初中数学最值问题专题
- 格式:docx
- 大小:543.87 KB
- 文档页数:38
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
1.如图3.1所示,在Rt △ABC 中,∠A =30°,AB =4,点D 为边AB 的中点,点P 为边AC 上的动点,则PB +PD 的最小值为( )A.B.A.A.1.解 延长BC 至点'B ,使'BC B C =,连接'B P 、'B A ,如图4.1所示, ∴AC 垂直平分'BB ,∴'B A BA =,∴AC 平分'B AB ∠. ∵30CAB ︒∠=,∴'60B AB ︒∠=,∴'ABB ∆为等边三角形.∵点P 为AC 上一点,∴'PB PB =,∴''PB PD PB PD B D +=+≥,当且仅当'B 、P 、D 在同一直线上时,如图4.2所示,PB PD +取得最小值.在'Rt ADB ∆中,122AD AB ==,'60B AB ︒∠=,∴'tan 60B D AD ︒==故答案是C.思路点拨:这是典型的“将军饮马”型线段和最值问题,利用对称法将动线段构造至动点P 所在直线的两侧;根据“两点之间线段最短”找到最小值位置,利用勾股定理进行计算即可.拓展 若点D 为边AB 上任意一定点,则依旧可以根据勾股定理和60°特殊角计算'B D 的长度;若点D 是边AB 上的一动点,则'B D 将变为一条动线段,利用“垂线段最短”可确定最值位置还是在中点处.2.如图3.2所示,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PAB ABCDS S矩形,则点P 到AB 两点距离之和P A +PB 的最小值为 .2.解 令点P 到AB 的距离为d .图3.1PCBD AD 图 4.2图 4.1ABCPB 'B 'PD CBAP ADBC图3.2∵111=35=5=5332PAB ABCD S S d ∆=⨯⨯矩形,∴2d =,∴点P 为到AB 距离为2的直线1l 、2l 上的点.直线1l 、2l 关于AB 对称,因此选其中一条进行计算.作点B 关于直线1l 的对称点'B ,连接'B C 、'B P 、'AB ,如图4.3所示, ∴''PA PB PA PB AB +=+≥,当且仅当A 、P 、'B 三点共线时取得最小值,如图4.4所示. 在'Rt ABB ∆中,5AB =,'24BB d ==,∴'AB =, 故PA PB +思路点拨:这是典型的“将军饮马”型线段和最值问题.根据题目中中给出的面积关系,可判断点P 的运动轨迹为直线(或称为“隐线”);利用轴对称的性质,构造对称点'B ,再运用线段公理获得不等式;根据勾股定理计算最值'AB .3.如图3.3所示,在矩形ABCD 中,AD =3,点E 为边AB 上一点,AE =1,平面内动点P 满足13PAB ABCDS S矩形,则DP EP 的最大值为 .3.解 令点P 到AB 的距离为d .∵13PAB ABCD S S ∆=矩形,∴2d =,∴点P 在到AB 距离为2的直线1l 、2l 上,如图4.5所示.作点E 关于直线1l 的对称点'E ,连接'E D 并延长交直线1l 于点P ,连接EP ,如图4.6所示, ∴'E P EP =.当点P 在直线1l 上时,''DP EP DP E P E D -=-≤,当且仅当D、'E 、P 三点共线时取得最大值图3.3B'E D =当点P 在直线2l 上时,DP EP ED -≤,当且仅当D 、E 、P 三点共线时取得最大值,如图4.7所示.在Rt △ADE 中,3AD =,1AE =,∴DE ==∴DP EP ED -≤=∴当点P 为DE 的延长线与直线2l思路点拨:解法如题2,需要找出满足条件的点P 所在的“隐线”,这里两条直线均要考虑(因为图形不对称).由于两边之差小于第三边,在共线时取得最大值,故遵循“同侧点直接延长,异侧点需对称后再延长”的规律,分别计算最大值并进行大小比较.特别说明 笔者认为这里的最大值只能取一个值.改编此题的目的是让大家不要忽略矩形外的“隐线”,毕竟题中叙述点P 时用的是“平面内”,而非“矩形内”. 4.已知222222y x xx x ,则y 的最小值为 .4.解 原式=+.建立平面直角坐标系,设(),0P x ,()1,1A ,()1,1B --,则AB 在x 轴的两侧,∴PA =PB ,∴y PA PB AB +=+≥,当A 、P 、B 三点共线时,y 值最小,∴min y AB ==思路点拨:若将式子看作函数,对于初中生来说解题难度较大.若换个角度,将每一个根式都看作是两点间的距离(距离公式是平面直角坐标系中的勾股定理),则将问题转化为我们熟悉的几何最值模型——两点之间线段最短. 5.已知22(3)9(1)4y x x ,则y 的最大值为 .5.解 原式=-.建立平面直角坐标系,设),0P x ,3,3A ,1,2B ,∴PA =PB =∴y PA PB AB -≤,当A 、P 、B 三点共线,即点P 在AB 延长线上时y值最大,∴max y AB ==. 思路点拨:阅读题目时需观察清楚“+”或“-”,切不可盲目下笔.本题与题4形式相似,解法相近,但是又有所不同.将代数式转化为平面直角坐标系中的两条线段的差;利用三边关系中的两边之差小于第三边,共线时取等找到最大值.6.如图3.4所示,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =,点D 是边AB 上一动点,连接CD ,以AD 为直径的圆交CD 于点E ,则线段BE 长度的最小值为 .B解:连接AE ,取AC 得中点F ,连接EF ,如图4.8所示∵AD 是圆的直径 ∴∠AED =90° ∴∠AEC =90°∴EF =12AC =2∴点E 的轨迹为以点F 为圆心的圆弧(圆的定义) ∴BE ≥BF -EF当且仅当B 、E 、F 三点共线时等号成立,如图4.9所示 在Rt △ABF 中,AF =2,AB =4∴BF, ∴()min BE =BF -EF=-2BB思路点拨阅读题目时要找到三条关键信息:点E 为圆周上一点,AD 所对的圆周角是90°,∠DEC 是平角,连接AE 后就找到了定弦定角(或斜边上的中线),若一个角的度数和其所对的一条线段均为定值,则这个角的顶点的轨迹为圆(根据题目需求判断是否需要考虑两侧).因此判断出点E 的轨迹是圆(不是完整的圆,受限于点D 的运动范围).根据三角形的三边关系,知B 、E 、F 三点共线时BE 取得最小值.7.如图3.5所示,正方形ABCD 的边长是4,点E 是边AB 上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 时边AB 上另一动点,则PD +PG 的最小值为 .GP E DCBA解:取BC 得中点F ,连接GF ,作点D 关于AB 的对称点D ′,连接D ′P 、D ′A ,如图4.10所示.∴DP =D ′P∵∠BGC =90°,点F 为BC 的中点∴GF =12BC =2∵PD +PG =PD ′+PG ≥D ′G 又D ′G +GF ≥D ′F∴PD +PG +GF ≥D ′F -GF如图4.11所示,当且仅当D ′、P 、G 、F 四点共线时取得最小值.根据勾股定理得D ′F=∴PD +PG 的最小值为2FD'ABCDE P G GP EDCB AD'F思路点拨不难发现∠BGC =90°是个定角,因此点G 的轨迹为以BC 为直径的圆(部分),可以通过斜边上的中线构造长度不变的动线段,再利用三边关系求解.8.如图3.6所示,在矩形ABCD 中,AB =2,AD =3,点E 、F 分别为边AD 、DC 上的点,且EF =2,点G 为EF 的中点,点P 为边BC 上一动点,则P A +PG 的最小值为 .GP FED CB A解:作点A 关于BC 的对称点A ′,连接A ′B 、A ′P 、DG ,如图4.12所示∴P A ′=P A∴P A +PG =P A ′+PG ∵∠ADC =90°,EF =2∴DG =12EF =1∵P A ′+PG +DG ≥A ′D ∴P A ′+PG ≥A ′D -DG如图4.13所示,当且仅当A ′、P 、G 、D 四点共线时等号成立 根据勾股定理得 A ′D=5∴P A +PG 的最小值为4.A'AB C D EFP GGP FED CB AA'思路点拨与题7的已知条件是相似的,解法几乎一致,抓住核心条件,线段EF 始终不变,线段EF 所对的角为直角,因此斜边上的中线DG 始终不变,从而判断出点G 的轨迹图形为圆.利用轴对称的性质将线段和最小值问题转化为点到动点的距离最小值问题,再根据圆外一点到圆周上一点的距离最值求解.9.在平面直角坐标系中,A (3,0),B (a ,2),C (0,m ),D (n ,0),且m 2+n 2=4,若点E 为CD 的中点,则AB +BE 的最小值为( )A .3B .4C .5D .25 解:∵C (0,m ),D (n ,0),m 2+n 2=4,∴CD 2=4, ∴CD =2在Rt △COD 中,点E 为CD 的中点∴OE =1,即点E 在以O 为圆心,1为半径的圆上.作图4.14,连接OE ,过点A 作直线y =2的对称点A ′,连接A ′B 、A ′O ∴A ′(3,4)∴AB +BE =A ′B +BE =A ′B +BE +EO -EO ≥A ′O -EO如图4.15所示,当且仅当A ′、B 、E 、O 四点共线时等号成立.根据勾股定理得A ′O 5 ∴AB +BE 的最小值为4思路点拨根据两点之间的距离公式m 2+n 2=CD 2,得到CD 的长度;由已知条件判断出OE 为斜边上的中线,OE =12CD (定值);根据圆的定义可知点E 的轨迹是以坐标原点为圆心、12CD 为半径的圆;利用对称的性质将线段和的最值问题转化为圆外一点到圆周上一点的距离最值问题.10.如图3.7所示,AB =3,AC =2,以BC 为边向上构造等边三角形BCD ,则AD 的取值范围为 .DCBA解:以AB 为边向上作等边△ABE ,连接DE ,如图4.16所示∴AB =BE ,CB =BD ,∠ABC =∠EBD =60°-∠CBE 在△ABC 和△EBD 中 ,,,AB BE ABE EBD CB BD =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌△EBD (SAS ) ∴DE =AC =2∴点D 的轨迹是以点E 为圆心,2为半径的圆. ∴AE -ED ≤AD ≤AE +ED如图4.17和图4.18所示,当且仅当A 、E 、D 三点共线时取得最值 ∴1≤AD ≤5EBCDED BADCBE思路点拨这样理解AB =3,AC =2这个条件:固定一边AB ,∠CAB 可以自由变化,因此点C 的轨迹是以点A 为圆心、2为半径的圆.通过构造全等图形找出点D 的运动轨迹.利用圆外一点到圆周上的距离最值来解决问题.拓展 本题的解法较多,对于“定点+动点”的最值问题,探究动点的轨迹图形时直接的方法.11.如图3.8所示,AB =3,AC =2,以BC 为腰(点B 为直角顶点)向上构造等腰直角三角形BCD ,则AD 的取值范围为 ;解答:以AB 为腰做等腰直角△ABE (∠ABE =90°),连接DE ,如图4.19所示,∴AE =√2AB =3√2,∠ABC =∠EBD =90°-∠CBE , 在△ABC 和△EBD 中{AB =BE ∠ABC =∠EBD CB =BD图3.8DC图4.19C∴△ABC ≌△EBD (SAS ) ∴ED =AC =2∴点D 的轨迹为以点E 为圆心、2为半径的圆 ∴AE -ED ≤AD ≤AE +ED如图4.20和图4.21所示,当且仅当A ,E ,D 三点共线时取得最值,∴3√2-2≤AD ≤3√2+2思路点拨:解题方法基本同上题,也是通过构造全等图形找出点D 的运动轨迹上,再利用圆外一点到圆周上的距离最值来解决问题12. 如图3.9所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,则AD 的取值范围为 ,解答:以AB 为底边构造等腰直角△AEB (∠AEB =90°),连接DE ,如图4.22所示,图4.20图4.21C图3.9DBAC图4.22DBAC∴AE =√22AB =2√2,∠EBA =∠CBD =45°∵{ABEB =CBDB =√2∠ABC =∠EBD =45°-∠CBE ∴△ABC ∽△EBD∴DE =√22AC =√2∴点D 的轨迹为以点E 为圆心、√2 为半径的圆 AE -ED ≤AD ≤AE +ED如图4.23和图4.24所示,当A 、E 、D 三点共线时取得最值∴√2≤AD ≤3√2思路点拨:与前面两题不同的是,由于旋转中心不再是等腰三角形顶角的顶点,因此构造全等图形变成构造相似图形,从而找出点D 的运动轨迹,最后根据圆外一点到圆周上的距离最值来解决问题13. 如图3.10所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为 ,图4.23BAC图4.24BAC解答:以AB 为底边构造等腰直角△AEB (∠AEB =90°),连接DE ,如图4.25所示,∴AE =√22AB =2√2,∠EBA =∠CBD =45°∵{AB EB=CBDB =√2∠ABC =∠EBD =45°-∠CBE∴△ABC ∽△EBD ∴DE =√22AC =√2∴点D 的轨迹为以点E 为圆心、√2 为半径的圆 延长AE 至点Q ,使AE =E Q ,连接P Q 、B Q , ∵AD =DP ,∴D Q=2DE =2√2如图4.23和图4.24所示,当A 、E 、D 三点共线时取得最值 ∵BE 垂直平分A Q ,∴AB =B Q ∵∠Q AB =45°,∴△AB Q 为等腰直角三角形,∴B Q=AB =4图3.10PA C图4.25AC∴B Q -P Q≤PB ≤B Q +P Q如图4.26和图4.27所示,当B 、P 、Q 三点共线时取得最值∴4-2 √2≤PB ≤4+2 √2思路点拨:注意到点P 的产生与中点有关,点P 的运动与点D “捆绑”在一起,故可通过构造中位线来判断点P 的运动轨迹,再利用圆外一点到圆周上的距离最值来解决问题14. 如图3.11所示,正六边形ABCDEF 的边长为2,两顶点A 、B 分别在x 轴和y 轴上运动,则顶点D 到坐标原点O 的距离的最大值和最小值的乘积为 ;解答:取AB 的中点G ,连接DG 、O G ,如图4.28所示,图4.26图4.27PAC图3.11∵∠A O B =∠x O y =90°,∴O G = 12AB =1,连接DB 、O D∴△DCB 为等腰三角形 ∵∠C =120°,∴∠DBC =30°,DB = √3DC =2 √3, ∴∠DBA =120°-30°=90°在Rt △DGB ,GB =1,∴DG =√DB 2+GB 2=√(2√3)2+12=√13∴DG -O G ≤O D ≤O G +DG当且仅当O 、G 、D 三点共线时取得最值D 、G 在点O 同侧时取得最大值,在点O 异侧时取最小值,如图4.29所示,∴√13-1≤O D ≤√13+1∴O D 的最大值和最小值乘积为(√13−1)(√13+1)=12图4.28图4.29思路点拨:这个是“墙角”型问题,类似于梯子在墙角滑动,将墙角变为平面直角坐标系,这样移动的范围能扩大到负方向;利用“墙角”产生的直角,以及AB 边长不变的特点,作出AB 的中点G ,利用斜边上的中线O G 和位置固定的两点D 、G 来构造两条大小不变、位置变化的线段O G 、DG ;利用两边之和与两边之差得到O D 的最大值和最小值;另辟蹊径:利用相对运动的知识,我们假设正六边形是不变的,坐标系可以绕着正六边形运动;利用∠A O B =90°,AB =2,判断出点O 的运动轨迹为一个圆,如图4.30所示,利用圆外一点到圆周上的距离最值解得O D 的最大值和最小值;读者可以自行计算验证15. 如图3.12所示,AB =4,点O 为AB 的中点,⊙O 的半径为1,点P 是⊙O 上一动点,△PBC 是以PB 为直角边的等腰直角三角形(点P 、B 、C 按逆时针方向排列),则AC 的取值范围为 ;解答:如图4.31所示,以O B 为腰向上构造等腰直角△O B Q ,连接O P 、C Q 、A Q ;图4.30O 2E图3.12CAB在等腰直角△O B Q 和等腰直角△BPC 中,CB BP =QBBO =√2,∠Q B O=45°, ∴∠CB Q=45°-∠Q BP =∠PB O ,∴△CB Q ∽△PB O ∴OPCQ =OBBQ =√22,∴C Q= √2 ∴点C 在以点Q 为圆心, √2为半径的圆上,∵OQ=O B =O A =2,∠QO B =90° ∴A Q= √AQ 2+OQ 2=2 √2 ∴A Q -Q C ≤AC ≤A Q +Q C如图4.32和图4.33所示,当且仅当A 、C 、Q 三点共线时取得最值,∴√2≤AC ≤3 √2思路点拨:由于△PBC 形状固定,两个动点P 、C 到点B 的距离之比始终不变,这是比较典型的位似旋转,也可理解为点P 、C “捆绑”旋转;旋转过程中,点C 的轨迹与点P 的轨迹图形相似,相似比为√2:1;利用相似找出动点C 轨迹的圆心,AC 的最值即定点A 到定圆上一动点的距离的最值16.