选择、传感器的选择、电机的选择、控制算法的选择等。
在设计伺服控制系统时,需根据实际情况权衡各种因素,从而达到满足控制要求并尽可能减小成本的目标。
三、伺服控制应用领域1. 工业自动化在工业自动化领域,伺服控制被广泛应用于各种生产设备的位置和速度控制,如注塑机、包装机、数控机床等。
伺服控制可以实现快速、稳定、精确的运动控制,提高生产效率和产品质量。
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常用传感器、执行器和控制器。
3. 学会分析运动控制系统的原理和应用。
4. 能够运用运动控制系统知识解决实际问题。
二、教学内容1. 运动控制系统的概念及组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素1.3 运动控制系统的分类2. 运动控制系统的常用传感器2.1 速度传感器2.2 位置传感器2.3 力传感器2.4 加速度传感器3. 运动控制系统的执行器3.1 电动机3.2 液压执行器3.3 气动执行器3.4 步进执行器4. 运动控制系统的控制器4.1 开环控制器4.2 闭环控制器4.3 模糊控制器4.4 神经网络控制器三、教学方法1. 讲授法:讲解运动控制系统的概念、原理和特点。
2. 案例分析法:分析运动控制系统的应用实例。
3. 实验法:进行运动控制系统的实验操作。
4. 小组讨论法:探讨运动控制系统相关问题。
四、教学重点与难点1. 教学重点:运动控制系统的概念、组成、原理及应用。
2. 教学难点:运动控制系统的传感器、执行器和控制器的选择与配置。
五、教学课时本课程共48课时,其中理论教学32课时,实验教学16课时。
教案内容请根据实际教学需求进行调整和补充。
希望这份教案能对您的教学有所帮助!如有其他问题,请随时联系。
六、教学过程1. 引入:通过生活中的运动控制实例,如智能家居中的窗帘自动打开、关闭,引出运动控制系统的基本概念。
2. 讲解:详细讲解运动控制系统的概念、组成和作用,以及常用传感器、执行器和控制器的工作原理及应用。
3. 案例分析:分析典型的运动控制系统应用实例,如、数控机床等,让学生了解运动控制系统在实际工程中的应用。
4. 实验操作:安排实验室实践环节,让学生动手操作运动控制系统,加深对理论知识的理解。
5. 总结:对本次课程内容进行总结,强调运动控制系统在现代工业中的重要性。
七、教学评价1. 平时成绩:考察学生在课堂上的表现,如发言、提问等。
运动控制技术课程标准
运动控制技术课程标准主要涵盖以下内容:
1. 运动控制系统基础知识:介绍运动控制系统的基本概念、组成和工作原理,包括运动控制器、伺服电机、传感器等的基本原理。
2. 运动控制系统设计:讲解运动控制系统的设计方法和步骤,包括运动控制系统的需求分析、功能设计、硬件选型和软件开发等方面。
3. 运动控制系统硬件:介绍运动控制系统的硬件组成,包括伺服电机、传感器、编码器、电机驱动器等的选型、安装和调试方法。
4. 运动控制系统软件:讲解运动控制系统的软件开发方法和技术,包括PID控制算法、闭环控制、轨迹规划和插补算法等。
5. 运动控制系统调试与优化:介绍运动控制系统的调试方法和技巧,包括系统参数调整、误差分析和优化方法等。
6. 运动控制系统应用案例:通过实际案例分析和实验,讲解运动控制技术在机械制造、自动化生产线、机器人等领域的应用。
以上内容仅作为运动控制技术课程标准的参考,实际的课程设置和深度还需根据教学目标、教学资源和学生需求等因素进行具体设计。
一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。
分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。
(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。
(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。
二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。
三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。
在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。
(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。
