箬阳乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 格式:pdf
- 大小:437.37 KB
- 文档页数:19
中心镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)用不等式表示如图所示的解集,其中正确的是()A.x>-2B.x<-2C.x≥-2D.x≤-2【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:图中数轴上表达的不等式的解集为:.故答案为:C.【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
2、(2分)在4,—0.1,,中为无理数的是()A. 4B. —0.1C.D.【答案】D【考点】无理数的认识【解析】【解答】解:这四个数中,4,—0.1,,是有理数是无理数故答案为:D【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
3、(2分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔A. 1B. 2C. 3D. 4【答案】D【考点】一元一次不等式的应用【解析】【解答】解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故答案为:D【分析】设出可买笔的数量,根据花费小于21元可列出一元一次不等式,解不等式即可求得买笔的最大数.4、(2分)下列方程组中,是二元一次方程组的是()A. B. C. D.【答案】B【考点】二元一次方程组的定义【解析】【解答】解:A、方程组中含3个未知数,A不是二元一次方程组;B、两个未知数,最高次数为是二元一次方程组;C、两个未知数,最高次数为不是二元一次方程组;D、两个未知数,一个算式未知数次数为不是二元一次方程组.故答案为:B.【分析】二元一次方程组满足三个条件;(1)只含有两个未知数,且未知数的最高次数都是1,且是整式方程。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
中路乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)用适当的符号表示a的2倍与4的差比a的3倍小的关系式()A.2a+4<3aB.2a-4<3aC.2a-4≥3aD.2a+4≤3a【答案】B【考点】不等式及其性质【解析】【解答】解:根据题意,可由“a的2倍与4的差”得到2a-4,由“a的3倍”得到3a,然后根据题意可得:2a-4<3a故答案为:B.【分析】先表示出“a的2倍与4的差”,再表示出“a的3倍”,然后根据关键字"小"(差比a的3倍小)列出不等式即可。
2、(2分)下列四种说法:① x=是不等式4x-5>0的解;② x=是不等式4x-5>0的一个解;③ x>是不等式4x-5>0的解集;④ x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【考点】不等式的解及解集【解析】【解答】解:①当x=时,不等式4x-5=0,故原命题错误;②当x=时,不等式4x-5=5>0,故原命题正确;③解不等式4x-5>0得,x>,故原命题正确;④与③矛盾,故错误.故正确的有②和③,故答案为:B.【分析】解不等式4x-5>0 可得x>,不等式的解是解集中的一个,而不等式的解集包含了不等式的所有解,①x=不在x>的范围内;②x=在x>的范围内;③解不等式4x-5>0 可得x>;④x>2中任何一个数都可以使不等式4x-5>0成立,但它并不是所有解的集合。
根据以上分析作出判断即可。
3、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[ ]=5,则x的取值可以是()A.40B.45C.51D.56【答案】C【考点】不等式及其性质,解一元一次不等式组【解析】【解答】解:∵表示不大于的最大整数,∴可化为为:,解得:,∴上述四个选项中,只有C选项中的数51可取.故答案为:C【分析】由题中的规定[x]表示不大于x的最大整数,找出的取值范围,然后解不等式组即可。
普通镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级 __________ 座号_______ 姓名____________ 分数____________ 、选择题1、(2分)如图,下列说法中错误的是(C EA. / GBD和/ HCE是同位角B. / ABD 和/ ACE是同位角C. / FBC和/ ACE是内错角D. / GBC和/ BCE是同旁内角【答案】A【考点】同位角、内错角、同旁内角【解析】【解答】解:A、/ GBD和/ HCE不符合同位角的定义,故本选项正确;B、/ ABD和/ ACE是同位角,故本选项错误;C、/FBC和/ ACE是内错角,故本选项错误;D、/ GBC和/ BCE是同旁内角,故本选项错误;故答案为:A.【分析】】/ GBD和/ HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角2、(2分)下列各组数中,是方程2x-y=8的解的是()【答案】C【考点】二元一次方程的解【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4 ,当x=0.5 时,y=-7,当x=5 时,y=2.故答案为:C.【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。
