高三数学空间向量及其运算2
- 格式:ppt
- 大小:415.00 KB
- 文档页数:16
第6讲 空间向量及其运算[学生用书P157]1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b .(2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称为平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两个不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.5.空间位置关系的向量表示直线l 的方向向量为n ,平面α的法向量为ml ∥α n ⊥m ⇔n ·m =0 l ⊥αn ∥m ⇔n =λm 平面α,β的法向量分别为n ,m α∥β n ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =0常用结论1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间内任意一点.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两个非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( )(6)若A ,B ,C ,D 是空间中任意四点,则有AB →+BC →+CD →+DA →=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K混淆向量共线与共面致误.1.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直解析:选B .由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB 与CD 没有公共点,所以AB ∥CD.2.若a =(2,3,m ),b =(2n ,6,8),且a ,b 为共线向量,则m +n 的值为( )A .7B .52C .6D .8解析:选C.由a ,b 为共线向量,得22n =36=m8,解得m =4,n =2,则m +n =6.故选C.3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=( )A.627 B .637 C.647D.657解析:选D.显然a 与b 不共线,如果a ,b ,c 三向量共面,则c =x a +y b ,即x (2,-1,3)+y (-1,4,-2)=(7,5,λ),所以⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.故选D.[学生用书P158]空间向量的线性运算(自主练透)1.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B.因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →).所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →) =12[(3,-5,-2)+(-7,-1,-4)] =12(-4,-6,-6)=(-2,-3,-3).2.在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →.解:(1)MG →=MA →+AG →=12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →. (2)OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 解:(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +12b . (2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC → =-a +b +12AD →=-a +b +12c . (3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP → =-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c ,又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c .用已知向量表示未知向量的解题策略(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量的加法、减法和数乘运算的几何意义.首尾相接的若干个向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间中仍然成立.共线、共面向量定理的应用(师生共研)如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?【解】 (1)因为AM →=kAC 1→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,所以由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合, MN 在平面ABB 1A 1内,当0<k ≤1时, MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, 所以MN ∥平面ABB 1A 1.三点P ,A ,B 共线空间四点M ,P ,A ,B 共面P A →=λPB →MP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12 B .-13,12 C .-3,2D .2,2解析:选A.因为a ∥b ,所以b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),所以⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎨⎧λ=2,μ=12或⎩⎨⎧λ=-3,μ=12. 2.若A (-1,2,3),B (2,1,4),C (m ,n ,1)三点共线,则m +n =________. 解析:AB →=(3,-1,1),AC →=(m +1,n -2,-2). 因为A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →. 即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得λ=-2,m =-7,n =4.所以m +n =-3.答案:-33.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b ,AA 1→=c . 由题图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12AB →=12a +b +c=12AB →+AD →+AA 1→.(2)证明:由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →, 因为EG 与AC 无公共点,所以EG ∥AC ,因为EG ⊄平面AB 1C ,AC ⊂平面AB 1C , 所以EG ∥平面AB 1C . 又因为AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,因为FG 与AB 1无公共点,所以FG ∥AB 1, 因为FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , 所以FG ∥平面AB 1C ,又因为FG ∩EG =G ,FG ,EG ⊂平面EFG , 所以平面EFG ∥平面AB 1C .