如图3.13所示,⊙O 的半径为3,Rt △ABC 的顶点A 、B 在⊙O 上,∠B =90°,点C 在⊙O 内,且tan A =34.当点A 在圆上运动时,OC 的最小值为( )图4.31AB图4.32ABP 图4.33ABB.32D.53图3.13答案:连接OB,过点B向下作BD⊥OB,取BD=43OB,连接AD,如图4.34所示.∵∠CBA=∠OBD=90°,∴∠OBC=90°-∠OBA=∠DB A.∴CBAB=OBBD=34,∴△OCB∽△DAB,∴OCAD=34.∵AD≥OD-OAOA=2,当且仅当O、A、D三点共线时取得最值,∴OC=34AD≥34×2=32.图4.34思路点拨又是比较典型的位似旋转问题,我们利用相似的性质将OC的最值问题转化为AD的最值问题.通过旋转型相似构造Rt△OBD,其中∠OBD=90°,∠ODB=∠CAB,因此点D为定点.另外,由△OCB∽△DAB得到OC和AD之间的固定比例,从而可利用AD的最值求解OC的最值.AD的最值即为圆外一点到圆周上一点的距离最值.另辟蹊径根据直径所对的圆周角为90°,找到直径AD,而∠ACD=180°-∠ACB为定值,因此由定弦定角得出点C的轨迹为圆弧,可根据图4.35所示计算OC的最小值.图4.3517.如图3.14所示,在平面直角坐标系中,Q(3,4),点P是以Q为圆心、2为半径的⊙Q上一动点,A(1,0),B(-1,0),连接P A、PB,则P A2+PB2的最小值是___________.答案:连接OP 、QP 、OQ ,如图4.36所示.设P (x ,y ). 根据两点距离公式得∴P A 2=(x -1)2+y 2,PB 2=(x +1)2+y 2, ∴P A 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2.∴OP OP 2=x 2+y 2,∴P A 2+PB 2=2OP 2+2,要求P A 2+PB 2的最小值,即求OP 2的最小值,也就是求OP 的最小值,∴OP ≥OQ -PQ , 如图4.37所示,当且仅当O 、P 、Q 三点共线时取得最值, ∴OP =5-2=3,∴P A 2+PB 2=2OP 2+2≥2×32+2=20.思路点拨根据P A 2+PB 2这样的形式,产生两个联想,一是勾股定理,二是坐标公式.要使用勾股定理,就得把P A 和PB 构造为两条直角边,在题图中难以实现,所以转而利用坐标公式表达,我们便发现P A 2+PB 2与OP 2的联系,而OP 的最小值即圆外一点到圆周上一点的距离最小值.弦外之音 我们会发现,虽然点P 在动,但OP 始终是△ABP 边AB 上的中线,且AB 是个定值,我们可以直接利用中线长公式得到P A 2+PB 2=2OP 2+24AB ,接下来的计算和上面是一致的.公式的应用有助于对思路的拓展,因此学有余力的同学可以自行推导中线长公式(仅用勾股定理即可).18.如图3.15所示,两块三角尺的直角顶点靠在一起,BC =3,EF =2,G 为DE 上一动点.将三角尺DEF 绕直角顶点F 旋转一周,在这个旋转过程中,B、G 两点的最小距离为___________.图3.15答案:在Rt △DEF 中,CE =2,∠CDE =30°,∴DF =DE =4. 如图4.38所示,当点G 与点D 重合时,CG max =DF =当CG ⊥DE 时,CG min =h =2DEFS DE⋅△CG当CG =3时,以C 为圆心、CG 为半径的圆恰好经过点B. 在△DEF 旋转的过程中,点G 会经过点B.因此,当BG 恰好重合时,BG 取得最小值为0.图4.38')思路点拨这是个“特别”的题,点G 是DE 上一动点,因此在转动的过程中,点G 的轨迹不是线而是面,这个面的形状为以点C 为圆心、分别以CG min 和CG max 为半径的同心圆环,点B 也在这个“面轨迹”中,因此BG 的最小值为0.19.如图3.16所示,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,BC =△ADC 与△ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF 相交于点P ,则CP 的最小值为()A.1 C.32D.2图3.16PEDBA答案:连接BD ,如图4.39所示.∵△ADC 与△ABC 关于AC 对称,∠ACB =30°,∴BC =CD ,∠BCD =60°, ∴△BDC 是等边三角形,∴BD =CD ,∠BDC =∠BCD =60°. 在△BDE 和△DCF 中,BD =CD ,∠BDC =∠BCD ,DE =CF , ∴△BDE ≌△DCF (SAS ),∴∠BED =∠DF C.∵∠BED +∠PEC =180°,∴∠PEC +∠DFC =180°, ∴∠DCF +∠EPF =∠DCF +∠BPD =180°. ∵∠DCF =60°,∴∠BPD =120°. ∵点P 在运动中保持∠BPD =120°,∴点P 的运动路径为以A 为圆心、AB 为半径的120°的弧.当C 、P 、A 三点共线时,CP 能取到最小值,如图4.40所示, ∴CP ≥AC -AP =2,即线段CP 的最小值为2.图4.40图4.39DABPE思路点拨需要熟悉等边三角形中的常见全等图形.因为点P 在运动中保持∠BPD =120°,BD 又是定长,所以点P 的路径是一段以点A 为圆心的弧,于是将CP 的最小值转化为圆外一点到圆上一点的距离最小值.20.如图3.17所示,sin O =35,长度为2的线段DE 在射线OA 上滑动,点C 在射线OB 上,且OC =5,则△CDE 周长的最小值为___________.图3.17EDCB A答案:过点C 作CC '∥DE 且CC '=DE ,连接C 'E ,如图4.41所示, ∴四边形CC 'ED 为平行四边形,∴C 'E =C D.作点C 关于OA 的对称点C ″,连接C ″E 、C ″D 、C ″C ,∴CE =C ″E , ∴CD +CE =C 'E +CE =C 'E +C '″E ≥C 'C ",当且仅当C '、E 、C "三点共线时取得最值,如图4.42所示. ∵CC "关于OA 对称,∴OA 垂直平分CC ", ∴CC "=2CF =2OC ·sin O =6.在Rt △CC 'C "中,C 'C "∴△CDE 周长的最小值为2.图4.42图4.41AEC″C'B CODA E DB COF C″C'思路点拨因为DE 为定值,所以△CDE 周长的最小值问题转变为CD +CE 的最小值问题.似“饮马”非“饮马”,注意观察,这是一定两动问题.利用平移将动线段DE “压缩”为一个动点;轴对称后根据两点之间线段最短找到最小值线段,再根据勾股定理计算即可解决问题.21、如图3.18所示,在矩形ABCD 中,AB=6,MN 在边AB 上运动,MN=3,AP=2,BQ=5,则PM+MN+NQ 的最小值是______________。
专题18.8 四边形中的最值问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )A.43+3B.221C.23+6D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是( )2 A.5B.7C.72D.72【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=AM,CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,AM,∴AD=22∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,,∴AD的最大值为722故选:D .3.(2022春•中山市期末)如图,在边长为a 的正方形ABCD 中,E 是对角线BD 上一点,且BE =BC ,点P 是CE 上一动点,则点P 到边BD ,BC 的距离之和PM +PN 的值( )A .有最大值aB .有最小值22a C .是定值a D .是定值22a 【分析】连接BP ,作EF ⊥BC 于点F ,由正方形的性质可知△BEF 为等腰直角三角形,BE =a ,可求EF ,利用面积法得S △BPE +S △BPC =S △BEC ,将面积公式代入即可.【解答】解:如图,连接BP ,作EF ⊥BC 于点F ,则∠EFB =90°,∵正方形的性质可知∠EBF =45°,∴△BEF 为等腰直角三角形,∵正方形的边长为a ,∴BE =BC =a ,∴BF =EF =22BE =22a ,∵PM ⊥BD ,PN ⊥BC ,∴S △BPE +S △BPC =S △BEC ,∴12BE ×PM +12BC ×PN =12BC ×EF ,∵BE =BC ,∴PM +PN =EF =22a .则点P 到边BD ,BC 的距离之和PM +PN 的值是定值22a .故选:D .4.(2022春•三门峡期末)如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.2B.4C.2D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,CE.∴P1P2∥CE且P1P2=12当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P∥CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为( )A.45B.89C.10D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ 的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADC,BP=DQ∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是( )A.2B.1C.5−1D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角AD=1,利用勾股定理列式求出OC,然三角形斜边上的中线等于斜边的一半可得OF=12后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCE,CE=CE∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,AD=1,则OF=DO=12在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO =1AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根2据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,AE,∴AO=PO=12∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC ≥OC ﹣OP ,∴PC 的最小值=OC ﹣OP =OC −12AE ,∵OC =22+(72)2=652,在Rt △ADE 中,AE =42+12=17,∴PC 的最小值为652−172,故④错误,故选:B .8.(2022•南平校级自主招生)如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F .则EF 的最小值为( )A .4B .4.8C .5.2D .6【分析】先由矩形的判定定理推知四边形PEAF 是矩形;连接PA ,则PA =EF ,所以要使EF ,即PA 最短,只需PA ⊥CB 即可;然后根据三角形的等积转换即可求得PA 的值.【解答】解:如图,连接PA .∵在△ABC 中,AB =6,AC =8,BC =10,∴BC 2=AB 2+AC 2,∴∠A =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F .∴∠AEP =∠AFP =90°,∴四边形PEAF 是矩形.∴AP =EF .∴当PA 最小时,EF 也最小,即当AP ⊥CB 时,PA 最小,∵12AB •AC =12BC •AP ,即AP =AB ⋅AC BC =6×810=4.8,∴线段EF 长的最小值为4.8;故选:B .9.(2022春•崇川区期末)如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .2B .3C .5D .6【分析】连接AE ,利用△ABE ≌△BCF 转化线段BF 得到BF +DE =AE +DE ,则通过作A 点关于BC 对称点H ,连接DH 交BC 于E 点,利用勾股定理求出DH 长即可.【解答】解:连接AE ,如图1,∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.又BE =CF ,∴△ABE ≌△BCF (SAS ).∴AE =BF .所以BF +DE 最小值等于AE +DE 最小值.作点A 关于BC 的对称点H 点,如图2,连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点.根据对称性可知AE =HE ,所以AE +DE =DH .在Rt △ADH 中,AD =1,AH =2,∴DH =AH 2+AD 2=5,∴BF +DE 最小值为5.故选:C .10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为( )A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是 3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于的一半可得OE=12第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为 62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A′D2+DC2=102,∴A′E+CG=A′C﹣EG=62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是 55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF 和△ABE 中,AD =AB ∠FAD =∠EAB AF =AE,∴△ADF ≌△ABE (SAS ),∴DF =BE ,作点D 关于AB 的对称点D ′,连接CD ′交AB 于点F ′,连接D ′F ,则DF =D ′F ,∴BE +CF =DF +CF =D ′F +CF ≥CD ′,∴当点F 与点F ′重合时,D ′F +CF 最小,最小值为CD ′的长,在Rt △CDD ′中,根据勾股定理得:CD ′=CD 2+DD′2=52+102=55,∴BE +CF 的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt △ABC 中,∠BAC =90°,且BA =12,AC =16,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 245 .【分析】由勾股定理求出BC 的长,再证明四边形DEAF 是矩形,可得EF =AD ,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD 、EF ,∵∠BAC =90°,且BA =9,AC =12,∴BC =AB 2+AC 2=122+162=20,∵DE ⊥AB ,DF ⊥AC ,∴∠DEA =∠DFA =∠BAC =90°,∴四边形DEAF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时,△ABC 的面积=12AB ×AC =12BC ×AD ,∴12×16=20AD ,∴AD =485∴EF 的最小值为485,∵点G 为四边形DEAF 对角线交点,∴GF =12EF =245;故答案为:245.。