3、(2分)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案•小明说:我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:设各人的任务为x、y、z,可以列出方程x+y+z=4 •” 小新接着说:那么问题就成了问这个方程有几个正整数解. ”现在请你说说看:这个方程正整数解的个数是()A. 6个B. 5个C. 4个D. 3个【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:①当x=1时,y=1 , z=2或y=2, z=1;②当y=1 时,x=1 ,z=2 或x=2 ,z=1 ;③当z=1时,x=1, y=2或y=1 , x=2 .故答案为:D.【分析】根据题意列出三元一次方程,根据每人至少1 只,分三种情况:当x=1 ;当y=1 ;当z=1 ,求出其整数解即可。
下乡乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果方程组的解与方程组的解相同,则a、b的值是()A.B.C.D.【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:由题意得:是的解,故可得:,解得:.故答案为:A.【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。
2、(2分)下列说法中正确的是()A. 有且只有一条直线垂直于已知直线B. 互相垂直的两条线段一定相交C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D. 直线c外一点A与直线c上各点连接而成的所有线段中,最短的线段长是3cm,则点A到直线c的距离是3cm.【答案】D【考点】点到直线的距离【解析】【解答】解:A.一条直线的垂线有无数条,A不符合题意;B.互相垂直的两条线段所在的直线一定相交,但这两条线段不一定相交,B不符合题意;C.从直线外一点到这条直线的垂线段长度,叫做这点到这条直线的距离,C不符合题意;D.直线c外一点A与直线c上各点连接而成的所有线段中,最短的线段长是3cm,则点A到直线c的距离是3cm,D符合题意.故答案为:D【分析】直线外一点到直线的最短距离为,这点到这条直线的垂线段的长.3、(2分)已知正方体的体积为64,则这个正方体的棱长为()A. 4B. 8C.D.【答案】A【考点】立方根及开立方【解析】【解答】解:∵正方体的体积是64∴正方体的棱长为=4【分析】根据正方体的体积等于棱长的三次方,开立方根求解即可。
4、(2分)所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数【答案】D【考点】实数在数轴上的表示【解析】【解答】解:∵实数与数轴上的点成一一对应。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
夏乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)已知关于x,y的方程组,当x+y=3时,求a的值()A. -4B. 4C. 2D.【答案】B【考点】解一元一次方程,解二元一次方程组【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;故答案为:B。
【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a 的方程,求解即可得出a的值。
2、(2分)已知方程组,则6x+y的值为()A. 15B. 16C. 17D. 18【答案】C【考点】解二元一次方程组【解析】【解答】解:在方程组中,①+②,得6x+y=17.故答案为:C.【分析】x的系数都是3,y的系数是+2,-1,方程①+②,得6x+y=17.3、(2分)如图,能和∠α构成内错角的角的个数是()A. 1B. 2C. 3D. 4【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】解:如图所示:与∠α成内错角的角有2个.故答案为:B.【分析】两条直线被第三条直线所截形成的角中,内错角是两个角位于第三条直线的两侧,在两条直线之间,两个角的位置交错,呈“Z字型”,即可得出答案。
4、(2分)若m<0,则m的立方根是()A.B.-C.±D.【答案】A【考点】立方根及开立方【解析】【解答】因为任何一个数都有一个立方根,所以无论m取何值,m的立方根都可以表示故答案为:A【分析】正数有一个正的立方根,零的立方根是零,负数有一个负的立方根,所以无论m为何值,m的立方根都可以表示为5、(2分)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】平行线的判定【解析】【解答】解:①过两点有且只有一条直线,正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,该说法正确;④经过直线外一点有且只有一条直线与已知直线平行,正确,【分析】②两条不相同的直线如果相交,有且只有一个公共点,如果平行,没有公共点。
初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
2、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。
3、(2分)在这些数中,无理数有()个.A. 1B. 2C. 3D. 4【答案】B【考点】无理数的认识【解析】【解答】解:依题可得:无理数有:-,,∴无理数有2个.故答案为:B.【分析】无理数定义:无限不循环小数,由此即可得出答案.4、(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()A.1种B.2种C.3种D.4种【答案】B【考点】二元一次方程的应用【解析】【解答】解:设用了2元x张,5元y张,则2x+5y=23,2x=23-5y,x= ,∵x,y均为正整数,∴或.即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.故答案为:B.【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。