自动控制原理伺服系统知识点总结自动控制原理中的伺服系统是一种常见而重要的控制系统,广泛应用于工业控制、机械运动控制以及航空航天等领域。
本文将对伺服系统的基本概念、结构和运作原理进行总结,希望能够帮助读者对伺服系统有更加清晰的了解。
一、基本概念伺服系统是一种能够接受输入信号并对其进行控制输出的系统。
它由控制器、执行机构和反馈装置组成。
其中,控制器用于根据输入信号生成控制指令,执行机构负责根据控制指令产生运动,而反馈装置则用于获取系统的输出信息,并将其与输入信号进行比较,实现闭环控制。
二、结构伺服系统的基本结构包括传感器、控制器、执行器和负载。
传感器用于测量系统的输出变量,并将其转化为电信号。
控制器接收传感器的信号,经过运算后生成控制信号,并将其送往执行器。
执行器根据控制信号产生相应的输出力或扭矩,作用于负载上,使其发生所需的运动。
三、运作原理伺服系统的运作原理涉及到反馈控制和误差校正两个方面。
当输入信号经过控制器处理后,由执行器产生的输出会引起系统输出变量的变化。
此时,反馈装置会将实际输出信息与期望输出进行比较,并计算出误差信号。
控制器根据误差信号进行调整,通过对执行机构施加合适的控制力或扭矩,使得系统输出逐渐趋近于期望输出。
这个过程是一个不断校正误差的闭环反馈控制过程。
四、常见的伺服系统类型1. 位置伺服系统:通过控制执行机构的位置来实现对负载位置的控制,常见的应用包括数控机床和机械臂等。
2. 速度伺服系统:通过控制执行机构的速度来实现对负载速度的控制,常见的应用包括汽车巡航控制和搬运机械等。
3. 力/扭矩伺服系统:通过控制执行机构施加的力或扭矩来实现对负载的控制,常见的应用包括机器人抓取和飞行器控制等。
五、伺服系统的性能指标伺服系统的性能指标通常包括稳定性、精度和动态响应速度等。
稳定性指系统在受到外部扰动时,是否能够快速恢复到期望状态。
精度指系统输出与期望输出之间的偏差大小。
动态响应速度指系统输出达到稳定状态所需要的时间。
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
伺服运动控制系统的工作原理伺服运动控制系统是一种广泛应用于工业自动化领域的控制系统,它能够实现对机械运动的精确控制和定位。
伺服运动控制系统通常由伺服电机、编码器、控制器和传感器等组成,它的工作原理涉及到电子技术、机械技术和控制理论等多个方面。
本文将从整体结构、工作原理以及应用特点等方面介绍伺服运动控制系统的相关知识。
一、伺服运动控制系统的组成1. 伺服电机伺服电机通常采用直流电机或交流电机,它具有高精度、高性能和快速响应的特点。
伺服电机通过控制器输出的电流或电压信号来实现对电机的精确控制,从而实现对机械运动的精确定位和速度调节。
2. 编码器编码器是伺服运动控制系统中的重要传感器,用于检测电机的转动位置和速度。
根据编码器输出的信号,控制器可以实时监测电机的运动状态,并进行相应的调节和控制。
通常使用的编码器有光电编码器、磁性编码器等。
3. 控制器控制器是伺服运动控制系统的核心部件,它通常由数字信号处理器(DSP)或者嵌入式控制器组成,用于接收编码器反馈信号,并根据设定的控制算法计算出控制电流或电压信号,从而实现对伺服电机的精确控制。
4. 传感器传感器用于检测机械系统的位置、速度、力等参数,并将这些参数的信息反馈给控制器。
传感器的种类包括位移传感器、速度传感器、压力传感器等,它们可以帮助控制器获取所需的反馈信息,从而实现对机械系统的闭环控制。
以上是伺服运动控制系统的主要组成部分,这些部件通过协同工作来实现对机械运动的精确控制和定位。
二、伺服运动控制系统的工作原理伺服运动控制系统的工作原理主要包括信号采集、控制计算和执行输出三个主要环节。
1. 信号采集在伺服运动控制系统中,首先需要通过编码器和传感器等设备采集到机械系统的运动参数,如位置、速度等。
编码器会定期采集电机的转角信息,并将这些信息转换成数字信号发送至控制器。
传感器则会实时监测机械系统的运动参数,并将这些参数的信息反馈给控制器。
2. 控制计算控制器接收到编码器和传感器反馈的信息后,会进行控制计算,其主要目的是根据当前的位置、速度和期望的位置、速度等信息来计算出电机需要的控制信号。
伺服系统的基本概念(产品培训资料之一)1伺服系统的基本概念1.1伺服系统“伺服”即“跟随”,“随动”的意思。
所谓伺服系统,就是被调量跟随指令值变化的闭环调节系统。
如果被调量是速度就称为速度伺服系统,如果被调量是位置则称为位置伺服系统。