【熟悉十二个基本问题】【问题1】作法图形原理在直线l上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.【问题4】作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短.四边形PQMN 周长的最小值为线段P 'P ''的长.【问题5】“造桥选址”作法图形原理直线m ∥n ,在m 、n ,将点A 向下平移MN 的长度单位得A ',连A 'B ,交n 于点N ,过N 作NM ⊥m 于M .两点之间线段最短.AM +MN +BN 的最小值为A 'B +MN .上分别求点M 、N ,使MN ⊥m ,且AM +MN +BN 的值最小.【问题6】作法图形原理在直线l 上求两点M 、N (M 在左),使aMN =,并使AM +MN+NB 的值最小.将点A 向右平移a 个长度单位得A ',作A '关于l 的对称点A '',连A ''B ,交直线l 于点N ,将N 点向左平移a 个单位得M .两点之间线段最短.AM +MN +BN 的最小值为A ''B +MN .【问题7】作法图形原理在1l 上求点A ,在2l 上求点B ,使PA +AB 值最小.作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交2l 于A .点到直线,垂线段最短.PA +AB 的最小值为线段P 'B 的长.【问题8】作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短.AM +MN +NB 的最小值为线段A 'B '的长.【问题9】作法图形原理在直线l 上求一点P ,使PB PA -的值最小.连AB ,作AB 的中垂线与直线l 的交点即为P .垂直平分上的点到线段两端点的距离相等.PB PA -=0.【问题10】作法图形原理作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .在直线l 上求一点P ,使PB PA -的值最大.PB PA -的最大值=AB .【问题11】作法图形原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '.PB PA -最大值=AB '.【问题12】“费马点”作法图形原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE相交于P,点P 即为所求.两点之间线段最短.PA +PB +PC 最小值=CD .将军饮马问题耳熟能详,大家都掌握得非常熟练了,我就仅举一例说明中考的考法,并留几个习题供大家练习例题1:(广州中考题)已知平面直角坐标系中两定点(1,0)A -、(40)B ,,抛物线22(0)y ax bx a =+-≠过点A B 、,顶点为C ,点(,)(0)P m n n <为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当APB ∠为钝角时,求m 的取值范围;(3)若3,2m >当APB ∠为直角时,将该抛物线向左或向右平移5(02t t <<个单位,点C 、P 平移后对应的点分别记为''C P 、,是否存在t ,使得首尾依次连接''A B P C 、、、所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.【分析】:第一问考察了求二函解析式与求顶点,但由于带这分数运算,所以计算并不简单,属于中等难度题目。
“最”集●平面几何中的最⋯⋯⋯⋯⋯⋯⋯01●几何的定与最⋯⋯⋯⋯⋯⋯⋯⋯⋯07●最短路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14● 称⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18●巧作“ 称点”妙解最⋯⋯⋯⋯⋯22●数学最的常用解法⋯⋯⋯⋯⋯⋯⋯26●求最⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29●有理数的一多解⋯⋯⋯⋯⋯⋯⋯⋯⋯34●4 道典⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37●平面几何中的最在平面几何中,我常常遇到各种求最大和最小的,有它和不等式系在一起,称最.如果把最和生活中的系起来,可以达到最、最和最高效率.下面介几个例.在平面几何中,当某几何元素在定条件,求某几何量(如段的度、形的面、角的度数)的最大或最小,称最。
最的解决方法通常有两种:(1)用几何性:① 三角形的三关系:两之和大于第三,两之差小于第三;② 两点段最短;③ 直外一点和直上各点的所有段中,垂段最短;④ 定中的所有弦中,直径最。
⑵运用代数法:① 运用配方法求二次三式的最;② 运用一元二次方程根的判式。
例 1、A、B 两点在直 l 的同,在直L 上取一点 P,使 PA+PB最小。
分析:在直 L 上任取一点 P’, A P’, BP’,在△ ABP’中 AP’+BP’> AB,如果 AP’+BP’= AB,则 P’必在线段 AB上,而线段AB 与直线 L 无交点,所以这种思路错误。
取点 A 关于直线 L 的对称点 A’,则 AP’= AP,在△ A’BP 中 A’P’+B’P’> A’B, 当 P’移到 A’B与直线 L 的交点处 P 点时A’P’+B’P’= A’B,所以这时 PA+PB最小。
1 已知 AB是半圆的直径,如果这个半圆是一块铁皮, ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形 ABDC的周长最大 ( 图 3- 91) ?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于 AB∥ CD,必有AC=BD.若设 CD=2y,AC=x,那么只须求梯形 ABDC的半周长 u=x+y+R的最大值即可.解作 DE⊥AB于 E,则2 2 2x =BD=AB·BE=2R· (R-y) =2R -2Ry,所以2 2所以求 u 的最大值,只须求 -x +2Rx+2R最大值即可.2222 2-x +2Rx+2R=3R-(x-R)≤ 3R,上式只有当 x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点 C, D,这时,梯形的底角恰为 60°和 120°.2 . 如图 3-92 是半圆与矩形结合而成的窗户,如果窗户的周长为8 米(m) ,怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+π x=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3.已知 P 点是半圆上一个动点,试问 P在什么位置时, PA+PB最大 ( 图 3-93) ?分析与解因为 P 点是半圆上的动点,当 P 近于 A 或 B 时,显然 PA+PB渐小,在极限状况 (P 与 A 重合时 ) 等于 AB.因此,猜想 P 在半圆弧中点时, PA+PB取最大值.设P 为半圆弧中点,连 PB,PA,延长 AP到 C,使 PC=PA,连 CB,则 CB是切线.为了证 PA+PB最大,我们在半圆弧上另取一点 P′,连 P′A,P′B,延长 AP′到C′,使P′C′=BP′,连 C′B,CC′,则∠ P′ C′ B=∠P′BC=∠ PCB=45°,所以 A,B,C′, C 四点共圆,所以∠ CC′A=∠CBA=90°,所以在△ ACC′中, AC>AC′,即 PA+PB>P′A+P′B.4如图 3- 94,在直角△ ABC中,AD是斜边上的高, M,N 分别是△ ABD,△ ACD的内心,直证连结 AM, BM,DM,AN, DN,CN.因为在△ ABC中,∠ A=90°, AD⊥BC于 D,所以∠ ABD=∠ DAC,∠ ADB=∠ADC=90°.因为 M,N分别是△ ABD和△ ACD的内心,所以∠1=∠ 2=45°,∠ 3=∠4,所以△ ADN∽△ BDM,又因为∠ MDN=90° =∠ADB,所以△ MDN∽△ BDA,所以∠BAD=∠MND.由于∠ BAD=∠ LCD,所以∠MND=∠LCD,所以 D, C, L, N四点共圆,所以∠ALK=∠NDC=45°.同理,∠ AKL=∠1=45°,所以 AK=AL.因为△AKM≌△ ADM,所以AK=AD=AL.而而从而所以 S △ABC≥S△AKL.5.如图 3-95.已知在正三角形 ABC内( 包括边上 ) 有两点 P,Q.求证: PQ≤ AB.证设过 P,Q的直线与 AB,AC分别交于 P1,Q1,连结 P1C,显然, PQ≤P1Q1.因为∠ AQ1P1+∠ P1 Q1 C=180°,所以∠ AQ1P1和∠ P1Q1 C中至少有一个直角或钝角.若∠ AQ1P1≥90°,则PQ ≤ P1Q1≤AP1≤AB;若∠ P1Q1C≥90°,则PQ ≤ P1Q1≤P1C.同理,∠ AP1C 和∠ BP1C 中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P 1C≤BC=AB.对于 P,Q两点的其他位置也可作类似的讨论,因此,PQ≤ AB.6.设△ ABC是边长为 6 的正三角形,过顶点 A 引直线 l ,顶点 B,C到 l 的距离设为 d 1,d2,求 d1+d2的最大值 (1992 年上海初中赛题 ) .解如图 3-96,延长 BA到 B′,使 AB′=AB,连 B′C,则过顶点 A 的直线 l 或者与BC相交,或者与 B′C相交.以下分两种情况讨论.(1)若 l 与 BC相交于 D,则所以只有当 l ⊥BC时,取等号.(2)若 l ′与 B′C相交于 D′,则所以上式只有 l ′⊥ B′C 时,等号成立.7.如图 3-97.已知直角△ AOB中,直角顶点 O在单位圆心上,斜边与单位圆相切,延长AO, BO分别与单位圆交于 C,D.试求四边形 ABCD面积的最小值.解设⊙ O与 AB相切于 E,有 OE=1,从而即AB≥ 2.当 AO=BO时, AB有最小值 2.从而所以,当 AO=OB时,四边形 ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、 极端位置,直接计算等方法, 先探求出定值, 再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 ( 如线段长度、角度大小、图形面积 ) 等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理 ( 公理 ) 法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性 ( 目标不明确 ) ,解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 【例题就解】【例 1】 如图,已知 AB=10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作等边△ APC 和等边△ BPD ,则 CD 长度的最小值为 .思路点拨 如图,作 CC ′⊥ AB 于 C ,DD ′⊥ AB 于 D ′,2221DQ ⊥CC ′, CD=DQ+CQ , DQ= AB 一常数,当 CQ 越小, CD 越小,2本例也可设 AP=x ,则 PB=10 x ,从代数角度探求 CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1) 中点处、垂直位置关系等;(2) 端点处、临界位置等.【例 2】 如图,圆的半径等于正三角形 ABC 的高,此圆在沿底边 AB 滚动,切点为T ,⌒MTN 为的度数()圆交 AC 、BC 于 M 、N ,则对于所有可能的圆的位置而言, A .从 30°到 60°变动 B .从 60°到 90°变动C .保持 30°不变D .保持 60°不变思路点拨 先考虑当圆心在正三角形的顶点 C 时, 其弧的度数,再证明一般情形,从而作出判断. 注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例 3】 如图,已知平行四边形 ABCD ,AB= ,BC=b ( a > b ) ,P 为 AB 边上的一动点,a直线 DP 交 CB 的延长线于 Q ,求 AP+BQ 的最小值.思路点拨xx的代数式表示, 运用不等式 a 2b 22ab( 当设 AP= ,把 AP 、BQ 分别用且仅当 a b 时取等号 ) 来求最小值.7AC 与 BM 相交于 K ,直线 CB 与 AM 相交于点 N ,证明:线段 AK 和 BN 的乘积与 M 点的选择无关.思路点拨 即要证 AK · BN 是一个定值,在图形中△ ABC 的边长是一个定值,说明 AK ·BN 与 AB 有关,从图知 AB 为2△ ABM 与△ ANB 的公共边,作一个大胆的猜想, AK ·BN=AB ,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例 5】 已知△ XYZ 是直角边长为 1 的等腰直角三角形 ( ∠Z=90°) ,它的三个顶点分别在等腰 Rt △ABC(∠C=90° ) 的三边上,求△ ABC 直角边长的最大可能值.思路点拨 顶点 Z 在斜边上或直角边 CA(或 CB)上,当顶点 Z 在斜边 AB 上时,取 xy 的中点,通过几何不等关系求出直角边的最大值, 当顶点 Z 在(AC 或 CB)上时,设 CX=x ,CZ=y ,建立 x , y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题, 即适当地选取变量, 建立几何元素间的函数、 方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1) 利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2) 构造二次函数求几何最值.学力训练1.如图,正方形 ABCD 的边长为 1,点 P 为边 BC 上任意一点(可与 B 点或 C 点重合),分别过 B 、 C 、 D 作射线 AP 的垂线,垂足分别是 B ′、 C ′、 D ′,则 BB ′+CC ′ +DD ′的最大值为 ,最小值为 .2.如图,∠ AOB=45°,角内有一点 P , PO=10,在角的两边上有两点 Q , R(均不同于 点 O),则△ PQR 的周长的最小值为 .3.如图,两点 A 、 B 在直线 MN 外的同侧, A 到 MN 的距离 AC=8, B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则 PA PB 的最大值等于 .4.如图,A 点是半圆上一个三等分点, B 点是弧 AN 的中点, P 点是直径 MN 上一动点,⊙ O 的半径为 1,则 AP+BP 的最小值为 ( )A .1B.2C . 2D. 3 125.如图,圆柱的轴截面 ABCD 是边长为 4 的正方形,动点 P 从 A 点出发,沿看圆柱的 侧面移动到 BC 的中点 S 的最短距离是 ( )A . 2 1 2B . 2 1 4 2C . 4 1 2D . 2 4 26.如图、已知矩形 ABCD ,R ,P 户分别是 DC 、BC 上的点, E ,F 分别是 AP 、RP 的中点,当 P 在 BC上从 B 向 C 移动而 R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段 EF的长不改变D.线段EF的长不能确定7.如图,点 C 是线段 AB上的任意一点 (C 点不与 A、B 点重合 ) ,分别以 AC、BC为边在直线 AB的同侧作等边三角形 ACD和等边三角形 BCE, AE与 CD相交于点 M,BD与 CE 相交于点 N.(1)求证: MN∥ AB;(2) 若 AB的长为 l0cm,当点 C 在线段 AB上移动时,是否存在这样的一点 C,使线段MN的长度最长 ?若存在,请确定 C 点的位置并求出 MN的长;若不存在,请说明理由.(2002 年云南省中考题 )8.如图,定长的弦 ST在一个以 AB为直径的半圆上滑动, M是 ST 的中点, P 是 S 对AB作垂线的垂足,求证:不管 ST 滑到什么位置,∠ SPM是一定角.9.已知△ ABC是⊙ O的内接三角形, BT为⊙ O的切线, B 为切点, P 为直线 AB上一点,过点 P 作 BC的平行线交直线 BT 于点 E,交直线 AC于点 F.