灰色综合评价操作步骤
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
本文研究的城市广场旅游功能的评价系统即属于一个灰色系统。
首先,由于关于广场旅游功能的影响要素、层级分类及指标选定均具有“信息不完全性”;其次,所选取的评价指标数据,有些是已知的,即可以从现有的统计资料中获得,而另一些数据却是未知的,无法从统计资料中获得;再则,本文建立的评价指标中既有定性(灰色)指标,也有定量(白化)指标,各因素指标之间本质上是一种灰色关系。
因此,该系统具有信息不完全的“灰色”特征。
鉴于该系统的灰色特征,本文拟采用灰色模型对城市广场旅游功能进行综合评价。
灰色综合评价方法的原理为:首先将各评价指标分为不同的灰类型,然后建立隶属于各灰类的权函数,以定量地描述某一评价对象隶属于某个灰类的程度。
对具有多层次评价指标的体系,在子系统评价的基础上再对上一层次加权综合,以反映系统的整体状况。
运用这种方法进行综合评价的课题有物流中心选址、风险企业投资价值综合评价、商业银行竞争力综合评价、科研项目综合评价等,该方法取得了比较好的评价效果。
具体计算步骤如下:1(l)确定评价指标集根据设计的指标体系,有两层指标集,U=(U1,U2,U3,U4,U5,U6),其中U1=(U11,U12,U13),U2=(U21,U22,U23,U24,U25,U26),U3=(U31,U32,U33,U34,U35,U36),U4=(U41,U42,U43,U44,U45),U5=(U51,U52),U6=(U61,U62,U63)(2)确定指标评分等级在本文中,所有指标分为很好(大)、较好(大)、一般、较差(小)四个等级,分别为4、3、2、1分,指标等级介于两相邻等级之间,相关评分为3.5、2.5、1.5分,具体等级标准由专家根据经验确定。
(3)层次分析法确定各评价指标的权重常见的确定权重的方法有,德尔菲法、层次分析法、熵值法、模糊聚类分析法等。
本文采用层次分析法确定权重,本文在运用层次分析法时做了两点优化:①采用9/9-9/1标度法。
灰色综合评价操作步骤步骤一:明确评价的对象和目标。
确定需要进行灰色综合评价的对象是什么,以及评价的目标是什么。
比如,可以选取一个产品、一个项目、一个公司或者一个个人作为评价对象,然后明确评价的目标是对其综合各方面进行评价。
步骤二:确定评价指标和权重。
根据评价的对象和目标,确定需要考虑的评价指标,这些指标应该涵盖事物或者人的各个方面,如质量、性能、创新能力、市场影响力等。
然后给每个指标设定相应的权重,以反映其在整体评价中的重要性。
步骤三:收集数据和信息。
收集评价对象相关的数据和信息,包括定量数据和定性信息。
通过市场调研、问卷调查、访谈等方式来收集和获取所需的数据和信息。
步骤四:数据处理和分析。
对收集到的数据和信息进行整理、分类和处理,以便于后续的分析和评价。
可以使用统计方法、模型分析等工具来对数据进行处理和分析,得出相应的结果。
步骤五:综合评价和分等级。
根据所确定的评价指标和权重,对得到的评价结果进行综合计算和评估。
根据评估结果,对评价对象进行分等级,如优秀、良好、一般、不及格等。
步骤六:结果解读和建议提供。
对评价结果进行解读,说明各个方面的优势和不足之处,并提出相应的改进建议和措施。
这些建议应该针对评价对象的具体情况,具有可行性和可操作性。
步骤七:结果反馈和跟踪。
将评价结果反馈给相关的人员和决策者,并跟踪评价结果的执行情况和效果。
根据反馈和跟踪结果,及时进行调整和改进。
步骤八:定期复评和持续改进。
定期对评价对象进行复评,以了解其发展和改进情况,评估其综合评价的变化和趋势。
同时,不断改进评价方法和指标体系,提高评价的准确性和有效性。
以上就是灰色综合评价的操作步骤。
通过这些步骤,可以全面客观地评价一个事物或者一个人,发现其优势和不足之处,并提供改进的方向和措施,以促进其进一步的发展和提升。
灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。
i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。
层次分析法AHP(Analytic Hierarchy Process)AHP的基本原理假设有n 个物体A, A2 , …, A n , 它们的重量1分别记为W, W2,…,W n. 现将每个物体的重量1两两进行比较如下:A1 A2 …AnA1 W1 /W1 W1 / W2 …W1 /W2A2 W1 /W2 W1 /W2 …W1/W2……………An Wn /W1 Wn /W2 Wn /WnAHP 的基本原理111212122212/////////n n n n n n W W W W W W W W W W W W A W W W W W W ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭L L M M M M L 若以矩阵来表示各物体的这种相互重量关系,判断矩阵由线性代数知识可以证明:矩阵A 最大特征根是n ,对应的特征向量是12[,,]Tn W W W W =L AHP 的基本原理例如,若购买一台设备, A 1为功能, A 2为价格,A 3为维修服务.1531/511/31/331A 1A 2A 2A 3A 3A 1x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要9AHP 的基本原理Matlab 编程A=[1,5,3;1/5,1,1/3;1/3,3,1];[x,y]=eig(A)W=x(:,1)/sum(x(:,1))AHP 的基本步骤建立递阶层次结构.