因为绝大多数伺服系统是以速度作为被调量,例如CNC机床中使用的伺服系统,所以一般“伺服系统”是指速度伺服系统,其他伺服系统要在伺服系统的前面冠以被调量名称。
伺服系统与调速系统都是以速度作为被调量的闭环调节系统,区别在于调速系统的速度指令值是恒值(称为恒值调节系统),不要求对速度指令值的快速响应,但要求系统对负载扰动有快速调节作用,即有较强的抗负载扰动能力;伺服系统的速度指令是变化的,要求系统对速度指令快速响应,且有极强的抗负载扰动能力。
对位置伺服系统的要求是快速跟踪位置指令值的变化。
位置伺服系统用于定位控制(位置指令值为恒值)时,要求定位精度高,定位误差(位置稳态误差)小;当用于位置跟踪控制(位置指令值随机变化)时,还要求跟踪指令位置时的位置误差(位置跟踪误差)也小。
位置随动系统用于位置跟踪控制时又称位置随动系统,简称随动系统。
1.2伺服机构,闭环调节系统伺服系统是通过伺服机构使电动机与被调节对象连接的。
在CNC车床上,使刀架作直线运动进行切削的刀架滑座为被调节对象;在CNC铣床上,使工件作直线运动进行切削的工作台滑座为被调节对象;在舰炮控制中,使舰炮作方位回转和俯仰回转的滑座为被调节对象,等等。
当被调节对象为直线运动时,伺服机构需将电动机的旋转运动转换为被调节对象的直线运动;当被调节对象为旋转运动时,伺服机构则将电动机的转速转换为符合被调节对象要求的转速。
将旋转运动转换为直线运动的伺服机构有螺母—丝杠副,滚珠丝杠副,齿轮—齿条副,蜗母—牙条副,等等;将电动机的转速转换为适合负载要求的转速的伺服机构有齿型带传动,齿轮减速器,行星齿轮减速器,谐波齿轮减速器,等等。
闭环调节系统的工作原理是不断比较被调节量与指令值计算出误差值,并使被调量向减小误差方向变化。
XY运动平台实验指导书_V2.1GXY系列XY平台实验指导书Version 2.02006.08版权声明固⾼科技(深圳)有限公司保留所有版权固⾼科技有限公司(以下简称固⾼科技)具有本产品及其软件的专利权、版权和其它知识产权。
未经授权,不得直接或间接的复制、制造、加⼯、使⽤本产品及相关部分。
声明固⾼科技保留在不预先通知的情况下修改设备和⽂档的权⼒。
固⾼科技不承担由于使⽤本说明书或本产品不当,所造成的直接的、间接的、特殊的、附带的、或相应的损失和赔偿。
安全注意事项XY平台主要⽤于教学和科研。
在安装,使⽤和维护之前,请仔细阅读XY平台使⽤⼿册的相关⽂档。
并将XY平台使⽤⼿册备在⾝边,以备需要时随时查阅。
使⽤注意事项使⽤(安装、运转、保养、检修)前,请务必熟悉并全部掌握本⼿册和其它相关资料,在熟知全部机器知识、安全知识、以及注意事项后再使⽤设备。
本⼿册将安全注意事项分为“危险”“注意”“强制”“禁⽌”分别记载。
表1-1警告标志另外,即使“注意”所记载的内容,也可能因为不同的情况产⽣严重后果,因此任何⼀条注意事项都很重要,在设备使⽤过程中请严格遵守。
前⾔XY平台是许多数控加⼯设备和电⼦加⼯设备(如:数控车床的纵横向进⼑装置、数控铣床和数控钻床的XY⼯作台、激光加⼯设备⼯作台,表⾯贴装设备等)的基本部件,也是进⾏相关科学研究和设备开发的理想模型。
本实验系统选⽤的XY平台采⽤了模块化设计思想和⼯业化制造标准,具有现实⼯业意义和⼴泛的应⽤背景。
本实验指导书以运动控制技术为主要实验内容,以XY运动平台为实验对象。
适⽤于机械制造及⾃动化、机电⼯程、运动控制技术、数控技术等相关专业的实验教学。
实际使⽤时,⽤户可根据不同课程的教学实验需要选择相关内容。
⽬录版权声明.................................................................................................................................. II 声明.......................................................................................................................................... II 安全注意事项......................................................................................................................... I II 使⽤注意事项......................................................................................................................... I