(1)当点 P 在线段 AB上时 ( 如图 ) ,求证: PA·PB=PE·PF;(2)当点 P 为线段 BA延长线上一点时,第 (1) 题的结论还成立吗 ?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为 4 的正方形截去一角成为五边形 ABCDE,其中 AF=2,BF=l,在AB上的一点 P,使矩形 PNDM有最大面积,则矩形 PNDM的面积最大值是 ( ) A.8 B.12C.25D.14211.如图,AB是半圆的直径,线段 CA上 AB于点 A,线段 DB上 AB于点 B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形 ACPDB的最大面积是 ( )A.22B.12C.32D.3 212.如图,在△ ABC中, BC=5,AC=12, AB=13,在边 AB、 AC上分别取点 D、E,使线段 DE将△ ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图, ABCD是一个边长为 1 的正方形, U、V 分别是 AB、CD上的点, AV与 DU 相交于点 P, BV与 CU相交于点 Q.求四边形 PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0 米的圆,问如何设计 ( 求出两喷水器之间的距离和矩形的长、宽 ) ,才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场( 平面图如图所示 ) .其中,正方形 MNPQ与四个相同矩形 ( 图中阴影部分 ) 的面积的和为800 平方米.的代数式表示y 为.(1) 设矩形的边 AB= ( 米) ,AM=y ( 米) ,用含xx(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为 2100 元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为 105 元;在四个三角形区域上铺设草坪,平均每平方米造价为 40 元.①设该工程的总造价为 S( 元) ,求 S 关于工的函数关系式.②若该工程的银行贷款为 235000 元,仅靠银行贷款能否完成该工程的建设任务 ?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金 73000 元,问能否完成该工程的建设任务 ?若能,请列出所有可能的设计方案;若不能,请说明理由.( 镇江市中考题 )16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积( 精确到21m) .参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短” 为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上 A、B二点之间的最短路线如何求呢?我们用过A、B 两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上 A、 B两点之间不超过半个圆周的弧线就是所求的 A、 B 两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从 A 地出发,去 B 地取情报.在去 B 地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点 A 关于河岸的对称点 A ′,即作 AA′垂直于河岸,与河岸交于点 C,且使 AC=A′C,连接 A′B 交河岸于一点 P,这时 P 点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P 点的另一点 P′,连接 P′A,P′B, P ′ A′.∵P′A+P′B=P′A′+P′B> A′B=PA′ +PB=PA+PB,而这里不等式 P ′ A′+ P′ B> A′ B 成立的理由是连接两点的折线段大于直线段,所以 PA+PB是最短路线.此例利用对称性把折线 APB化成了易求的另一条最短路线即直线段 A′ B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上 A 点,爬到邻近的另一面墙壁β上的 B 点捕蛾,它解:我们假想把含B 点的墙β顺时针旋转90°(如下页右图),使它和含A 点的墙α处在同一平面上,此时β转过来的位置记为β′,B 点的位置记为B′,则A、B′之间最短路线应该是线段 AB′,设这条线段与墙棱线交于一点 P,那么,折线 4PB就是从 A 点沿着两扇墙面走到 B 点的最短路线.证明:在墙棱上任取异于 P 点的 P′点,若沿折线 AP′ B走,也就是沿在墙转 90°后的路线 AP′ B′走都比直线段 APB′长,所以折线 APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体 ABCD— A′B′C′D′中, AB=4,A′ A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到 B 点,问这只小虫怎样爬距离最短?(见图( 1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、 B 两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D ′ B 间的最短路线就是连结这两点的直线段,这样,从 D′点出发,到 B 点共有六条路线供选择.①从 D′点出发,经过上底面然后进入前侧面到达 B 点,将这两个面摊开在一个平面上(上页图( 2)),这时在这个平面上 D′、 B 间的最短路线距离就是连接 D′、 B 两点的直线段,它是直角三角形 ABD′的斜边,根据勾股定理,D′ B2 =D′A2+AB2=( 1+2)2+42 =25,∴ D′ B=5.②容易知道,从D′出发经过后侧面再进入下底面到达 B 点的最短距离也是5.③从 D′点出发,经过左侧面,然后进入前侧面到达 B 点.将这两个面摊开在同一平面上,同理求得在这个平面上 D′、 B 两点间的最短路线(上页图( 3)),有:D′ B2=22+(1+4)2 =29.④容易知道,从 D′出发经过后侧面再进入右侧面到达 B 点的最短距离的平方也是29.⑤从 D′点出发,经过左侧面,然后进入下底面到达 B 点,将这两个平面摊开在同一平D′ B2 =( 2+4)2+12=37.⑥容易知道,从 D′出发经过上侧面再进入右侧面到达 B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达 B 点(上页图( 2)),或者经过后侧面然后进入下底面到达 B 点的路线是最短路线,它的长度是 5 个单位长度.利用例 2、例 3 中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上 A 和 B 两点之间的最短路线问题(下左图),同样可以把 A、 B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接 A、B 成线段 AP1P2B,P1、P2 是线段 AB与两条侧棱线的交点,则折线AP1P2B就是 AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在 A 点,绕一周之后终点为 B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线 AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时, A′、 B′分别与 A、B 重合),连接 AB′,再将上页右图还原成上页左图的形状,则 AB′在圆柱面上形成的曲线就是连接 AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图, A、 B 在同一母线上, B 为 AO的中点,试求以 A 为起点,以 B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时, A′、 B′分别与 A、 B 重合),在扇形中连 AB′,则将扇形还原成圆锥之后, AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的 A 点爬到桶内的 B 点去寻找食物,已知A 点沿母线到桶口C 点的距离是12 厘米,B 点沿母线到桶口D 点的距离是8 厘米,而 C、D两点之间的(桶口)弧长是 15 厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于 B 点在里面,不便于作图,设想将 BD延长到 F,使 DF=BD,即以直线 CD为对称轴,作出点 B 的对称点 F,用 F 代替 B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长 BD到 F,使 DF=BD,即作点 B 关于直线 CD 的对称点 F,连结 AF,交桶口沿线 CD于 O.因为桶口沿线 CD是 B 、F 的对称轴,所以 OB=OF,而 A、F 之间的最短线路是直线段AF,又AF=AO+OF,那么A、B 之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O 点后,转向桶内 B 点爬去.延长 AC到 E,使 CE=DF,易知△ AEF是直角三角形, AF 是斜边, EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2=( 12+8)2+ 152= 625=252,解得 AF=25.即蚂蚁爬行的最短路程是25 厘米.例7 A 、B 两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使 A、 B 两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从 A 点作河岸的垂线,并在垂线上取 AC等于河宽,就相当于把河宽预先扣除,找出 B、C 两点之间的最短路线,问题就可以解决.解:如上图,过 A 点作河岸的垂线,在垂线上截取 AC的长为河宽,连结 BC交河岸于 D 点,作 DE垂直于河岸,交对岸于 E 点, D、E 两点就是使两村行程最短的架桥地点.即两村的最短路程是 AE+ED+ DB.例8 在河中有 A、 B 两岛(如下图),六年级一班组织一次划船比赛,规则要求船从 A 岛出发,必须先划到甲岸,又到乙岸,再到 B 岛,最后回到 A 岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作 A、B 关于甲岸线、乙岸线的对称点 A′和 B′,连结 A′、B′分别交甲岸线、乙岸线于 E、F 两点,则 A→ E→ F→ B→ A 是最短路线,即最短路程为: AE+EF+FB+BA.证明:由对称性可知路线 A→ E→F→B 的长度恰等于线段 A′ B′的长度.而从 A 岛到甲岸,又到乙岸,再到 B 岛的任意的另一条路线,利用对称方法都可以化成一条连接 A′、B′之间的折线,它们的长度都大于线段 A ′B′,例如上图中用“·—·—·”表示的路线A→E′→ F′→ B 的长度等于折线 AE′F′ B 的长度,它大于 A′B′的长度,所以 A→E → F→ B→ A 是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。
初中数学最值问题专题1 将军饮马模型与最值问题【模型导入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB 当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)B 将军军营河P【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。
考虑PQ 是条定线段,故只需考虑PM +MN +NQ 最小值即可,类似,分别作点P 、Q 关于OA 、OB 对称,化折线段PM +MN +NQ 为P ’M +MN +NQ ’,当P ’、M 、N 、Q ’共线时,四边形PMNQ 的周长最小。
考查知识点:1、“两点之间线段最短”(2、代数计算最值问题 问题原型:饮马问题造桥选址问题(完全平方公式 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件 问题 方法 中考数学最值问题总结 ,“垂线段最短”,“点关于线对称”,“线段的平移”。
3、二次函数中最值问题) 配方求多项式取值 二次函数顶点)圆、坐标轴、抛物线等。
如下左图, A 、B 是直线I 同旁的两个定点.在直线I 上确定一点P ,使PA PB 的值最小. 作点 A 关于直线I 的对称点A ,连结AB 交I 于 点P ,则PA PB AB 的值最小 例1、如图,四边形 ABCD 是正方形,△ ABE 是等边三 角形,M 为对角线BD (不含B 点) 上任意一点,将 BM 绕点B 逆时针旋转60°得到BN ,连接 EN 、AM 、CM . (1) 求证:△ AMB ENB ; (2) ①当M 点在何处时,AM+CM 的值最小;②当 M 点在何处时,AM+BM+CM 的值最小,并说明理由;(3) 当AM+BM+CM 的最小值为 ■■ ■■■ I 时,求正方形的边长。
例2、如图13,抛物线y=ax2+ bx + c(a丰(的顶点为(1,4 ),交x轴于A B,交y轴于D, 其中B点的坐标为(3,0 )(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小•若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由•(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN// BD,交线段AD于点N,连接MD使厶DN WA BMD若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b >2a且点F在AD上(以下问题的结果可用a,b表示)(1) 求DBF;(2) 把正方形AEFG绕点A逆时针方向旋转45°得图2,求图2中的S^DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