空间向量数量积的应用(典例迁移)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD →.【解】 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°. (1)EF →=12BD →=12c -12a ,BA →=-a , EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14.(2)EG →·BD →=(EA →+AD →+DG →)·(AD →-AB →) =⎝ ⎛⎭⎪⎫-12AB →+AD →+AG →-AD →·(AD →-AB →) =⎝ ⎛⎭⎪⎫-12AB →+12AC →+12AD →·(AD →-AB →)=⎝ ⎛⎭⎪⎫-12a +12b +12c ·(c -a ) =12(-1×1×12+1×1×12+1+1-1×1×12-1×1×12) =12.【迁移探究1】 (变问法)在本例条件下,求证EG ⊥AB . 证明:由例题知EG →=12(AC →+AD →-AB →)=12(b +c -a ), 所以EG →·AB →=12(a ·b +a ·c -a 2) =12⎝ ⎛⎭⎪⎫1×1×12+1×1×12-1=0.故EG →⊥AB →,即EG ⊥AB .【迁移探究2】 (变问法)在本例条件下,求EG 的长. 解:由例题知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22. 【迁移探究3】 (变问法)在本例条件下,求异面直线AG 与CE 所成角的余弦值.解:由例题知AG →=12b +12c ,CE →=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的取值范围是⎝ ⎛⎦⎥⎤0,π2.所以异面直线AG 与CE 所成角的余弦值为23.空间向量数量积的三个应用求夹角设向量a ,b 所成的角为θ,则cos θ=a ·b|a ||b |,进而可求两异面直线所成的角求长度(距离)运用公式|a |2=a ·a ,可使线段长度的计算问题转化为向量数量积的计算问题解决垂直问题利用a ⊥b ⇔a ·b =0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题在三棱柱ABC A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N.设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长.解:(1)由题图知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→ =13(c -a )+a +13(b -a )=13a +13b +13c . (2)由题设条件知,因为(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,所以|a +b +c |=5,|MN →|=13|a +b +c |=53.利用向量证明平行与垂直问题(多维探究) 角度一 证明平行问题(一题多解)如图所示,平面P AD ⊥平面ABCD ,且四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB ∥平面EFG ; (2)平面EFG ∥平面PBC .【证明】 (1)因为平面P AD ⊥平面ABCD ,且四边形ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).方法一:EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2),所以PB →·n =0,所以n ⊥PB →, 因为PB ⊄平面EFG ,所以PB ∥平面EFG .方法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1). 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), 所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线,所以PB →,FE →与FG →共面. 因为PB ⊄平面EFG ,所以PB ∥平面EFG .(2)因为EF →=(0,1,0),BC →=(0,2,0),所以BC →=2EF →, 因为BC 与EF 无公共点,所以BC ∥EF . 又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC .又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.角度二证明垂直问题如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O 落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.【证明】(1)如图所示,以O为坐标原点,以射线DB方向为x轴正方向,射线OD为y 轴正半轴,射线OP为z轴正半轴建立空间直角坐标系Oxyz.则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是AP→=(0,3,4),BC→=(-8,0,0),所以AP→·BC→=(0,3,4)·(-8,0,0)=0,所以AP→⊥BC→,即AP⊥BC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,所以AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BA →=(-4,-5,0),所以BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, 所以AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B ,BM ,BC ⊂平面BMC , 所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系; ②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =t u ⇔a 1=ta 3,b 1=tb 3,c 1=tc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =λv ⇔a 3=λa 4,b 3=λb 4,c 3=λc 4. ⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证: AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. 解:(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, 所以a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,所以|AC 1→|=6,即AC 1的长为 6.(2)证明:因为AC 1→=a +b +c ,BD →=b -a , 所以AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c=b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0. 