泥阳镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果a(a>0)的平方根是±m,那么()A.a2=±mB.a=±m2C.=±mD.± =±m【答案】C【考点】平方根【解析】【解答】解:∵a(a>0)的平方根是±m,∴故答案为:D.【分析】根据平方根的意义即可判断。
2、(2分)二元一次方程7x+y=15有几组正整数解()A.1组B.2组C.3组D.4组【答案】B【考点】二元一次方程的解【解析】【解答】解:方程可变形为y=15﹣7x.当x=1,2时,则对应的y=8,1.故二元一次方程7x+y=15的正整数解有,,共2组.故答案为:B【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。
3、(2分)若不等式组无解,则实数a的取值范围是()A. a≥-1B. a<-1C. a≤1D. a≤-1【答案】C【考点】解一元一次不等式组【解析】【解答】解:由①得:x≥4-a由②得:-3x>-9解之:x<3∵原不等式组无解∴4-a≥3解之:a≤1故答案为:C【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。
注意:4-a≥3(不能掉了等号)。
4、(2分)如果方程组与有相同的解,则a,b的值是()A. B. C. D.【答案】A【考点】解二元一次方程组【解析】【解答】解:由已知得方程组,解得,代入,得到,解得.【分析】把4x-5y=41和2x+3y=-7组成方程组,剩下的两个组成方程组,由4x-5y=41和2x+3y=-7解得x和y 的值,并把它们代入到另一个方程组中,求出a和b的值.5、(2分)下列不等式组是一元一次不等式组的是()A.B.C.D.【答案】C【考点】一元一次不等式组的定义【解析】【解答】根据一元一次不等式组的定义可知选项C正确,故选:C.【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.6、(2分)下列说法:①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
在中乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若一个数的平方根是±8,那么这个数的立方根是()A. 4B. ±4C. 2D. ±2【答案】A【考点】平方根,立方根及开立方【解析】【解答】解:一个数的平方根是±8,则这个数是64,则它的立方根是4.故答案为:A【分析】根据平方根的定义,这个数应该是(±8)2=64,再根据立方根的定义求出64的立方根即可。
2、(2分)已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A. ﹣,B. ,﹣C. ,D. ﹣,﹣【答案】A【考点】解二元一次方程组,偶次幂的非负性,绝对值的非负性【解析】【解答】解:∵|x+y|+(x﹣y+5)2=0,∴x+y=0,x﹣y+5=0,即,①+②得:2x=﹣5,解得:x=﹣,把x=﹣代入①得:y= ,即方程组的解为,故答案为:A.【分析】根据非负数之和为0,则每一个数都为0,得出x+y=0,x﹣y+5=0,再解二元一次方程组求解,即可得出答案。
3、(2分)a是非负数的表达式是()A.a>0B.≥0C.a≤0D.a≥0【答案】D【考点】不等式及其性质【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,故答案为:D.【分析】正数和0统称非负数,根据这个定义作出判断即可。
4、(2分)若,则y用只含x的代数式表示为()A.y=2x+7B.y=7﹣2xC.y=﹣2x﹣5D.y=2x﹣5【答案】B【考点】解二元一次方程组【解析】【解答】解:,由①得:m=3﹣x,代入②得:y=1+2(3﹣x),整理得:y=7﹣2x.故答案为:B.【分析】由方程(1)变形可将m用含x、y的代数式表示,再将m代入方程(2)中整理可得关于x、y的方程,再将这个方程变形即可把y用含x的代数式表示出来。
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
永久乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若方程组中的x是y的2倍,则a等于()A. ﹣9B. 8C. ﹣7D. ﹣6【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:由题意可得方程组,把③代入①得,代入②得a=﹣6.故答案为:D.【分析】根据x是y的2倍,建立三元一次方程组,根据方程①③求出x、y的值,再将x、y的值代入方程②,建立关于a的方程求解即可。
2、(2分)下列方程组中,是二元一次方程组的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;B、方程组是二元一次方程组,故B符合题意;C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;D、方程﹣1=y是分式方程,故D不符合题意.故答案为:B.【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。
根据这三个条件即可判断。
3、(2分)对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()A. 1B. 3C. 4D. 5【答案】A【考点】代数式求值,三元一次方程组解法及应用【解析】【解答】解:将x=-1,x=0,x=3,分别代入代数式,可得,计算得出a=b=-,c=-1,代数式为-x2+x+1,将x=2代入求出代数式,得-×4+×2+1=1.故答案为:A.【分析】将x值代入代数式,得出三元一次方程组,求出a、b、c的值,再将x=2代入代数式求解。