一次函数综合最值问题“将军饮马、胡不归”一、解答题1已知一次函数y =4kx +5k +132k ≠0 .(1)无论k 为何值,函数图象必过定点,求该定点的坐标;(2)如图1,当k =-12时,一次函数y =4kx +5k +132的图象交x 轴,y 轴于A 、B 两点,点Q 是直线l 2:y =x +1上一点,若S △ABQ =6,求Q 点的坐标;(3)如图2,在(2)的条件下,直线l 2:y =x +1交AB 于点P ,C 点在x 轴负半轴上,且S △ABC =203,动点M 的坐标为a ,a ,求CM +MP 的最小值.【答案】(1)-54,132(2)3,4 或-1,0(3)1093【分析】(1)整理得y =4x +5 k +132k ≠0 ,根据题意,得当4x +5=0,求解得函数图象必过定点-54,132 ;(2)确定解析式y =4kx +5k +132为y =-2x +4,点A 坐标为2,0 ,点B 坐标为0,4 ;设点Q 坐标为m ,m +1 ,分情况讨论:①当点Q 位于AB 右侧时,根据题意得S △AOQ +S △BOQ =S △AOB +S △ABQ ,列方程解得m =3,点Q 坐标为3,4 ;②当点Q 位于AB 左侧时,过点Q 作QN ∥x 轴,交AB 于点N ,点N 的纵坐标为(m +1),QN =-32(m -1),于是S △ABQ =S △AQN +S △BQN =12×-32(m -1) ×4=6,解得m =-1,m +1=0,Q 坐标为-1,0 ;(3)联立得y =-2x +4y =x +1,得P 1,2 ,设C c ,0 ,由S △ABC =203,求得C 的坐标为-43,0 ,点M 在直线y =x 上,点C 关于直线y =x 对称的点F 的坐标为0,-43,连接MF ,PF ,则MF =MC ,CM +MP =FM +MP ≥PF ,作PG ⊥y 轴,垂足为G ,在Rt △PGF 中,PF =1093,所以CM +MD 的最小值为1093.【详解】(1)解:整理得y =4x +5 k +132k ≠0 ∵不论k 取何值时,上式都成立∴当4x +5=0,即x =-54时,y =132∴无论k 为何值,函数图象必过定点-54,132;(2)当k =-12时,一次函数y =4kx +5k +132为y =-2x +4,当x =0时,y =4;当y =0时,-2x +4=0,x =2;∴点A 坐标为2,0 ;点B 坐标为0,4 ;∵点Q 在直线l 2:y =x +1上,∴设点Q 坐标为m ,m +1 ;①如图,当点Q 位于AB 右侧时,根据题意得S △AOQ +S △BOQ =S △AOB +S △ABQ .∴12×2m +1 +12×4m =12×2×4+6.解得m =3.点Q 坐标为3,4 ;②如图,当点Q 位于AB 左侧时,此时S △ABQ =6,过点Q 作QN ∥x 轴,交AB 于点N ,则点N 的纵坐标为(m +1),由y =-2x +4,得m +1=-2x +4,x =-12(m -3),∴QN =-12(m -3)-m =-32(m -1).∴S △ABQ =12QN ∙y B -y A =12×-32(m -1) ×4=6,解得m =-1,m +1=0,∴Q 恰好位于x 轴上,此时Q 坐标为-1,0 ;综上所述:若S △ABQ =6,Q 点的坐标为3,4 或-1,0 ;(3)由(2)可得直线AB :y =-2x +4,联立得y =-2x +4y =x +1 ,解得x =1y =2 .∴P 1,2 ∵点C 在x 轴的负半轴,设C c ,0则AC =2-c ,∵OB =4,S △ABC =203∴122-c ×4=203解得c =-43∴点C 的坐标为-43,0∵动点M 的坐标为a ,a .∴点M 在直线y =x 上.∴点C 关于直线y =x 对称的点F 的坐标为0,-43 ,连接MF ,PF ,则MF =MC ,CM +MP =FM +MP ≥PF则PF 为CM +MP 的最小值;作PG ⊥y 轴,垂足为G ,在Rt △PGF 中,PF =PG 2+FG 2=12+2+43 2=1093∴CM +MD 的最小值为1093.【点睛】本题考查一次函数,图象交点求解,轴对称;结合题设条件,作线段的等量转移,构造直角三角形求解线段是解题的关键.2已知一次函数y =4kx +5k +132(k ≠0).(1)无论k 为何值,函数图象必过定点,则该定点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点T 是l 2上一点,若S △ABT =9,求T 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45°,点M 是x 轴上一动点,连接BM ,并将线段BM 绕点M 顺时针旋转90°得到MQ ,①求点C 的坐标;②CQ +QD 的最小值为.【答案】(1)-54,132(2)T 点的坐标为4,5 或-2,-1 ;(3)-43,0 ,5653【分析】(1)将一次函数变形4kx -y =-5k -132,根据图像过定点,得到与k 值无关,求出k ,进而求出定点坐标;(2)求出直线解析式,设点T 坐标为m ,m +1 ;分点T 在AB 两侧分类讨论即可;(3)先根据题意,求出点D 坐标,根据将线段BM 绕点M 顺时针旋转90°得到MQ ,得到点Q 所在直线解析式,求出点C 对称点C ,连接C D ,求出C D 的长即可.【详解】(1)解:一次函数y =4kx +5k +132=k 4x +5 +132,∴4x +5=0时,y =132,解得:x =-54,y =132∴无论k 为何值,函数y =4kx +5k +132k ≠0 图像必过定点-54,132 ;(2)当k =-12时,一次函数y =4kx +5k +132为y =-2x +4,当x =0时,y =4;当y =0,时,-2x +4=0,x =2;∴点A 坐标为2,0;点B 坐标为0,4 ;∵点T 在直线l 2:y =x +1上,∴设点T 坐标为m ,m +1 ;①如图,当点T 位于AB 右侧时,连接OT ,根据题意得S △AOT +S △BOT =S △AOB +S △ABT∴12×2×m +1 +12×4m =12×2×4+9解得m =4,∴点T 坐标为4,5 ;②如图,当点T 位于AB 左侧时,根据题意得S △AOT +S △BOT +S △AOB =S △ABT∴12×2×-m -1 +12×4×-m +12×2×4=9解得m =-2,∴点T 坐标为-2,-1 ;综上所述:若S △ABT =9,T 点的坐标为4,5 或-2,-1 ;(3)如图,将△OAB 沿直线AB 翻折,得到△NAB ,将△OCB 沿直线BC 翻折,得到△HCB ,延长HC 、NA 交于点E ,则四边形BHEN 为正方形,∴BN =BH =HE =NE =OB =4,NA =OA =2,AE =NE -AN =2,设OC =n ,则HC =n ,CE =4-n ,在Rt △ACE 中,22+4-n 2=2+n 2,解得n =43,所以点C 坐标为-43,0 ,②解:∵D 点在直线上y =-2x +4上,横坐标为1,∴y =-2×1+4=2,所以点D 坐标为(1,2);设动点M 的坐标为a ,0 ,如图所示,过点Q 作QH ⊥x 轴,∵将线段BM 绕点M 顺时针旋转90°得到MQ ,∴BM =QM ,∠BMQ =90°,∴∠OMB +∠QMH =90°又∠BOM =∠MHQ =90°,∴∠OMB +∠MBO =90°,∴∠QMH =∠MBO ,∴△QMH ≌△∠MBO ,∴QH =OM ,MH =OB =4∴Q a +4,a∴点Q 在直线y =x -4上运动,如图所示,设直线y =x -4与x 轴交于点K ,与y 轴交与点G ,则K 4,0,∴CK=43+4=163,作C K⊥x轴,且C K=CK=16 3,则△CC K是等腰直角三角形,KG⊥CC ,∴则C ,C关于y=x-4的对称,则C Q+QD=CQ+QD≥C D,此时如图所示,则C 4,16 3∵D1,2∴C D=4-12+163+22=5653故答案为:565 3.【点睛】本题考查了一次函数与面积问题,求一次函数点的坐标,根据点的特点确定函数解析式,将军饮马问题,半角模型等知识,综合性强,难度较大.解题的关键是要深刻理解函数的意义,能从复杂的图形中确定相应的解题模型.3如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x2 2,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.【答案】(1)AB=25(2)y=-13x+2(3)存在,最小值是52【分析】(1)求出点A、B的坐标,再根据勾股定理求解即可;(2)先证明△ACF≌△BAO,得出点C坐标,再根据待定系数法求解即可;(3)作点C关于AB的对称点M,连接MD交直线AB于点P,则此时PC+PD有最小值,即为MD的长,根据中点坐标公式分别求出点D、M的坐标,再根据两点距离公式求解.【详解】(1)对于y=12x+2,令x=0,则y=2,令y=0,则12x+2=0,解得x=-4,∴A-4,0,B0,2,∴AB=22+42=25;(2)作CF⊥x轴于点F,如图,则∠CFA=∠AOB=90°,∵等腰Rt △ABC ,∠BAC =90°,∴AC =AB ,∠ACF =90°-∠CAF =∠BAO ,∴△ACF ≌△BAO ,∴CF =OA =4,AF =BO =2,∴C -6,4 ,设直线BC 的解析式为y =mx +n ,则-6m +n =4n =2 ,解得m =-13n =2 ,∴直线BC 的解析式为y =-13x +2;(3)∵D 是BC 中点,∴点D 的坐标是-3,3 ,作点C 关于AB 的对称点M ,连接MD 交直线AB 于点P ,则此时PC +PD有最小值,且PC +PD =PD +PM =MD ,即PC +PD 的最小值是MD 的长,∵∠CAB =90°,∴C 、A 、M 三点共线,且A 是CM 中点,设M p ,q ,则-6+p 2=-4,4+q 2=0,解得p =-2,q =-4,∴M -2,-4 ,∴MD =-2+3 2+-4-3 2=52,故PC +PD 存在最小值,是52.【点睛】本题考查了待定系数法求一次函数的解析式、全等三角形的判定和性质、利用轴对称的性质求线段和的最小值以及两点间的距离公式等知识,具有一定的综合性,熟练掌握相关知识、明确求解的方法是解题关键.4已知一次函数y =kx +b (k ≠0)与x 轴交于点A (3,0),且过点7,8 ,回答下列问题.(1)求该一次函数解析式;(2)一次函数的解析式也称作该直线的斜截式方程,如解析式y =kx +b 我们只需要将y 向右移项就可以得到kx -y +b =0,将x 前的系数k 替代为未知数A ,将y 前的系数1替代为未知数B ,将常数项b 替代为未知数C ,即可得到方程Ax +By +C =0,该二元一次方程也称为直线的一般方程(其中A 一般为非负整数,且A 、B 不能同时为0).一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点P x 0,y 0 到直线Ax +By +C =0的距离d 公式是:d =Ax 0+By 0+CA 2+B 2如:求:点P 1,1 到直线y =-13x +32的距离.解:先将该解析式整理为一般方程:(I )移项-13x -y +32=0 (II )将A 化为非负整数即得一般式方程:2x +6y -9=0由点到直线的距离公式,得d =2×1+6×1-9 22+62=140=1020①根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.已知(1)中的解析式代表的直线与直线2x-y+9=0平行,试求这两条直线间距离;②已知一动点P t2,t(t为未知实数),记h为点P到直线3x-4y+7=0的距离(点P不在该直线上),求h的最小值.【答案】(1)y=2x-6;(2)①35;②1715.【分析】(1)利用待定系数法即可求出该一次函数解析式;(2)根据平行线间距离处处相等可知,点A到直线2x-y+9=0的距离即为两条平行线间距离,再利用点到直线的距离公式,即可求出这两条直线间距离;(3)利用点到直线的距离公式,得到h=3t2-4t+75,令m=3t2-4t+7,利用二次函数的性质,求得最小值,进而即可求出h的最小值.【详解】(1)解:∵一次函数y=kx+b(k≠0)与x轴交于点A(3,0),且过点7,8,则3k+b=07k+b=8,解得:k=2b=-6,∴该一次函数解析式为y=2x-6;(2)解:①∵一次函数解析式为y=2x-6,整理得:2x-y-6=0,∵点A(3,0)在直线y=2x-6,∴点A到直线2x-y+9=0的距离即为两条平行线间距离,将点A代入距离公式,得:d=2×3-0+922+-12=155=35,∴这两条直线间距离为35;②将点P t2,t代入距离公式,得:h=3t2-4t+732+-42=3t2-4t+75,令m=3t2-4t+7=3t-2 32+173,∴当t=23时,m有最小值为173>0,∴h的最小值为1735=1715.【点睛】本题考查了待定系数法求一次函数解析式,二次函数的性质等知识,读懂题意,掌握点到直线的距离公式是解题关键.5如图,一次函数y=kx+b的图象交x轴于点A,OA=4,与正比例函数y=3x的图象交于点B,B 点的横坐标为1.(1)求一次函数y =kx +b 的解析式;(2)若点C 在y 轴上,且满足S △BOC =12S △AOB ,求点C 的坐标;(3)若点D 4,-2 ,点P 是y 轴上的一个动点,连接BD ,PB ,PD ,是否存在点P ,使得△PBD 的周长有最小值?若存在,请直接写出△PBD 周长的最小值.【答案】(1)y =-x +4(2)C 0,6 或C 0,-6(3)存在,52+34【分析】(1)根据待定系数法求出一次函数解析式即可;(2)设点C 的坐标为0,t ,则OC =t ,再根据点B 的坐标,得出x B =1,y B =3,再根据三角形的面积公式,得出S △BOC =t ×12=t 2,S △AOB =4×32=6,再根据题意,列出方程,解出即可得出答案;(3)根据两点间的距离公式,得出BD =34,再根据三角形的周长,得出要使△PBD 周长的最小值,只需求PB +PD 的最小值,作点B 关于y 轴的对称点M ,则M 的坐标为-1,3 ,连接DM ,根据线段最短,得出DM 为PB +PD 的最小值,再根据两点间的距离公式,计算得出DM =52,再根据三角形的周长公式,计算即可.【详解】(1)解:∵点B 是y =3x 的图象上的点,横坐标为1,∴点B 坐标为1,3 .∵OA =4,∴点A 坐标为4,0 .将A ,B 两点坐标分别代入y =kx +b ,得0=4k +b 3=k +b ,解得k =-1b =4 ,∴一次函数的解析式为y =-x +4;(2)解:设点C 的坐标为0,t ,则OC =t ,∵B 1,3 ,∴x B =1,y B =3,∵OA =4,∴S △BOC =t ×12=t 2,S △AOB =4×32=6,∵S △BOC =12S △AOB ,∴t 2=12×6,∴t =6,∴t =6或t =-6,∴C 0,6 或C 0,-6 ;(3)解:存在点P ,使得△PBD 的周长有最小值,理由如下:∵B 1,3 ,D 4,-2 ,∴BD =1-4 2+3+2 2=34,∵△PBD 的周长=PB +PD +BD ,∴要求△PBD 周长的最小值,只需求PB +PD 的最小值.如图,作点B关于y轴的对称点M,则M的坐标为-1,3,连接DM,则PB+PD≥DM,即DM为PB+PD的最小值.∴DM=-1-42+3+22=50=52,∴△PBD周长的最小值为:PB+PD+BD=52+34.【点睛】本题考查了求一次函数解析式、坐标与图形、两点间的距离、点关于坐标轴的轴对称点、线段最短,解本题的关键在熟练掌握两点之间的距离公式.6在平面直角坐标系xoy中,一次函数y=34x+3的图像分别与x轴、y轴交于A、B两点,点C为x轴正半轴上的一个动点,设点C的横坐标为t.(1)求A、B两点的坐标;(2)点D为平面直角坐标系xoy中一点,且与点A、B、C构成平行四边形ABCD.①若平行四边形ABCD是矩形,求t的值;②在点C运动的过程中,点D的纵坐标是否发生变化,若不变,求出点D的纵坐标;若变化,说明理由;③当t为何值时,BC+BD的值最小,请直接写出此时t的值及BC+BD的最小值.【答案】(1)A(-4,0),B(0,3)(2)①94;②点D的纵坐标不变,是-3;③t=2时,BC+BD最小值为9【分析】(1)根据坐标轴上点的特点直接代值求解即可;(2)①矩形可知90°,证明相似三角形后直接通过边的关系列方程求解即可;②根据平行四边形的平移规律直接写出D点纵坐标即可;③求最短路径的题,与造桥选址类似,平移后三点共线即为最小值.【详解】(1)y=34x+3中,令x=0,则y=3令y=0,则x=-4∴A(-4,0),B(0,3)(2)①若平行四边形ABCD是矩形则BC⊥AB∵AO⊥BO∴△ABO∽△BCO∴OB OA =OC OB∵A(-4,0),B(0,3)∴OA=4,OB=3∴OC=t=94;②点D的纵坐标不变,∵A、B、C构成平行四边形ABCD.A(-4,0),B(0,3),C(t,0)∴A向上平移3个单位长度得到B,则C向下平移3个单位长度得到D∴D点纵坐标为-3.③将△BCD平移至△C BA∴C (-t,6),D(t-4,-3)∴(BC+BD)min=DC =(-t-t+4)2+(6+3)2=(2t-4)2+81,当t=2时,(BC+BD)min=81=9【点睛】此题考查一次函数与相似三角形的综合题型,解题关键是找到相似的三角形,得到边长之间的数量关系,难点是判断此题为造桥选址的同类型题.7已知,一次函数y=(2-t)x+4与y=-(t+1)x-2的图像相交于点P,分别与y轴相交于点A、B.其中t为常数,t≠2且t≠-1.(1)求线段AB的长;(2)试探索△ABP的面积是否是一个定值?若是,求出△ABP的面积;若不是,请说明理由;(3)当t为何值时,△ABP的周长最小,并求出△ABP周长的最小值.【答案】(1)6(2)是,6(3)t =12,△ABP 周长最小值为213+6【分析】(1)分别令x =0,求出y 值,得到A 和B 的坐标,从而可得AB 的长;(2)求出点P 坐标,利用三角形面积公式求出△ABP 的面积即可;(3)画出图形,分析得出要△ABP 的周长最小,则要AP +BP 最小,作点A 关于直线x =-2对称的点A-4,4 ,连接A B ,找到此时点P 的位置,求出直线AB 的表达式,可得点P 坐标,可得t 值,再根据点的坐标求出周长的最小值.