所以AC 1→⊥BD →,所以AC 1⊥BD . (3)BD 1→=b +c -a ,AC →=a +b , 所以|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.所以cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.所以AC 与BD 1夹角的余弦值为66.[学生用书P399(单独成册)][A 级 基础练]1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →=( )A.12(b +c -a ) B .12(a +b +c ) C.12(a -b +c )D.12(c -a -b )解析:选D.MN →=MA →+AO →+ON →=12(c -a -b ).2.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( )A .9B .-9C .-3D .3解析:选B.显然a 与b 不共线,若a ,b ,c 三向量共面,则c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),所以⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.3.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定解析:选B.如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.4.如图,在大小为45°的二面角A EF D 中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3 B . 2 C .1D.3- 2解析:选D.因为BD →=BF →+FE →+ED →,所以|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,所以|BD →|=3- 2.5.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66 B .66 C .-66D .± 6解析:选C.OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66.6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.解析:因为OC →=12AC →=12(AB →+AD →),所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 答案:12AB →+12AD →+AA 1→7.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是CD ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,MN =________.解析:连接PD (图略),因为M ,N 分别为CD ,PC 的中点,所以MN =12PD ,又P (0,0,1),D (0,1,0),所以PD =02+(-1)2+12=2,所以MN =22.答案:228.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |, OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos 〈a ,c 〉-|a ||b |cos 〈a ,b 〉, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:09.如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1AB C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:因为二面角A 1AB C 是直二面角,四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC .又因为AB =AC ,BC =2AB , 所以∠CAB =90°, 即CA ⊥AB ,所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).(1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0). 所以A 1B 1→=2n ,即A 1B 1→∥n ,又A 1B 1⊄平面AA 1C ,所以A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎨⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). 所以AB 1→·m =0×1+2×(-1)+2×1=0, 所以AB 1→⊥m , 又AB 1⊄平面A 1C 1C , 所以AB 1∥平面A 1C 1C .10.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.求证:(1)EF ∥平面P AB ; (2)平面P AD ⊥平面PDC .证明:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12, F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →, 又EF →与AB →无公共点, 所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊂/ 平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , 所以DC ⊥平面P AD .又DC ⊂平面PCD , 所以平面P AD ⊥平面PDC .[B 级 综合练]11.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选B.当x =2,y =-3,z =2时,即OP →=2OA →-3OB →+2OC →.则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP →=mAB →+nAC →(m ,n ∈R ),即OP →-OA →=m (OB →-OA →)+n (OC →-OA →),即OP →=(1-m -n )·OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1D.⎝ ⎛⎭⎪⎫24,24,1解析:选C.设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝ ⎛⎭⎪⎫22,22,0,又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=(x -2,y -2,1),因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22,y -2=-22,⇒⎩⎪⎨⎪⎧x =22,y =22,所以M 点的坐标为⎝ ⎛⎭⎪⎫22,22,1.13.在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A ⎝ ⎛⎭⎪⎫0,32,0,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫12,0,0,C 1⎝ ⎛⎭⎪⎫12,0,2,M (0,0,0),设N ⎝ ⎛⎭⎪⎫12,0,t , 因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎫12,0,21+λ, 所以AB 1→=⎝ ⎛⎭⎪⎫-12,-32,2,MN →=⎝ ⎛⎭⎪⎫12,0,21+λ. 