4、(2分)如图,已知= ,那么()A. AB//CD,理由是内错角相等,两直线平行.B. AD//BC,理由是内错角相等,两直线平行.C. AB//CD,理由是两直线平行,内错角相等.D. AD//BC,理由是两直线平行,内错角相等.【答案】B【考点】平行线的判定【解析】【解答】∵∠1=∠2∴AD∥BC(内错角相等,两直线平行)故答案为:B【分析】根据已知可知结合图形,利用平行线的判定即可求解。
小箬乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A. 甲的第三次成绩与第四次成绩相同B. 第三次训练,甲、乙两人的成绩相同C. 第四次训练,甲的成绩比乙的成绩少2分D. 五次训练,甲的成绩都比乙的成绩高【答案】D【考点】折线统计图【解析】【解答】解:如图所示:A、甲的第三次成绩与第四次成绩相同,正确,故选项不符合题意;B、第三次训练,甲、乙两人的成绩相同,正确,故选项不符合题意;C、第四次训练,甲的成绩比乙的成绩少2分,正确,故选项不符合题意;D、五次训练,乙的成绩都比甲的成绩高,错误,故选项符合题意.故答案为:D【分析】根据统计图中对应的数据对选项进行判断即可解答.2、(2分)计算=()A. -8B. 2C. -4D. -14【答案】A【考点】实数的运算【解析】【解答】原式=-5-3=-8.故答案为:A【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。
3、(2分)在实数,,,0,-1.414,,,0.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:无理数有:共2个.故答案为:A.【分析】无理数指的是无限不循环的小数,其中包括开放开不尽的数,特殊之母,还有0.101001000100001 4、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】A选项,错误,所以不符合题意;B选项,∠2与∠4不是同位角,错误,所以不符合题意;C选项,∠3与∠4不是同位角,错误,所以不符合题意;D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;故答案为:D。
箬坑乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若关于x的方程ax=3x﹣1的解是负数,则a的取值范围是()A. a<1B. a>3C. a>3或a<1D. a<2【答案】B【考点】解一元一次方程,解一元一次不等式【解析】【解答】解:方程ax=3x﹣1,解得:x=﹣,由方程解为负数,得到﹣<0,解得:a>3,则a的取值范围是a>3.故答案为:B.【分析】根据题意用含有a的式子表示x,再解不等式求出a的取值范围2、(2分)小明的作业本上有四道利用不等式的性质,将不等式化为x>a或x<a的作业题:①由x+7>8解得x>1;②由x<2x+3解得x<3;③由3x-1>x+7解得x>4;④由-3x>-6解得x<-2.其中正确的有()A.1题B.2题C.3题D.4题【答案】B【考点】不等式及其性质【解析】【解答】解:①不等式的两边都减7,得x>1,故①正确;②不等式两边都减(x+3),得x>-3,故②错误;③不等式的两边都加(1-x),得2x>8,不等式的两边都除以2,得x>4,故③正确;④不等式的两边都除以-3,得x<2,故④错误,所以正确的有2题,故答案为:B.【分析】(1)根据不等式的性质①两边都减7即可作出判断。
(2)根据不等式的性质①两边都减(x+3),作出判断即可。
(3)先根据不等式的性质①两边都加(1-x),再根据不等式的性质②两边都除以2即可作出判断。
(4)根据不等式的性质②两边都除以-3(注意不等号的方向)即可作出判断。
3、(2分)下列各式中是二元一次方程的是()A.x+3y=5B.﹣xy﹣y=1C.2x﹣y+1D.【答案】A【考点】二元一次方程的定义【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;C. 2x﹣y+1,不是方程,不符合题意;D. ,不是整式方程,不符合题意,故答案为:A.【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。
里阳乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A. 30°B. 45°C. 60°D. 75°【答案】B【考点】平行线的性质【解析】【解答】解:∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°,∵AB∥CD,∴∠ADC =∠BAD =135°,∴∠FDC=180°-∠ADC=45°.故答案为:B【分析】利用两直线平行内错角相等即可知∠ADC=∠BAD,因为∠BAD与∠EAB是互为邻补角,所以即可知∠ADC的度数,从而求出∠CDF的值.2、(2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A. 20°B. 55°C. 20°或55°D. 75°【答案】C【考点】二元一次方程组的其他应用,平行线的性质【解析】【解答】解:∵∠A的两边与∠B的两边分别平行∴∠A=∠B,∠A+∠B=180°∵∠A的度数比∠B的度数的3倍少40°∴∠A=3∠B-40°∴或解之:或故答案为:C【分析】根据∠A的两边与∠B的两边分别平行,得出∠A=∠B,∠A+∠B=180°,再根据∠A的度数比∠B 的度数的3倍少40°,建立两个二元一次方程组,解方程组,即可求得结果。
