线性变换初步线性变换的定义表示与性质
- 格式:docx
- 大小:36.88 KB
- 文档页数:2
线性变换与矩阵表示线性代数是数学中的一个重要分支,其中线性变换是其中的核心概念之一。
线性变换是指在向量空间中进行的保持向量加法和数量乘法性质的变换。
研究线性变换的一个重要方法是使用矩阵来表示线性变换,这为我们的计算和分析提供了方便和效率。
1. 线性变换的定义与性质线性变换是指保持向量加法和数量乘法性质的变换。
在数学上,我们可以将线性变换表示为一个函数T,它将向量x映射到向量T(x)。
线性变换需要满足以下两个性质:- 加法性质:对于任意的向量x和y,有T(x + y) = T(x) + T(y),即线性变换保持向量的加法关系。
- 乘法性质:对于任意的标量c和向量x,有T(cx) = cT(x),即线性变换保持向量的数量乘法关系。
2. 线性变换的矩阵表示线性变换可以使用矩阵来表示,这种表示方式被广泛应用于计算机图形学、机器学习等领域。
我们将线性变换T表示为一个矩阵A,然后通过矩阵乘法的方式来实现线性变换。
设向量x的坐标表示为[x1, x2, ..., xn],线性变换T对应的矩阵A的维度为n×n。
那么,线性变换T(x)可以表示为矩阵乘法的形式T(x) =A·x。
其中,A·x表示矩阵A与向量x的乘积,它的计算方式为将矩阵A的每一行乘以向量x的每一列,再将结果相加。
3. 线性变换的几何意义线性变换的几何意义是研究线性变换如何影响向量的几何特性。
对于平面上的线性变换来说,它可以改变向量的长度、方向和位置。
具体来说,线性变换可以实现以下几种几何操作:- 缩放:线性变换可以将向量的长度进行缩放,比如将向量拉长或压缩。
- 旋转:线性变换可以改变向量的方向,实现向量的旋转。
- 平移:线性变换可以将向量整体移动到平面上的另一个位置。
4. 矩阵表示的优势与应用使用矩阵表示线性变换具有以下优势和应用:- 简化计算:使用矩阵表示线性变换可以将复杂的计算转化为简单的矩阵乘法,提高计算效率。
- 线性组合:矩阵乘法具有线性组合的性质,可以方便地进行多个线性变换的组合。
线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
线性变换的矩阵表示与坐标变换线性变换是线性代数中非常重要的概念之一。
它是指将一个向量空间中的向量按照一定的规则进行变换的操作。
线性变换可以通过矩阵进行表示,并且与坐标变换之间存在着紧密的联系。
一、线性变换的定义与性质线性变换是指满足以下两个性质的向量空间之间的映射:1. 对于任意的两个向量u和v,线性变换T(u+v) = T(u) + T(v);2. 对于任意的标量k和向量u,线性变换T(ku) = kT(u)。
线性变换具有一些重要的性质:1. 零向量的线性变换结果仍为零向量:T(0) = 0;2. 线性变换保持向量空间中向量间的线性组合关系;3. 线性变换将向量空间中所有向量的零向量映射到目标向量空间的零向量。
二、矩阵表示线性变换线性变换可以通过矩阵来表示。
假设V和W是两个向量空间,维数分别为n和m,线性变换T: V→W可以表示为一个m×n的矩阵A。
对于向量v∈V,其在基底B={b1,b2,...,bn}下的坐标表示为[v]B =[x1,x2,...,xn]^T,T(v)在基底B'={b1',b2',...,bm'}下的坐标表示为[T(v)]B'= [y1,y2,...,ym]^T,则矩阵A表示了从基底B到基底B'的坐标变换关系。
具体而言,矩阵A的第j列为T(bj)在基底B'下的坐标表示的列向量。
通过矩阵向量乘法,可以得到变换后向量的坐标表示。
即:[T(v)]B' = A[v]B三、从坐标变换到线性变换以上我们讨论了线性变换如何通过矩阵表示,现在我们来看看如何从给定的坐标变换得到对应的线性变换矩阵。
考虑二维向量空间的坐标变换示例。
假设向量空间V的基底为B={e1,e2},向量空间W的基底为B'={e1',e2'}。
将V中的向量v表示为[v]B = [x1,x2]^T,W中的向量T(v)表示为[T(v)]B' = [y1,y2]^T。
向量空间中的线性变换和矩阵变换在线性代数中,向量空间是一个重要的概念,它是一组元素的集合,这些元素可以相加和相乘,满足一些特定的规则。