又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:1514.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 的坐标;若不存在,试说明理由.解:(1)证明:由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,从而得EF ⊥CD .(2)存在.理由如下:假设存在满足条件的点G , 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,故存在满足条件的点G ,且点G 的坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 为AD 的中点.[C 级 提升练]15.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =BC =1,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( )A.23 B .33 C.23D.53解析:选C.以D 点为坐标原点,DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则D (0,0,0),C (0,1,0),A (1,0,0),C 1(0,1,2),所以DC 1→=(0,1,2),DA →=(1,0,0),DC →=(0,1,0).设DP →=λDC 1→,AQ →=μAC →(λ,μ∈[0,1]). 所以DP →=λ(0,1,2)=(0,λ,2λ),DQ →=DA →+μ(DC →-DA →)=(1,0,0)+μ(-1,1,0)=(1-μ,μ,0). 所以|PQ →|=|DQ →-DP →|=|(1-μ,μ-λ,-2λ)| =(1-μ)2+(μ-λ)2+4λ2 =5⎝ ⎛⎭⎪⎫λ-μ52+95⎝ ⎛⎭⎪⎫μ-592+49≥49=23,当且仅当λ=μ5,μ=59,即λ=19,μ=59时取等号. 所以线段PQ 长度的最小值为23.故选C.16.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.解:(1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,所以AO 2+A 1O 2=AA 21, 所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0, 3),C 1(0,2, 3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, 所以BD →⊥AA 1→,即BD ⊥AA 1. (2)存在.理由如下:假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n =(x 2,y 2,z 2), 则⎩⎨⎧n ⊥A 1C 1→⇔n ·A 1C 1→=0,n ⊥DA 1→⇔n ·DA 1→=0,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 则⎩⎪⎨⎪⎧2y 2=0,3x 2+3z 2=0,令x 2=1,得z 2=-1,所以n =(1,0,-1), 因为BP ∥平面DA 1C 1, 令x 2=1,得z 1=-1,所以n ⊥BP →,即n ·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
一:教学目的:1.理解空间向量的概念,掌握空间向量的加法、减法和数乘运算2.用空间向量的运算意义、运算律以及共线、共面向量定理解决立几问题二:自主导学问题1:空间向量的相关概念有哪些?(1)向量的基本要素:(2)向量的表示:(3)向量的长度:(4)特殊的向量:(5)相等的向量:(6)平行向量(共线向量):问题2平面向量的加减法,数与向量的乘积及其各运算的坐标表示和性质如下表,其适用问题3:共线向量共面向量注:“空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。
因此凡是只涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们”这句话正确吗?为什么?问题4:平面共线向量定理?空间共线向量定理空间共面向量定理三:典例分析:CD题型一 空间向量的线性运算例2 已知空间四边形A B C D ,连结,A C B D ,设,M G 分别是,B C C D的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++ ;(3)1()2AG AB AC -+ .题型二 共线、共面向量定理的应用例3已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点, (1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;四:当堂达标如图,在空间四边形ABCD 中,,E F 分别是AD 与BC 的中点,求证:1()2EF AB DC =+ .五:拓展延伸:如图设A 是△BCD 所在平面外的一点,G 是△BCD 的重心求证:1()3AG AB AC AD =++BC DMGA BCDEFA。
高三知识点向量高三知识点:向量向量是高中数学中非常重要的概念之一。
它在几何和代数中都有广泛的应用,特别是在解决各种几何问题和物理问题时。
本文将介绍向量的定义、性质以及常见的计算方法和应用。
一、向量的定义和表示方法在平面几何和空间几何中,向量可以用有序的数对或有序的三元组表示。
设P和Q是平面上或空间中的两点,向量PQ表示从点P到点Q的位移。
记作→PQ,或者简记为→a。
二、向量的性质1. 向量的相等性:两个向量相等,当且仅当它们的起点和终点相同。
2. 零向量:长度为零的向量称为零向量,记作→0。
零向量的方向可以是任意方向。
3. 负向量:设→a是一个非零向量,则称与→a有相同大小,方向相反的向量为→a的负向量,记作-→a。
4. 平行向量:如果两个向量的方向相同或相反,那么它们是平行向量。
5. 向量的数量积:设→a和→b是两个向量,它们的数量积记作→a·→b,定义为|→a|·|→b|·cosθ,其中θ是→a与→b的夹角。
三、向量的运算1. 向量的加法:向量的加法满足平行四边形法则,即把两个向量的起点放在一起,然后用一条新的向量连接它们的终点。
2. 向量的数乘:向量的数乘是将向量的长度进行伸缩的运算。
当数为正数时,向量的方向不变;当数为负数时,向量的方向相反。
3. 向量的减法:向量的减法可以通过使用向量的负向量和加法来表示,即→a-→b=→a+(-→b)。
4. 向量的数量积:向量的数量积满足交换律和分配律,可以用于计算向量的夹角、判断向量的正交性等问题。
5. 向量的叉乘(仅适用于三维向量):向量的叉乘满足反交换律和结合律,可以用于计算两个向量所在平面的法向量。
四、向量的应用1. 几何应用:向量常用于解决几何问题,如线段相交、判断点是否在三角形内部、判断线段的相对位置等。
2. 物理应用:力、速度、加速度等物理量都可以通过向量表示,并利用向量的加法和数量积进行计算。
3. 数据分析:向量也常用于数据分析中,如表达多维数据、计算特征向量和特征值等。
专题33 空间向量及其运算1.了解空间直角坐标系,会用空间直角坐标表示点的位置2.会简单应用空间两点间的距离公式3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示4.掌握空间向量的线性运算及其坐标表示5.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直热点题型一 空间向量的运算例1、如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点。