3、(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,无理数的认识【解析】【解答】①任何无理数都是无限不循环小数,故①正确;②实数与数轴上的点一一对应,故②错误;③在1和3之间的无理数有无数个,故③错误;④是无理数,故④错误;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;故答案为:B.【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。
正阳乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若不等式组无解,则实数a的取值范围是()A. a≥-1B. a<-1C. a≤1D. a≤-1【答案】C【考点】解一元一次不等式组【解析】【解答】解:由①得:x≥4-a由②得:-3x>-9解之:x<3∵原不等式组无解∴4-a≥3解之:a≤1故答案为:C【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。
注意:4-a≥3(不能掉了等号)。
2、(2分)在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】D【考点】点的坐标,点的坐标与象限的关系【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.故答案为:D.【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.3、(2分)如图,直线相交于点于点,则的度数是()A. B. C. D.【答案】B【考点】余角、补角及其性质,对顶角、邻补角【解析】【解答】解:,,,对顶角相等,故答案为:B.【分析】因为OE ⊥AB ,所以根据余角的意义可得∠ A O C = 90 ∘−∠ C O E = 90 ∘−61 ∘= 29 ∘,再根据对顶角相等可得∠BOD=∠AOC=29。
4、(2分)16的平方根是()A. 4B. ±4C.D. ±【答案】B【考点】平方根【解析】【解答】解:∵±4的平方是16,∴16的平方根是±4.故答案为:B【分析】根据平方根的定义知:(±4)2=16,从而得出16的平方根。
夏阳乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班【答案】D【考点】用坐标表示地理位置【解析】【解答】解:年2班记作,表示8年4班,故答案为:D.【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。
2、(2分)下列说法正确的是()A. 3与的和是有理数B. 的相反数是C. 与最接近的整数是4D. 81的算术平方根是±9【答案】B【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;D.∵81的算术平方根是9,故错误,D不符合题意;故答案为:B.【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;B.相反数:数值相同,符号相反的数,由此可判断正确;C.根据的大小,可知其最接近的整数是3,故错误;D.根据算术平方根和平方根的定义即可判断对错.3、(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
箬阳乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.故答案为:A.【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、(2分)如图,能和∠α构成内错角的角的个数是()A. 1B. 2C. 3D. 4【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】解:如图所示:与∠α成内错角的角有2个.故答案为:B.【分析】两条直线被第三条直线所截形成的角中,内错角是两个角位于第三条直线的两侧,在两条直线之间,两个角的位置交错,呈“Z字型”,即可得出答案。
3、(2分)如图,已知数轴上的点A,B,C,D分别表示数﹣2、1、2、3,则表示数的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】∵2<<3,∴0<<1,故表示数的点P应落在线段OB上.故答案为:B【分析】根号5的被开方数介于两个完全平方数4和9之间,根据算数平方根的意义,被开方数越大,其算数平方根也越大,故根号5介于2和3 之间,从而得出∴介于0和1之间,进而得出点P表示的数应该落的位置。
4、(2分)下列方程组中,是二元一次方程组的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;B、方程组是二元一次方程组,故B符合题意;C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;D、方程﹣1=y是分式方程,故D不符合题意.故答案为:B.【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。
根据这三个条件即可判断。
5、(2分)下列条形中的哪一个能代表圆形图所表示的数据()A. B. C. D.【答案】C【考点】条形统计图【解析】【解答】解:从扇形图可以看出:整个扇形的面积被分成了3分,其中横斜杠阴影部分占总面积的,斜杠阴影部分占总面积的,非阴影部分占总面积的,即三部分的数据之比为::=1:1:2,在条形图中小长方形的高之比应为1:1:2,故答案为:C【分析】根据圆形图确定所占总体的比例,然后确定条形图的大小即可.6、(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()A. a>-2 014B. a<-2 014C. a>2 014D. a<2 014【答案】B【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:(a+2 014)x>a+2 014∵此不等式的解集为:x<1,∴a+2 014<0解之:a<-2 014故答案为:B【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。