【详解】(1)解:在y =(2-t )x +4中,令x =0,则y =4,在y =-(t +1)x -2中,令x =0,则y =-2,∴A 0,4 ,B 0,-2 ,∴AB =4--2 =6;(2)∵图像相交于点P ,∴令(2-t )x +4=-(t +1)x -2,解得:x =-2,代入y =(2-t )x +4中,y =-22-t +4=2t ,∴P -2,2t ,∴S △ABP =12×x P ×AB =12×-2 ×6=6;(3)如图,∵P -2,2t ,∴点P 在直线x =-2上,若要△ABP 的周长最小,而AB =6,∴当AP +BP 最小即可,作点A 关于直线x =-2对称的点A -4,4 ,连接A B ,与直线x =-2交于点P ,此时AP +BP ,设直线A B 的表达式为y =kx +b ,则4=-4k +b -2=b ,解得:k =-32b =-2,∴直线A B 的表达式为y =-32x -2,令x =-2,则y =1,即P -2,1 ,则2t =1,解得:t =12,此时AP =22+32=13,BP =22+32=13,∴△ABP 的周长最小值为PA +PB +AB =213+6.【点睛】本题考查了一次函数综合,最短路径问题,勾股定理,解题的关键是注意(3)中分析出要△ABP 的周长最小,则要AP +BP 最小.8如图1,已知一次函数y =x +3与x 轴,y 轴分别交于B 点,A 点,x 正半轴上有一点C ,∠ACO =60°,以A ,B ,C 为顶点作平行四边形ABCD .(1)求C点坐标.(2)如图2,将直线AB沿y轴翻折,翻折后的直线交CD于E点,在y轴上有一个动点P,x轴上有一动点Q,当DP+PQ+QE取得最小值时,求此时(DP+PQ+QE)2的值.(3)如图3,将△AOC向左平移使得点C与坐标原点O重合,A的对应点为A ,O的对应点为O ,将△A O O绕点O顺时针旋转,旋转角为α0°≤α≤180°,在旋转过程中,直线AB与直线A O 、A O交于M,G两点,在旋转过程中,△A MG能否成为等腰三角形,若能,求出所满足条件的α,若不能,请说明理由.【答案】(1)3,0(2)48+93(3)当α为15°或60°或105°或150°时,△A MG为等腰三角形【分析】(1)先求得A0,3则OA=3,然后利用特殊锐角三角函数值可求得OC的长,则可得到点C的坐标;(2)由关于y轴对称点的坐标特点可得到AE的解析式,然后依据相互平行的直线的一次项系数相同以及点C的坐标可求得CD的解析式,然后再求得点E的坐标,作点E关于x轴的对称点E′,D点关于y轴的对称点D′,连接E′D′分别交y轴和x轴与点P、Q,则D′E′的长为DP+PQ+QE的最小值,最后利用两点间的距离公式求解即可;(3)先根据题意画出图形(见答图:图2、图3、图4、图5),然后依据等腰三角形的性质性质,三角形的外角和的性质、依据旋转角的定义求解即可.【详解】(1)解:把x=0代入直线AB的解析式得:y=3,∴A0,3,∴OA=3,∵在Rt△AOC中,∠ACO=60°,∴∠CAO=90°-60°=30°,∴AC=2OC,∵AC2-OC2=OA2,∴2OC2-OC2=32,解得:OC=3或-3(舍去),∴点C的坐标为:3,0.(2)解:∵直线AE与直线AB关于y轴对称,∴AE的解析式为y=-x+3,设直线CD的解析式为y=kx+b k≠0,∵AB∥CD,∴k=1,∴直线CD的解析式为y=x+b,将点C的坐标代入得:3+b=0,解得:b=-3,∴直线CD的解析式为y=x-3,联立y=-x+3y=x-3 ,解得:x=3+32 y=3-32,∴点E的坐标为:3+32,3-32,作点E关于x轴的对称点E ,D点关于y轴的对称点D ,连接E D 分别交y轴和x轴与点P、Q,如图1所示:则D E 的长为DP+PQ+QE的最小值,∵E3+32,3-32,点E与点E 关于x轴对称,∴E 3+32,-3+32,把y=0代入y=x+3得:x=-3,∴点B的坐标为-3,0,∴BC=3+3,∵AD =AD=BC=3+3,∴D -3-3,3,∴DP+PQ+QE2=D E 2=3+32+3+32+3+3-322=48+93.(3)解:如图2所示:当GM=GA 时,∵GM=GA ,∴∠A MG=∠MA G=30°,∴∠BGO=60°,∵OB=OA,∠AOB=90°,∴∠ABO=45°,∴∠BOG=180°-45°-60°=75°,∴∠BOO =75°-60°=15°,即α=15°;如图3所示:当A M=A G时,∵A M=A G,∴∠A MG=∠A GM又∵∠A MG+∠A GM=∠BA O=30°,∴∠MGA =15°,∴∠BOG=180°-∠OBG-∠BGO=120°,∵∠O OA =60°,∴∠BOO =60°,即α=60°;如图4所示:当MG=MA 时,∵MG=MA ,∴∠MGA =∠MA G=30°,∵∠MBO=45°,∴∠BOG=15°,∴∠BOA =165°,∴∠BOO =165°-60°=105°,即α=105°.如图5所示:当A G=A M时,∵A G=A M,∠GA M=30°,∴∠MGA =75°,∵∠GBO+∠BOG=∠MGA ,∴∠BOG=75°-45°=30°,∴∠A Ox=30°,∴∠O Ox=30°,∴∠BOO =150°,即α=150°;综上所述,当α为15°或60°或105°或150°时,△A MG为等腰三角形.【点睛】本题主要考查的是一次函数的综合应用,解答本题主要应用了勾股定理,轴对称图形的性质、关于坐标轴对称点的坐标特点、等腰三角形的性质,找出DP+PQ+QE取得最小值的条件是解答问题(2)的关键,根据题意画出符合题意的图形是解答问题(3)的关键.9(1)问题解决:如图1,在平面直角坐标系xOy中,一次函数y=14x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B、C的坐标分别为、、.(2)综合运用:①如图2,在平面直角坐标系xOy中,点A坐标(0,-6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=-2x+2图像上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请求出点D的坐标.②如图2,在⑵的条件中,若M为x轴上一动点,连接AM,把AM绕M点逆时针旋转90°至线段NM,ON+AN的最小值是.【答案】(1)A(-4,0),B(0,1),C(-5,4)(2)①D(0,2)或163,-263;②65【分析】(1)利用坐标轴上点的特点可得出A、B的坐标,过点C作CD⊥x轴于D,构造出△ADC≌△BOA,求出AD,CD,即可得出结论;(2)①过点D作DF⊥y轴于F,延长FD交BP于G,设点D(m,-2m+2),求出AF,证明△AFD≌△DGP,根据DF+DG=DF+AF=8列式计算即可;②设M(t,0)过点N作NH⊥x轴交x轴于H,易证△AOM≌△MHN,可得ON+AN=t+62+t2+ t+62+t-62=S,故S可以看作点(t,t)到(-6,0)和(-6,6)两点距离之和,(t,t)在y=x上,如图,F(-6,0),E(-6,6),作F关于y=x的对称点为P,可知当E、D、P三点共线时,S取得最小值为EP,求出EP即可.【详解】(1)解:对于一次函数y=14x+1,令x=0,y=1,∴B (0,1),令y =0,则14x +1=0,∴x =-4,∴A (-4,0),∴OA =4,OB =1,即A (-4,0),B (0,1),过点C 作CD ⊥x 轴于D ,∴∠ADC =∠BOA =90°,∴∠CAD +∠ACD =90°,∵∠BAC =90°,∴∠CAD +∠BAO =90°,∴∠ACD =∠BAO ,∵△ABC 是等腰直角三角形,∴AC =AB ,在△ADC 和△BOA 中,∠ADC =∠BOA∠ACD =∠BAO AC =BA,∴△ADC ≌△BOA (AAS ),∴CD =OA =4,AD =OB =1,∴OD =OA +AD =5,∴C (-5,4);故答案为:(-4,0),(0,1),(-5,4);(2)解:①如图,过点D 作DF ⊥y 轴于F ,延长FD 交BP 于G ,∵点A 坐标(0,-6),点B 坐标(8,0),∴DF +DG =OB =8,∵点D 在直线y =-2x +2上,∴设点D (m ,-2m +2),∴F (0,-2m +2),OF =|2m -2|,AF =|2m -2-6|=|2m -8|,∵BP ⊥x 轴,B (8,0),∴G (8,-2m +2),同(1)的方法得,△AFD ≌△DGP (AAS ),∴AF =DG ,DF =PG ,∵DF +DG =DF +AF =8,∴m +|2m -8|=8,∴m =163或m =0,∴D (0,2)或163,-263;(3)设M (t ,0),过点N 作NH ⊥x 轴交x 轴于H ,根据旋转的性质易证△AOM ≌△MHN ,∴OM =HN ,OA =HM ,∴N (t +6,t ),∴ON +AN =t +62+t 2+t +6 2+t -6 2=S ,故S 可以看作点(t ,t )到(-6,0)和(-6,6)两点距离之和,(t ,t )在y =x 上,如图,∵D (t ,t )是y =x 上的动点,F (-6,0),E (-6,6),∴S =DE +DF ,∵F 关于y =x 的对称点为P (0,-6),DF =DP ,∴当E 、D 、P 三点共线时,S 取得最小值为EP =-6-0 2+6--6 2=180=65,即ON +AN 的最小值是65.故答案为:65.【点睛】本题是一次函数综合题,主要考查了一次函数的图像和性质,全等三角形的判定和性质,坐标与图形的性质,方程的思想,勾股定理等,构造全等三角形是解本题的关键.10已知一次函数y =kx +32的图象与x 轴交于点A ,与y 轴交于点B ,点M 的坐标为0,m ,其中0<m <32.(1)若点A (-32,0),过点O 作OP ⊥AM ,连接BP 并延长与x 轴交于点C ,①求k 的值;②求证:BP PC =OM OC;(2)若点A -2,0 ,求2AM +BM 的最小值.【答案】(1)①1;②见解析(2)32+2【分析】(1)①将点A 的坐标代入y =kx +32可得出答案;②过点B 作BD ∥OP 交x 轴交于点D ,延长AM 交BD 于点N ,证明△OAM ≌△OBD (ASA ),得出OM =OD;证明BPPC =DOOC,则可得出结论;(2)取点E32,0,连接BE,过点A作AH⊥BE于H,过点M作PM⊥BE于P,2AM+BM= 2AM+PM≥2AH,求出AH的长,则可得出答案.【详解】(1)①∵A-32,0在y=kx+32的图象上,∴(-32)k+32=0,∴k=1;②过点B作BD∥OP交x轴交于点D,延长AM交BD于点N,∵BD∥OP,OP⊥AM,∴AN⊥BD,∵∠AOB=∠BOD=90°,∴∠OAM+∠ADN=90°,∠OBD+∠ODB=90°,∴∠OAM=∠OBD,由题意,可知OA=OB=32,∠AOB=∠BOD=90°,∴△OAM≅△OBD ASA,∴OM=OD;∵BD∥OP,∴BP PC =DOOC,即BPPC=OMOC;(2)如图,取点E32,0,连接BE,过点A作AH⊥BE于H,过点M作PM⊥BE于P,在Rt△BOE中,OB=OE=32,∴∠OBE=45°,∴BE=2OB=6,在Rt△MPB中,∠MPB=90°,PM=BM sin∠PBM=BM sin45°=22BM,∴2AM+BM=2AM+22BM=2(AM+PM)≥2AH,(当且仅当A,M,P三点共线时取等号,此时,点P、H重合),∵S△ABE=12AE⋅OB=12BE⋅AH,∴AH=AE⋅OBBE =(32+2)⋅326=3+2,∴2AM+BM的最小值=2(3+2)=32+2.【点睛】本题是一次函数综合题,考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,全等三角形的判定和性质,三角形的面积,平行线分线段成比例定理,熟练掌握直角三角形的性质是解题的关键.11如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为,点B的坐标为;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有;(都写出来)②试求线段OQ长的最小值.【答案】(1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO,∠BAQ;②线段OQ长的最小值为125【分析】(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:y=43x+4,推出点Q在直线y=-43x+4上运动,再根据垂线段最短,即可解决问题.【详解】(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=-3,∴A(-3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(-3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°-α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°-∠PBE-∠PEB=180°-2α=2(90°-α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ-∠APB=∠BPE-∠APB.∴∠QPO=∠EPA.又∵PE =PB ,AP =PQ∴∠PEB =∠PBE =∠PAQ =∠AQP .∴∠BAQ =180°-∠EAQ =180°-∠APQ =∠EPA .∴与∠EPA 相等的角有∠QPO ,∠BAQ .故答案为:∠QPO ,∠BAQ .②如图3中,连接BQ 交x 轴于T .∵AP =PQ ,PE =PB ,∠APQ =∠BPE ,∴∠APE =∠QPB ,在△APE 和△QPB 中,PA =PQ∠APE =∠QPB PE =PB,∴△APE ≌△QPB (SAS ),∴∠AEP =∠QBP ,∵∠AEP =∠EBP ,∴∠ABO =∠QBP ,∵∠ABO +∠BAO =90°,∠OBT +∠OTB =90°,∴∠BAO =∠BTO ,∴BA =BT ,∵BO ⊥AT ,∴OA =OT ,∴直线BT 的解析式为为:y =43x +4,∴点Q 在直线y =-43x +4上运动,∵B (0,4),T (3,0).∴BT =5.当OQ ⊥BT 时,OQ 最小.∵S △BOT =12×3×4=12×5×OQ .∴OQ =125.∴线段OQ 长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.12如图一次函数y 1=k1x +3的图象与坐标轴相交于点A -2,0 和点B ,与反比例函数y 2=k 2x (x >0)的图象相交于点C 2,m .(1)求出一次函数与反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,连接CP 并延长,交x 轴正半轴于点D ,若PD :CP =1:2时,求△COP 的面积;(3)在(2)的条件下,在y 轴上是否存在点Q ,使PQ +CQ 的值最小,若存在请直接写出PQ +CQ 的最小值,若不存在请说明理由.【答案】(1)y 2=12x(x >0);(2)S △OPC =16;(3)45.【分析】(1)根据一次函数y 1=k 1x +3的图象过点A -2,0 ,代入解析式得0=-2k 1+3,解方程求出k 1=32,根据点C 在直线AB 上,m =32×2+3=6,可得点C (2,6),利用待定系数法求分别列函数解析式即可;(2)过点C 作CE ⊥x 轴于E ,PF ⊥x 轴于F ,先证△CED ∽△PFD ,得出CP =2PD ,求出PF =2,求出点P (6,2),利用待定系数法CP 解析式为:y 3=-x +8,当y 3=0时,x =8,求出点D (8,0),利用面积差求解即可;(3)作点C 关于y 轴对称点C ′(-2,6),连结C ′P ,可得CQ =C ′Q ,根据两点距离公式PQ +CQ =PQ +C Q ≥PC ,当C ′P 交y 轴于Q ,利用勾股定理求出最小值即可.