II 前⾔..................................................................................................................................... I V 第1章概述 (1)1.1 运动控制技术基础 (1)1.1.1 运动控制系统简介 (1)1.1.2 运动控制器 (1)1.1.3 运动控制器与伺服系统的匹配 (2)1.1.4 运动控制系统典型应⽤ (2)1.2 XY平台系统组成 (3)第2章电机与驱动(执⾏)装置实验 (4)2.1 实验⽬的 (4)2.2 知识回顾 (4)2.3 实验设备 (5)2.4 实验步骤 (6)2.5 实验总结 (7)第3章直流伺服电机位置阶跃响应实验 (7)3.1 实验⽬的 (7)3.2 基础知识 (7)3.2.1 直流伺服电机概述 (7)3.2.2 直流伺服电机模型 (8)3.3 实验设备 (10)3.4 实验步骤 (10)3.5 实验总结 (11)第4章运动控制器的调整-PID控制器的基本控制作⽤ (13)4.1 实验⽬的 (13)4.2 基础知识 (13)4.3 实验设备 (13)4.4 实验步骤 (13)4.5 实验总结 (17)第5章单轴电机运动控制实验 (17)5.1 实验⽬的 (17)5.2 基础知识 (17)5.2.1 加减速控制 (17)5.2.2 电⼦齿轮 (19)5.3 实验设备 (19)5.4 实验步骤 (19)5.4.1 T曲线、S曲线运动模式实验 (19)5.4.2 单轴速度控制模式运⾏实验 (21)5.4.3 电⼦齿轮模式运⾏实验 (22)5.5 实验总结 (23)第6章⼆维插补原理及实现实验 (23)6.1 实验⽬的 (23)6.2 实验原理 (24)6.2.1 逐点⽐较法直线插补 (24)6.2.2 逐点⽐较法圆弧插补 (25)6.2.3 数字积分法直线插补 (27)6.2.4 数字积分法圆弧插补 (27)6.3 实验设备 (33)6.4 实验内容 (33)6.4.1 ⼆维直线插补实验 (33)6.4.2 圆弧插补(圆⼼/⾓度型)实验 (34)6.4.3 圆弧插补(终点/半径型)实验 (35)6.4.4 逐点⽐较法直线插补实验 (36)6.4.5 逐点⽐较法圆弧插补实验 (36)6.4.6 数字积分法直线插补实验 (37)6.4.7 数字积分法圆弧插补实验 (38)6.4.8 插补算法的⾼级语⾔编程实验 (40)6.5 实验总结与思考 (40)第7章数控代码编程实验 (42)7.1 实验⽬的 (42)7.2 基础知识 (42)7.3 实验设备 (44)7.4 实验步骤 (44)7.4.1 数控代码运⾏认识实验 (44)7.4.2 编写数控代码(G00/G01/G02/G03指令)实验 (46) 7.4.3 G17/G18/G19指令编程实验 (47)7.4.4 G90/G91/G92指令编程实验 (49)7.5 实验报告及总结 (51)第1章概述1.1运动控制技术基础1.1.1运动控制系统简介运动控制起源于早期的伺服控制,简单地说,运动控制就是对机械运动部件的位置、速度等进⾏实时的控制管理,使其按照预期的轨迹和规定的运动参数(如速度、加速度参数等)完成相应的动作。
伺服运动控制系统
主讲:刘洋
CIMC“西门子杯”中国智能制造挑战赛
2020.02.25
运动控制系统的基本概念
本节内容
•什么是运动?
•谁在运动的过程中控制运动效果?
•被控制的对象是什么?
•运动控制的过程中要控制被控对象的哪些状态?•控制的准确程度如何?
运动控制
人类目前已知的100米世界纪录,是牙买加著名短跑健将博尔特
于2009年8月17日在德国柏林创造的9秒58。
•100米
•9秒58
一次性医用口罩生产线
运动控制的工业应用场景
运动控制的工业应用场景
N95口罩生产线
运动控制的工业应用场景
工业机器人
运动控制的工业应用场景
数控加工运动控制的工业应用场景
运动控制的工业应用场景
弹簧机
•什么是运动?
•谁在运动的过程中控制运动效果?•被控制的对象是什么?•运动控制的过程中要控制被控对象的哪些状态?•控制的准确程度如何?•物体在空间中的相对位置随时间而变化•人、机械设备、电气设备•人体自身、口服液、汽车车身、金属卡扣•行进的速度,距离、扭矩
•人工控制的精度相对低,电气控制的精度高本节小结
精确运动控制伺服控制系统运动控制转矩速度位置。