线性变换和矩阵变换则是向量空间中的基本操作,它们有着重要的应用,例如在机器学习和物理学等领域中。
一、线性变换的定义和性质线性变换是指将一个向量空间中的向量映射到另一个向量空间中的向量的变换。
严格地说,线性变换应该满足以下两个性质:1. 对于任意向量a和b,有T(a+b) = T(a) + T(b);2. 对于任意向量a和标量k,有T(ka) = kT(a)。
这两个性质分别对应向量的加法和乘法。
线性变换不仅用于向量空间中,还可以应用于其他数学领域,例如微积分和拓扑学等。
线性变换有很多重要的性质,例如:1. 线性变换可以用矩阵表示;2. 线性变换保持向量空间的结构不变;3. 线性变换可以有逆变换,逆变换也是线性变换。
这些性质使得线性变换成为了一个非常常见的数学工具。
二、矩阵变换的定义和性质矩阵变换是指将一个向量空间中的向量用矩阵相乘的方式进行变换。
矩阵变换的定义可以表示为:T(x) = Ax其中T表示矩阵变换,A表示一个矩阵,x表示一个向量。
矩阵变换中的矩阵A具有很多特殊的性质,例如:1. 矩阵A可以表示线性变换;2. 矩阵A的行列式为0时,矩阵A不可逆,否则可逆;3. 矩阵A的秩表示变换后空间的维度;4. 矩阵A的特征值和特征向量可以用于描述变换的性质。
矩阵变换可以方便地进行计算,并且可以应用于很多实际问题中。
三、线性变换与矩阵变换的关系线性变换和矩阵变换有着密切的关系。
事实上,线性变换可以用矩阵表示,也可以通过矩阵变换来实现。
具体来说,任何一个线性变换T都可以表示成矩阵变换的形式:T(x) = Ax其中x表示一个向量,A表示一个矩阵。
如果我们在一个标准基下进行求解,那么矩阵A的每一列就是变换后的基向量的坐标。
同时,任何一个矩阵变换也可以表示成线性变换的形式。
对于任意矩阵A,可以定义一个线性变换T,使得:T(x) = Ax这里的x同样表示一个向量。
线性变换初步线性变换的定义表示与性质
线性变换初步
线性变换是线性代数中的一个重要概念,它在数学、物理学、计算
机科学等领域中都有广泛的应用。
本文将介绍线性变换的定义、表示
以及一些性质。
1. 定义
线性变换是指保持向量加法和数乘运算的变换。
具体来说,对于两
个向量u和v以及一个数k,如果对于线性变换T有以下两个性质成立:
a) T(u + v) = T(u) + T(v)
b) T(ku) = kT(u)
则称T为一个线性变换。
线性变换可以将一个向量空间中的向量映
射到另一个向量空间中的向量。
2. 表示
线性变换可以用矩阵表示。
设V和W分别是两个向量空间,假设
它们的维度分别为n和m。
如果存在一个n×m的矩阵A,使得对于任
意的向量u∈V,都有T(u) = Av,则称矩阵A表示线性变换T。
例如,对于一个二维平面上的旋转变换,可以通过一个2×2的矩阵
来表示。
对于一个三维向量的缩放变换,可以通过一个3×3的矩阵来
表示。
3. 性质
线性变换具有一些重要的性质:
a) 线性变换保持向量加法。
即,对于线性变换T和任意的向量u、v,有T(u + v) = T(u) + T(v)。
b) 线性变换保持数乘运算。
即,对于线性变换T和任意的向量u以
及数k,有T(ku) = kT(u)。
c) 线性变换保持零向量。
即,对于线性变换T,有T(0) = 0。
d) 线性变换保持线性组合。
即,对于线性变换T和任意的向量组
u₁, u₂, ..., uₙ以及对应的系数k₁, k₂, ..., kₙ,有T(k₁u₁ + k₂u₂ + ... + kₙuₙ) = k₁T(u₁) + k₂T(u₂) + ... + kₙT(uₙ)。
e) 线性变换的复合仍然是线性变换。
即,如果T₁表示线性变换S₁,T₂表示线性变换S₂,则T₁∘T₂表示线性变换S₁∘S₂。
这些性质使得线性变换在代数运算和几何变换中具有重要的应用。
总结
线性变换是保持向量加法和数乘运算的变换。
它可以用矩阵来表示,具有保持向量加法、数乘运算、零向量、线性组合以及复合的性质。
线性变换在数学和其它领域中有广泛的应用,在代数运算和几何变换
中起着重要的作用。
对于进一步的学习和应用,线性变换的初步理解
是非常重要的。