构造出各层次中的所有判断矩阵.层次单排序及其一致性检验.层次总排序.下面通过实例来说明各步骤中所做的工作.AHP 的基本步骤2. 构造出各层次中的所有判断矩阵首先构造各准则A 1,A 2,…, A 5对目标O 的判断矩阵首先构造O-A i 的判断矩阵A 1 A 2 A 3 A 4A 5OA 1 A 2 A 3 A 4A 5x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要911/2433217551/41/711/21/31/5211/31/53111/3111/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦由上表, 可得O -A i 的判断矩阵ijji ij n n ij a a a a A 1,0,)(=>=⨯正互反阵任务:要由A 确定A 1,…, A 5对O 的权向量(权重)AHP 的基本步骤AHP 的基本步骤111212122212/////////n n n n n n W W W W W W W W W W W W W W W W W W ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭L L M M M M L 11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦nj i ,,2,1, =ijkj ik a a a =⋅一致阵允许不一致但要确定不一致的允许范围AHP 的基本步骤3. 层次单排序及其一致性检验即A 的最大特征根是n ,n 阶判断矩阵A 是一致的一致性的判别⇔max nλ=AHP 的基本步骤一致性比率查表: RI计算: CI 当CR <0.1时, 认为成对比较阵具有满意的一致性.当CR >0.1时, 必须重新调整成对比较阵.max ()1A nCI n λ-=-CI CR RI=n3 4 5 6 7 8 9RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45一致性指数5072.5)(max ≠=A λ018.0155)(max =--=A CI λ12.1=RI 016.012.1018.0===RI CI CR CR<0.1结论:A 虽不是一致阵, 但它具有满意的一致性.A 的不一致程度是可以接受的.AHP 的基本步骤验证一致性(以旅游地为例){}0.264, 0.476, 0.054, 0.098, 0.109W =AHP 的基本步骤求A 1,…, A 5对O 的权向量(权重)所对应的归一化特征向量.矩阵A 的max λAHP 的基本步骤桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.109AHP 的基本步骤先成对比较三个旅游地的景色, 得成对判断矩阵B 111251/2121/51/21B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦类似可得211/31/8311/3831B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦31131131/31/31B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦41341/3111/411B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5111/4111/4441B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦AHP 的基本步骤k123451k ω2k ω3k ω0.595277.0129.0082.0236.0682.0429.0429.0142.0633.0193.0175.0166.0166.0668.0kλ005.3002.33009.33k CI 003.0001.000005.0kRI 58.058.058.058.058.0k v 计算可知通过一致性检验.k CR 54321,,,,B B B B B桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.1090.5950.1290.2770.0820.2360.6820.1420.1750.1660.4290.4290.1930.6330.1660.668B 1对总目标的权重为:3.0110.0166.0099.0633.0055.0429.0475.0082.0263.0595.0=⨯+⨯+⨯+⨯+⨯故最后的决策应为去北戴河.B 1对总目标的权重为:0.5950.2640.0820.4760.4290.0540.6330.0980.1660.1090.3⨯+⨯+⨯+⨯+⨯=0.246, 0.456.同理得B2, B3对总目标的权值分别为:312B B B >>即各方案的权重排序:123B , B , B 又分别表示桂林, 黄山, 北戴河.优点:缺点:存在着较大的主观性.对AHP 的简单评价计算简便, 结果明确, 便于决策者直接了解和掌握.灰色综合评价法3. 