【详解】解:(1)∵一次函数y 1=k 1x +3的图象过点A -2,0 ,代入解析式得:0=-2k 1+3解得:k 1=32,∴一次函数解析式为:y 1=32x +3,点C 在直线AB 上,m =32×2+3=6,∴点C (2,6),∵点C 在反比例函数y 2=k 2x(x >0)图像上,∴k 2=xy =2×6=12,∴y 2=12x(x >0);(2)过点C 作CE ⊥x 轴于E ,PF ⊥x 轴于F ,∴CE ∥PF ,∴∠ECD =∠FPD ,∠AED =∠PFD ,∴△CED ∽△PFD ,∴CE PF =CD PD,∵PD :CP =1:2,∴CP =2PD ,∴CD =CP +PD =2PD +PD =3PD ,∵EC =6,∴6PF =3PD PD=3,∴PF =2,∵点P 在y 2=12x (x >0)上,∴2=12x,解得x =6,∴点P (6,2),设CP 解析式为:y 3=mx +n ,过C 、P 两点,代入坐标得:6m +n =22m +n =6 ,解得m =-1n =8 ,∴CP 解析式为:y 3=-x +8,当y 3=0时,x =8,∴点D (8,0)∴S △OPC =S △DOC -S △POD =12OD ⋅CE -12OD ⋅PF =12×8×6-12×8×2=16;(3)作点C 关于y 轴对称点C ′(-2,6),连结C ′P ,∵CQ =C ′Q ,∴PQ +CQ =PQ +C Q ≥PC ,当C ′P 交y 轴于Q ,PQ +CQ 的值最小,∴PQ +CQ 最小=PC =6+2 2+(6-2)2=45.【点睛】本题考查待定系数法求反比列函数解析式,三角形相似判定与性质,待定系数法求直线解析式,用割补法求三角形面积,轴对称,最短路径问题,掌握待定系数法求反比列函数解析式,三角形相似判定与性质,待定系数法求直线解析式,用割补法求三角形面积,轴对称,最短路径问题常作对称点,与对称点连线找交点解决问题.13【定义】斜率,表示一条直线相对于横轴的倾斜程度.当直线l 的斜率存在时,对于一次函数y =kx +b (k ≠0),k 即为该函数图象(直线)的斜率.当直线过点(x 1,y 1)、(x 2,y 2)时,斜率k =y 2-y 1x 2-x 1,特别的,若两条直线l 1⊥l 2,则它们的斜率之积k 1•k 2=-1,反过来,若两条直线的斜率之积k 1•k 2=-1,则直线l 1⊥l 2【运用】请根据以上材料解答下列问题:(1)已知平面直角坐标系中,点A (1,3)、B (m ,-5)、C (3,n )在斜率为2的同一条直线上,求m 、n 的值;(2)在(1)的条件下,点P 为y 轴上一个动点,当∠APC 为直角时,求点P 的坐标;(3)在平面直角坐标系中另有两点D (3,2)、E (-1,-6),连接DA 并延长至点G ,使DA =AG ,连接GE 交直线AB 于点F ,M 为线段FA 上的一个动点,求DM +55MF 的最小值.【答案】(1)-3;7;(2)(0,4)或(0,6);(3)4【分析】(1)设直线的解析式为y =2x +b ,将A (1,3)代入求出b =1,得到函数解析式,再将点B 、C 分别代入求出m 、n 的值;(2)设点P (0,y ),当∠APC 为直角时,根据K PA •K PC =-1,得到y -30-1⋅y -70-3=-1,求解即可;(3)连接DE ,证得AB ∥DE ,AB ⊥DA ,DE ⊥DA ,求出AD 、DE 、DG ,利用勾股定理求出EG ,及sin ∠GFA 的值,过M 作MN ⊥GF 于N ,则MN =55MF ,过点D 作DH ⊥GE 于H ,则DH 即为最小值,由DH •GE =DG •DE 得到DH =4.【详解】解:(1)设直线的解析式为y =2x +b ,将A (1,3)代入得b =1,∴直线的解析式为y =2x +1,将B (m ,-5)、C (3,n )两点分别代入解析式,得m =-3,n =7;(2)设点P (0,y ),当∠APC 为直角时,有K PA •K PC =-1,由(1)知,A (1,3)、C (3,7),∴y -30-1⋅y -70-3=-1,解得y =4或y =6,∴点P 的坐标为(0,4)或(0,6).(3)如图,连接DE ,由题意知,K AB =2,K DE =2-(-6)3-(-1)=2,K DA =3-21-3=-12,∵K AB =K DE ,K AB ⋅K DA =2×-12=-1,∴AB ∥DE ,AB ⊥DA ,DE ⊥DA ,∴AD =(1-3)2+(3-2)2=5,DE =45,DG =2AD =25,∴EG =DG 2+DE 2=10,∴sin ∠GFA =sin ∠GED =2510=55,过M 作MN ⊥GF 于N ,则MN =55MF ,∴DM +55MF =DM +MN ,过点D 作DH ⊥GE 于H ,则DH 即为最小值.由DH •GE =DG •DE ,得DH =4,即DM+55MF的最小值为4.【点睛】此题考查胡不归问题的综合知识,正确理解题意中斜率的计算公式,勾股定理,最小值问题是解题的关键.14如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B的坐标为(23,4),一次函数y= -33x+b的图象与边OC、AB、x轴分别交于点D、E、F,∠DFO=30°,并且满足OD=BE,点M是线段DF上的一个动点.(1)求b的值;(2)连接OM,若ΔODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)求OM+12MF的最小值.【答案】(1)b=3;(2)M233,73;(3)92【分析】(1)利用矩形的性质,用b表示点E的坐标,再利用待定系数法即可求解;(2)首先求出四边形OAED的面积,再根据条件求出△ODM的面积,即可解决问题;(3)过点M作MN⊥x轴交于点N,则OM+12MF=OM+MN,即可转化为求OM+MN的最小值,作点O关于一次函数的对称点O ,过点O 作x轴的垂线交x轴于点N ,交一次函数于点M,即OM+MN的最小值为O N ,算出长度即可.【详解】(1)在y=-33x+b中,令x=0,则y=b,∴点D的坐标为(0,b),∵OD=BE,B(23,4),∴E(23,4-b),把E(23,4-b)代入y=-33x+b中得:4-b=-33×23+b,解得:b=3;(2)由(1)得一次函数为y=-33x+3,D(0,3),E(23,1),∴OD=3,AE=1,OA=23,∴S四边形OADE =12(OD+AE)⋅OA=12×(3+1)×23=43,∵ΔODM的面积与四边形OAEM的面积之比为1:3,∴ΔODM的面积与四边形OADE的面积之比为1:4,∴S△ODM=14S四边形OADE=3,设点M 的横坐标为a ,则12×3a =3,解得:a =233,把x =233代入y =-33x +3中得:y =73,∴M 233,73;(3)如图所示,过点M 作MN ⊥x 轴交于点N ,∵∠DFO =30°,∴MN =12MF ,∴OM +12MF =OM +MN ,作点O 关于一次函数的对称点O ,且OO '与直线DF 交于Q 点,过点O 作x 轴的垂线交x 轴于点N ,∴OM =O M ,∴OM +12MF =OM +MN =O M +MN ,当O 、M 、N 在同一直线时O M +MN 最小,即OM +12MF =OM +MN =O M +MN 的最小值为O N ,∵∠DFO =30°,∴∠ODF =60°,∠DOQ =30°,∠O ON =90°-30°=60°,在Rt △ODQ 中,OQ =OD ⋅sin60°=3×32=332,∴OO =2OQ =33,在Rt △ON O 中.O N =OO sin60°=33×32=92,∴OM +12MF 的最小值为92.【点睛】本题考查几何图形与函数的综合题,包括一次函数、矩形的性质、四边形的面积,解直角三角形以及胡不归问题,属于中考压轴题.15如图1,一次函数y =34x -6的图象与坐标轴交于点A ,B ,BC 平分∠OBA 交x 轴与点C ,CD ⊥AB ,垂足为D .(1)求点A ,B 的坐标;(2)求CD 所在直线的解析式;(3)如图2,点E 是线段OB 上的一点,点F 是线段BC 上的一点,求EF +OF 的最小值.。
初中数学最值问题专题5 费马点中的对称模型与最值问题【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN的周长的最小值为___________.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )A .B .C .D .5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.ABCDME6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接P C,P E.当△P CE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A点右侧),点H 、B 关于直线l :y x =+对称.(1)求A 、B 两点的坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连结HN 、NM 、MK ,求HN +NM +MK 的最小值.专题5 费马点中的对称模型与最值问题 答案【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD △△AGF ,△MD =GF △ME +MA +MD =ME +EG +GF过F 作FH △BC 交BC 于H 点,线段FH 的长即为所求的最小值.ABCDMEHFGE MDCBA3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.【解析】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△P MN 的周长最短,最短的值是CD 的长.△点P 关于OA 的对称点为C , △P M =CM ,O P=OC ,△COA =△P OA ; △点P 关于OB 的对称点为D , △P N =DN ,O P=OD ,△DOB =△P OB ,△OC =OD =O P=3,△COD =△COA +△P OA +△P OB +△DOB =2△P OA +2△P OB =2△AOB =60°, △△COD 是等边三角形, △CD =OC =OD =3.△△P MN 的周长的最小值=P M +MN +P N =CM +MN +DN ≥CD =3.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为()A.B.C.D.【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结P Q分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=D P+DC+CQ+AB=P Q+AB==4+2=6,故选B.5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【解析】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PMPM =,2PN P N =,1212PMN PM MN P N PP ∴∆=++=,且1AOP AOP ∠=∠,2BOP BOP ∠=∠,12260POP AOB ∠=∠=︒,128OP OP OP ===,12PP O ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.6、如图,在平面直角坐标系中,抛物线y =x 2﹣x ﹣与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接P C ,P E .当△P CE 的面积最大时,连接CD ,CB ,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【解析】(1)△y=x2﹣x﹣,△y=(x+1)(x﹣3).△A(﹣1,0),B(3,0).当x=4时,y=.△E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.△直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.△直线CE的解析式为y=x﹣.过点P作P F△y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则F P=(x﹣)﹣(x2﹣x﹣)=x2+x.△△E P C的面积=×(x2+x)×4=﹣x2+x.△当x=2时,△E P C的面积最大.△P(2,﹣).如图2所示:作点K关于CD和C P的对称点G、H,连接G、H交CD和C P与N、M.△K是CB的中点,△k(,﹣).△点H与点K关于C P对称,△点H的坐标为(,﹣).△点G与点K关于CD对称,△点G(0,0).△KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.△GH==3.△KM+MN+NK的最小值为3.(3)如图3所示:△y ′经过点D ,y ′的顶点为点F ,△点F (3,﹣).△点G 为CE 的中点,△G (2,).△FG =.△当FG =FQ 时,点Q (3,),Q ′(3,).当GF =GQ 时,点F 与点Q ″关于y =对称,△点Q ″(3,2).当QG =QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:a +=,解得:a =﹣.△点Q 1的坐标为(3,﹣).综上所述,点Q 的坐标为(3,),Q ′(3,)或(3,2)或(3,﹣). 7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A=+对称.点右侧),点H、B关于直线l:y x(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数解析式;BK AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连结HN、NM、(3)过点B作直线//MK,求HN+NM+MK的最小值.【解析】(1)依题意,得ax2+2ax−3a=0(a≠0),两边都除以a得x2+2x−3=0,解得x1=−3,x2=1,△B点在A点右侧,△A点坐标为(−3,0),B点坐标为(1,0),答:A.B两点坐标分别是(−3,0),(1,0).证明:△直线l:y x+-=,△点A在直线l上.当x=−3时,y(3)0(2)△点H、B关于过A点的直线l:y x+对称,△AH=AB=4,过顶点H作HC△AB交AB于C点,则AC=12,2AB HC==△顶点H(1,-,代入二次函数解析式,解得a=,△二次函数解析式为2y x=,答:二次函数解析式为2y x=+.(3)直线AH的解析式为y=+,直线BK的解析式为y=-y xy⎧=⎪⎨⎪=-⎩,解得3xy=⎧⎪⎨=⎪⎩K),则BK=4,△点H、B关于直线AK对称,K,△HN+MN的最小值是MB,过K作KD△x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,则QM=MK,QE=EKAE△QK,△根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,△BK△AH,△△BKQ=△HEQ=90△,由勾股定理得QB8==△HN+NM+MK的最小值为8,。
初中数学函数最值问题培优专题训练1. 引言函数最值问题是初中数学中的一个重要课题,它涉及到如何确定一个函数在特定区间内的最大值和最小值。
正确解决函数最值问题对于提高学生的数学分析和问题解决能力具有重要意义。
本文将提供一些初中数学函数最值问题的培优专题训练,帮助学生加深对这一知识点的理解和掌握。
2. 常见类型的函数最值问题在函数最值问题中,常见的类型包括线性函数最值问题、二次函数最值问题和分段函数最值问题。
我们将分别介绍这些类型的问题和解题方法。
2.1 线性函数最值问题线性函数最值问题是最简单的一类问题。
线性函数的图像为一条直线,最大值和最小值通常出现在函数的两个端点上。
解决线性函数最值问题,只需要找到函数的两个端点,并比较它们的函数值即可。
例如,对于线性函数$y=2x+1$,最大值和最小值分别出现在$x$的最小值和最大值上。
我们将$x$的最小值和最大值代入函数,可以得到最大值和最小值的函数值。
2.2 二次函数最值问题二次函数最值问题是一类稍复杂的问题。
二次函数的图像通常为抛物线,最大值或最小值出现在抛物线的顶点上。
解决二次函数最值问题,需要找到函数的顶点,并判断该顶点对应的函数值是最大值还是最小值。
例如,对于二次函数$y=x^2+2x+1$,顶点坐标为$(-1, 0)$。
我们可以通过求导数等方法得到这一结果。