(1)化简:A 1O →-12AB →-12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求x 、y 、z 的值。
解析:(1)∵AB →+AD →=AC →,∴A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-12AC →=A 1O →-AO →=A 1A →。
(2)∵EO →=ED →+DO →=23D 1D →+12DB →=23D 1D →+12(DA →+AB →)=23A 1A →+12DA →+12AB → =12AB →-12AD →-23AA 1→, ∴x =12,y =-12,z =-23。
【提分秘籍】 空间向量的表示方法用已知不共面的向量表示某一向量时,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则,把所求向量用已知向量表示出来。
【举一反三】如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c热点题型二 共线、共面向量定理的应用例2、已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH 。
第十三章空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时 空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。
专题8.5 空间向量及其运算-2019年高三数学一轮复习题型总结一 空间向量的线性运算例 1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.(2)三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 【解析】 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 【答案】12AB →+12AD →+AA 1→点拨 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.巩固1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.二 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形A BCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).【解析】证明 (1)连接BG ,则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG .由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12[12(OA →+OB →)]+12[12(OC →+OD →)] =14(OA →+OB →+OC →+OD →). 点拨 (1)证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM →).巩固2已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.三 空间向量数量积的应用例3 如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .(2) 【解析】 设异面直线AC 1与A 1D 所成的角为θ, 则cos θ=|cos 〈AC 1→,A 1D →〉|=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC1→||A 1D →|. ∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c2=|b |2-2b ·c +|c |2=12--+22=7.∴cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147.点拨 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.巩固3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.变式:如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .(1) 【解析】 如图,建立空间直角坐标系.依题意得B (0,1,0),N (1,0,1), 所以|BN →|=-2+-2+-2= 3.(3)证明 依题意得C 1(0,0,2),M (12,12,2),A 1B →=(-1,1,-2),C 1M →=(12,12,0).所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .巩固4(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与 1DB 所成角的余弦值为( )A .15B C D答案与解析巩固2【解析】 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →) 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且基线过同一点M , ∴M ,A ,B ,C 四点共面. 从而点M 在平面ABC 内.巩固3【解析】 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.【答案】C。
向量知识点总结高中高三一、向量的概念和性质向量是指既有大小又有方向的量,通常用箭头表示。
记作→AB或AB。
向量的大小称为模,用|→AB|表示。
向量的方向可以用角度、方向角或单位向量表示。
二、向量的表示方法1. 自由向量表示:以起点为原点,终点为坐标,用坐标向量<AB>表示。
2. 定位向量表示:以某个点为原点,另一点为坐标,用坐标<AB>表示。
三、向量的基本运算1. 向量的加减法向量的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。
向量的减法可以转化为加法,即A-B = A + (-B)。
2. 数乘将一个向量与一个实数相乘,得到的新向量与原向量的方向一致(同方向或反方向),大小为原向量的模与实数的乘积。
3. 数量积(点积)定义:两个向量的数量积等于它们模的乘积与它们夹角的余弦值的乘积。
性质:数量积满足交换律和分配律,即A·B=B·A,A·(B+C)=A·B+A·C。
定理:若A·B=0,则向量A与向量B垂直。
4. 向量积(叉积)定义:两个向量的向量积等于以这两个向量为邻边的平行四边形的有向面积。
性质:向量积满足反交换律和分配律,即A×B=-(B×A),A×(B+C)=A×B+A×C。
定理:向量A与向量B的向量积等于向量A、B、O组成的三角形的有向面积的二倍。
四、向量的线性相关与线性无关若存在不全为0的实数k1、k2、…、kn,使得k1A1+k2A2+…+knAn=0,那么向量组A1、A2、…、An线性相关;否则,它们线性无关。
五、向量的夹角和投影1. 夹角定义对于两个非零向量A和B,它们的夹角θ满足0≤θ≤π。
夹角θ的余弦称为方向余弦。
2. 向量的投影若A和B是两个非零向量,A在B上的投影为|(A·B)/|B||∥B∥。
六、平面向量的应用1. 平面向量的平移平面上的向量可以进行平移操作,即将向量A的起点与向量B的终点重合,得到一个新向量C,记作C=A+B。