灰色综合评价法的步骤(1) 根据评价目的确定评价指标体系, 收集评价数据.12n x x x 12111212122212mm m n n nm f f f a a a a a a a a a ⎛⎫ ⎪⎪ ⎪⎪⎝⎭ (2) 确定最优指标集( )*F ****12[,,]m F a a a = 式中*(1,2)i a i n = 为第i 个指标的最优值.设2. 灰色系统的应用范畴(1) 灰色关联分析.(2) 灰色预测: 人口预测、初霜预测、灾变预测等. (3) 灰色预测控制.应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进行综合评价是一个被广为接受的方法. 该方法不仅可以充分利用原始数据所提供的信息, 而且计算比较简便.选定最优指标集后,可构造矩阵D :确定最优指标集时, 要考虑可行性. 若最优选的过高, 则不现实, 评价的结果也就不可能正确.***12111212122212m m m n n nm a a a a a a D a a a a a a ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(3) 对指标数据进行无量钢化无量纲化后的数据序列形成如下矩阵:***12111212122212mm m nnnma a a a a a a a a a a a ⎛⎫''' ⎪''' ⎪ ⎪''' ⎪ ⎪ ⎪'''⎝⎭(4) 求差数列i j∆它表示第i 个评价对象第j 个指标数据与最优指标集中第j 个指标数据的绝对差。
灰色系统方法步骤1 评价指标集 根据前面的评价指标体系,设U 为评价指标集:U={1u ,2u ,…,l u },(l 为一级指标的个数),其中k u ={1k u ,2k u ,…,km u },(m 为第k 个指标所属的二级指标个数)。
2 评价指标权重的确定本文运用层次分析法(AHP)来确定指标的权重值,即运用专家咨询法构造两两比较判断矩阵,求矩阵特征向量和特征根,并进行一致性检验,得出各项指标的权重。
设评价指标k u 的权重集为:A={l a ,2a ,…,l a },k a 表示评价指标k u 在U 中的权重,且11=∑=l k k a同时设各二级指标的权重集:k A ={ak1,ak2,…,km a },ki a (i=1,2,…,m)表示指标ki U 在k u 中的比重,且∑==m i ki a113、确定评价指标ki u 的评分标准 将评价指标的优劣程度划分为不同的等级,然后给各等级赋值(评分)。
考虑到人们思维最大可能分辨力,本文将评价指标ki u 的优劣程度划分为4级,并分别赋值(10,8,5,3)。
若指标等级介于两相邻等 级之间,其相应的评分为9,6.5,4,1.5分4、组织评价者评分 设有S 个评价者,其评价者的序号为h=1,2,…,s 。
依据评分标准分别给各评价指标ki u 评分,并填写评价专家评分表(表式略)5、根据评价专家评分表构造评价矩阵D其中hkid表示第h个评价者依据评分标准对评价指标kiU的评分。
6、求评价灰类设评价灰类为n类。
分析上文的评分等级标准,本文决定选取n=4,即设灰类j=1,2,3,4。
分别代表4个评价灰类。
各评价灰类及其白化函数为: 第一类(j=1):“优”,评分在10分或10分以上,白化函数为1f:第二类(j=2):“良”,评分在8分左右,白化函数为2f:第三类(j=3):“中”,评分在5分左右,白化函数为3f:第四类(j=4):“差”,评分在3分或3分以下,白化函数为4f :7、计算灰色评价系数 对于评价指标ki u 属于第j 个评价灰类的灰色评价系数,记为jki x 则有:j ki x =)(1h ki s h jd f ∑=。
熵权灰色综合评价法
熵权灰色综合评价法是一种基于熵权法和灰色关联度分析的综合评价方法。
该方法综合考虑了数据的信息熵和灰色关联度,用于对多个指标进行综合评价。
具体步骤如下:
1. 确定评价指标:选择适当的评价指标,用于评估被评价对象的各个方面。
2. 数据标准化:将原始数据进行标准化处理,使得数据具有可比性。
3. 计算信息熵:对每个指标计算信息熵,用于衡量指标的信息量和差异性。
4. 计算权重:根据信息熵计算各个指标的权重,权重越大表示该指标对评价结果的影响越大。
5. 灰色关联度分析:利用灰色关联度分析方法,计算各个指标之间的关联度,用于衡量指标之间的关联程度。
6. 计算评价结果:根据指标的权重和关联度,计算出最终的评价结果。
熵权灰色综合评价法在实际应用中具有较高的灵活性和适用性,能够考虑到多个指标之间的相互关系,提高评价结果的准确性和可靠
性。
灰色综合评价操作步骤
第一步,设定评价对象
对象可以是某一相同年份下的不同的地区,也可以是某一地区的不同年份
第二步,建立评价指标体系
选取相应的指标以达到评价目的
第三步,为每个评价指标设定相应的权重W
该权重可以有评价者直接输入,也可以运用AHP计算得到
第四步,灰色关联度分析
1.确定最优指标集
若某一指标取极大值为好,则取该指标在各方案中的最大值;若取极小值为好,则取各方案中的最小值。
2.指标的规范化处理
由于原始数据矩阵指标相互之间具有不同量纲和不同的数量级,因此有必要对原始指标值进行无量纲化处理。
处理公式如下:
这样就把原始矩阵中的原始值转化为无量纲值y ij,y ij属于[o,1],于是原始数据矩阵X变为决策矩阵Y,Y=(y ij)nxm。
也可以是使用其他的归一化处理方法
3.计算关联度系数
综合评判结果R=E×W=(r1,r2,……,r m),即关联系数r i越大越好,可以据此排列次序。