根据抛物线的形状,我们可以判断该顶点对应的函数值为最小值,因为$y$值随着$x$的增大而增大。
2.3 分段函数最值问题分段函数最值问题是一类较为复杂的问题。
分段函数由多个部分组成,每个部分可能具有不同的表达式。
解决分段函数最值问题,需要分别考虑每个部分的最值,并比较它们的函数值。
例如,对于分段函数$y=\begin{cases}x^2, &\text{if } x<0\\2x,&\text{if } x\geq0\end{cases}$,我们可以分别求出$x<0$和$x\geq0$两个部分的最值,并比较它们的函数值。
初中数学函数最值问题培优专题训练
1. 引言
本文档旨在提供初中数学函数最值问题的培优专题训练。
通过系统的训练,学生将能够掌握函数的最大值和最小值求解的方法,提升数学解题能力。
2. 训练内容
训练将包括以下几个方面的内容:
2.1 最大值和最小值的概念
- 最大值和最小值的定义
- 最值的求解方法
2.2 函数图象与最值问题
- 函数图象与最值的关系
- 如何通过函数图象判断最值的存在性和位置
2.3 函数最值问题的解法
- 函数求导法
- 函数列表法
- 函数图象法
3. 训练形式
为了增加学生的参与度和培养合作精神,本次训练将采用小组合作的形式进行。
每个小组根据指导老师的分配,自行选取训练题目,并通过讨论和合作解决问题。
每个小组至少完成两道函数最值问题的训练。
4. 训练目标
通过此次培优专题训练,学生将能够达到以下目标:
- 掌握最值的概念和求解方法
- 能够运用函数图象判断最值的存在性和位置
- 熟练掌握函数求导法、函数列表法和函数图象法解决函数最值问题的技巧
- 培养合作意识和团队精神
5. 训练效果评估
为了评估训练效果,每个小组需要提交一份训练报告,包括训练过程中遇到的问题及解决方法,以及训练结果与讨论。
此外,还可以通过小组成绩和学生个人评价的方式进行综合评估。
6. 结束语
本次初中数学函数最值问题培优专题训练旨在提升学生的数学解题能力,并培养合作意识和团队精神。
希望通过系统的训练,学生能够掌握函数最值问题的解法,为更高级的数学研究奠定坚实的基础。
谢谢大家!。
初中数学一次函数与二次函数最值问题专项2204442-,)04a ac b y b a x ac b a a a x <-=→=--∍>→=⎡⎢⎢⎣2一次函数的最值:局部定义区间:自变量的取值范围受到题意的限制,使自变量的取值范围缩小。
不连续函数最值:不连续函数的图像常表现为是一些孤立的点,自变量的取值范围是整数。
求最值,以题意确定自变量的值,从而得到最值。
最大值:即b 二次函数的最值:抛物线的顶点(2a 4ac-b 最小值:即y=4a 2b a-⎡⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎣⎣⎣ 一次函数:例1 已知一次函数当自变量x 分别取3和4时,得函数值1和3 ,问当1≤x ≤5时,函数的最大之和最小值各是多少?分析:[从函数解析式的角度]:将两个点的坐标代入解析式,求一次函数的解析式。
[从自变量的取值范围角度]:由于自变量的取值受到限制,则函数值的取值范围受到限制。
因在自变量所涉及的范围内,求最值。
解:设一次函数的解析式为:)0(≠+=k b kx y有已知得:(3,1),(4,3)满足函数解析式。
⎩⎨⎧=+=+3413b k b k ⎩⎨⎧-==→52b k 所以:一次函数解析式为:52-=x y又因为⎪⎩⎪⎨⎧≤-≤-≤≤≤≤5523,1022,51x x x所以最大值为5,最小值为-3例2:画出函数y=︱2x ︱+x-1的图像,利用图像回答:(1) x 取何值时,y 随x 的增大而减小?(2) 函数图像上最低点的坐标是多少?函数y 的最小值?分析:[从x 的取值范围角度]:写出函数的解析式[从增减性的角度]:根据图像,找到x 的取值范围,使y 随x 的增大而减小。
[从最值的角度]:根据图像,找最低点,则最低点的纵坐标所对的数值即为最小值。
二次函数:例3:炮弹从炮口射出后,飞行的高度h 米与飞行的时间t 秒之间的函数关系式20sin 5h v t t α=-,其中0v 是炮弹发射的初速度,α是炮弹的发射角。
初中数学六大最值问题
初中数学中有许多与最值相关的问题,以下是六大最值问题:
1. 最大值问题:给定一组数,如何找出其中最大的数?
2. 最小值问题:给定一组数,如何找出其中最小的数?
3. 最大公约数问题:给定两个数,如何求出它们的最大公约数?
4. 最小公倍数问题:给定两个数,如何求出它们的最小公倍数?
5. 最大面积问题:给定一个固定周长的图形,如何找出它的最大面积?
6. 最小路径问题:给定两个点,如何找出它们之间最短的路径?
以上是初中数学中六大最值问题,对于每一个问题,都有相应的解题方法和技巧。
掌握了这些技巧,可以更好地解决数学问题,提高数学成绩。
- 1 -。
中考数学最值问题【例题1】(经典题)二次函数y二2 (x-3) 2-4的最小值为.【例题2】(2018江西)如图,AB是。
的弦,AB=5,点C是。
上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是___ .C【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y 轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ+ 2 QC是否存在最小值若存在,求出这个最小值;若不存在,请说明理由.1.(2018河南)要使代数式V-2^37有意义,则乂的( )A.最大值为2B.最小值为2C.最大值为-D.最大值为°3 3 2 22.(2018四川绵阳)不等边三角形AABC的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为。
3.(2018齐齐哈尔)设a、b为实数,那么“2+“〃 +从一” 的最小值为04.(2018云南)如图,MN是。
的直径,MN=4, NAMN=40° ,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.C5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1WxV15)之间的函数关系式,并求出第几天时销售利润最大(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第15天在第14天的价格基础上最多可降多少元6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R (元),售价每只为P (元),且R、P与x的关系式分别为R = 500 + 30x , P = 170 —2x。
(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润最大利润是多少7.(2018吉林)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少X2 — X + 18.名典题)求至K的最大值与最小值。
夕(经典题)求代数式x'l-X2的最大值和最小值。
10.(经典题)求函数y=lx —ll—lx + 41—5的最大值。
11.(2018山东济南)已知X、y为实数,且满足% + y +机=5, xy + ym + mx = 3求实数m最大值与最小值。
12.(2019年黑龙江省大庆市)如图,在Rt^ABC中,NA=90°. AB=8cm, AC=6cm,若动点D从B 出发,沿线段BA运动到点A为止(不考虑DVB, A重合的情况),运动速度为2cm/s,过点D作DE〃BC 交AC于点E,连接BE,设动点D运动的时间为x (s), AE的长为y (cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,^BDE的面积S有最大值最大值为多少13.(2019年宁夏)如图,在4ABC中,NA=90°, AB=3, AC=4,点M, Q分别是边AB, BC上的动点(点M不与A, B重合),且MQ^BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM S^ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.本题考查的是相似三角形的判定和性质、平行四边形的判定、二次函数的性质,掌握相似三角形的判定定理、二次函数的性质是解题的关键.14.(2019广东深圳)如图所示,抛物线y = ax2 + bx + c过点A (-1, 0),点C (0, 3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D, E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值,(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3 : 5两部分,求点P的坐标.15.(2019广西省贵港)已知:AABC是等腰直角三角形,ZBAC =90° ,将AABC绕点。
顺时针方向旋转得到△ABC,记旋转角为a,当90。
<。
<180。
时,作垂足为。
,4。
与交于点石.(1)如图1,当Z CA'D = 15。
时,作Z4EC的平分线EF交BC于点F .①写出旋转角a的度数;16.:EA,+ EC = EF ;(2)如图2,在(1)的条件下,设P是直线A^D上的一个动点,连接PA , PF,若AB = 22,求线段PA + PF 的最小值.(结果保留根号).1 116.(2019贵州省安顺市)如图,抛物线丫= 2 x2+bx+c与直线y= 3 x+3分别相交于A, B两点,且此抛物线与x轴的一个交点为C,连接AC, BC.已知A (0, 3), C (-3, 0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ^PA交y轴于点Q,问:是否存在点P 使得以A, P, Q为顶点的三角形与^ABC相似若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.17.(2019广西贺州)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且。
1 = OC=4O5,抛物线>=4%2+" +(7(4,0)图象经过4, B ,。
三点.(1)求A,。
两点的坐标;(2)求抛物线的解析式;(3)若点夕是直线AC下方的抛物线上的一个动点,作AC于点。
,当PD的值最大时,求此时点户的坐标及PD的最大值.18.(2019内蒙古赤峰)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y= - X2+bx+c 经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求E(kED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得NAPB=N0CB若存在,求出P点坐标;若不存在,请说明理由.D:口函用图19.(2019•湘潭)如图一,抛物线y=ax2+bx+c 过 A ( - 1, 0) B () . C (0, ^3)三点冰嘛!(1)求该抛物线的解析式;(2) P(x1, y1)、Q (4, y2)两点均在该抛物线上,若y1Wy2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求4FMN周长的最小值.20.(2019^辽阳)如图,在平面直角坐标系中,Rt^ABC的边BC在x轴上,NABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C (3, 0),交y轴于点E (0, 3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿ATB方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PDLAB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ, CQ,当t为何值时,△ACQ的面积最大最大值是多少(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P, M, E, C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.【例题1】(经典题)二次函数y=2 (x-3) 2-4的最小值为.【答案】-4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2 (x-3) 2-4的开口向上,顶点坐标为(3,-4),所以最小值为-4.【例题2】(2018江西)如图,AB是。
的弦,AB=5,点C是。
上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案]乎.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.Cc r如图」..点M, N分别是AB, AC的中点,・•・当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接B0并延长交。
于点C,,连接AC,,・•.BC,是。
的直径,ZBAC Z=90° .,,,ZACB=45° , AB=5,ZAC Z B=45° ,比上‘BC'二五京『迹二5匹2.,.MN =-^-^-.最大2【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段oc上的一动点,问AQ+?QC是否存在最小值若存在,求出这个最小值;若不存在, 请说明理由.【思路分析】(1)将A、B、C三点坐标代入抛物线的解析式即可求出a、b、c的值(当然用两根式做更方便);(2)先证四边形AMBD为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3) 如答图2,过点P作PF_LAB于点F,交BC于点E,令P(m, m2-4m+3),易知直线BC的解析式为y= -x + 3,贝lj E(m, -m+3), PE= (-m+3) - (m2-4m+3) =-m2+3m.再由 $潮=$诩+$* 转化为显・OB =y X3X(-m2+3m),最后将二次函数化为顶点式即可锁定S^PBC的最大值与点P坐标;(4)解决本问按两步走:一找(如答图3,设OQ=t,贝|JCQ=3—t, AQ+NC=HTT+ (3T),取CQ的中点G,以点Q为圆心,QG的长为半径作。
Q,则当。
Q过点A时,AQ+;QC=0Q的直径最小)、二求(由AQ = ;QC,解关于t 的方程即可).【解题过程】(1)二.抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,.•・令抛物线解析为y=a(x—1)(x—3)...・该抛物线过点C(0, 3),.•.3 = aX(0 — 1)X(0 — 3),解得 a = 1..•・抛物线的解析式为y= (x — 1)(x — 3),即y=X2—4x+3.,.,y=X2—4x+3= (x—2)2 — 1,..・抛物线的顶点D的坐标为(2,—1).综上,所求抛物线的解析式为y=x2—4x+3,顶点坐标为(2,—1).(2)如答图1,连接AD、BD,易知DA=DB.■,,OB=OC, ZB0C=90°.-.ZMBA=45° .,.,D(2, -1), A(3, 0),ZDBA=45° ..-.ZDBM=90° .同理,ZDAM=90° .又,.,AM_LBC,J.四边形ADBM为矩形.又「DAnDB,J.四边形ADBM为正方形.(3)如答图2,过点P作PF_LAB于点F,交BC于点E,令P(m, m2-4m+3),易知直线BC的解析式为y=—x+3, 则E(m, —m+3), PE= (—m+3) — (m2—4m+3) = —iri2+3in.I -2图3,.-S=SJS. 壬PE BF+^PE. 0F=#E・ 0B=;X3X(—m2 + 3m)△PBC3 , a、, 27=~2(m-2)2+y,.,.当m=;时,S4PBC有最大值为V,此时P点的坐标为(1, —1).(4)如答图3,设OQ=t,则CQ=3—t, AQ+jQC= ^t2+1+1(3-t),取CQ的中点G,以点Q为圆心,QG的长为半径作。