7、(2分)下列各组数中互为相反数的是()A. 5和B. -|-5|和-(-5)C. -5和D. -5和【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,算术平方根,立方根及开立方【解析】【解答】A、,它们相等,因此A不符合题意;B、-|-5|=-5,-(-5)=5,-|-5|和-(-5)是相反数,因此B符合题意;C、=-5,它们相等,因此C不符合题意;D、-5和是互为负倒数,因此D不符合题意;故答案为:B【分析】根据算术平方根、立方根、绝对值、相反数的定义,对各选项逐一判断即可得出答案。
8、(2分)若关于x的方程ax=3x﹣1的解是负数,则a的取值范围是()A. a<1B. a>3C. a>3或a<1D. a<2【答案】B【考点】解一元一次方程,解一元一次不等式【解析】【解答】解:方程ax=3x﹣1,解得:x=﹣,由方程解为负数,得到﹣<0,解得:a>3,则a的取值范围是a>3.故答案为:B.【分析】根据题意用含有a的式子表示x,再解不等式求出a的取值范围9、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.10、(2分)2010年温州市初中毕业、升学考试各学科及满分值情况如下表:科目语文数学英语社会政治自然科学体育满分值15015012010020030若把2010年温州市初中毕业、升学考试各学科满分值比例绘成圆形统计图,则数学科所在的扇形的圆心角是()度.A. 72B. 144C. 53D. 106【答案】A【考点】扇形统计图【解析】【解答】解:根据表格,得总分=150+150+120+100+200+30=750.所以数学所在的扇形的圆心角= ×360°=72°.故答案为:A【分析】根据表格先计算总分值,从而得出数学所占的百分比,然后根据圆心角的度数=360°×数学所占的百分比即可得出结果.11、(2分)某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为()A. 18B. 19C. 20D. 21【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,依题意得2×15+8x≥190,解之得,x≥20,所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故答案为:C【分析】设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,从而根据前两天的工作量+后8天的工作量应该不小于190,列出不等式,求解即可。
12、(2分)下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.【答案】C【考点】图形的旋转,图形的平移【解析】【解答】A、此图案是将左边的图案绕着某一点旋转得到的,故A不符合题意;B、此图案是由一个基本图案旋转60°,120°,180°,240°,300°而得到的,故B不符合题意;C、此图案是由基本图案通过平移得到的,故C符合题意;D、此图案是通过折叠得到的,故D不符合题意;故答案为:C【分析】根据平移和旋转的性质,对各选项逐一判断即可。
二、填空题13、(1分)的最小值是,的最大值是,则________.【答案】-4【考点】代数式求值,一元一次不等式的应用【解析】【解答】解:的最小值是a,x≤-6的最大值是b,∴a=2,b=-6,∴a+b=2+(-6)=-4.故答案为:-4.【分析】由题意先求出a,b;再把a,b的在代入代数式计算即可得出答案。
14、(1分)的立方根是________.【答案】【考点】立方根及开立方【解析】【解答】∵,∴的立方根是.故答案为:【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
根据立方根的意义可求解。
15、(1分)为了奖励数学社团的同学,张老师恰好用100元在网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了________《数学史话》.【答案】7本【考点】二元一次方程的应用【解析】【解答】解:设张老师购买了x本《数学史话》,购买了y本《趣味数学》,根据题意,得:10x+6y=100,当x=7时,y=5;当x=4时,y=10;∴张老师最多可购买7本《数学史话》,故答案为:7本。
【分析】等量关系为:《数学史话》的数量×单价+《趣味数学》的数量×单价=100,设未知数列方程,再求出这个不定方程的正整数解,就可得出张老师最多可购买《数学史话》的数量。
16、(1分)如图,点O在直线AB上,OC⊥OD,OC,OF分别平分∠AOE和∠BOD,若∠AOC=20°,则∠BOF 的度数为________.【答案】35°【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】由OC⊥OD,得∠COD=90°,由角的和差,得∠BOD=180°-∠AOC-∠COD=180°-20°-90°=70°,由OF分别平分∠BOD,得∠BOF= ∠BOD=35°,故答案为:35°.【分析】根据图形和角的和差,得到∠BOD=180°-∠AOC-∠COD的度数,再由角平分线性质得到∠BOF的度数.17、(1分)若的整数部分为a,小数部分为b,则a-b的值为________.【答案】3−【考点】实数的运算【解析】【解答】∵4<5<9,∴2<<3,∴1<−1<2,∴a=1,b= −1-1=-2,∴a-b=3−.故答案是:3−.【分析】因为2 <<3,所以1<−1<2,即整数部分a=1,小数部分b=-2,再将a、b的值代入所求代数式即可求解。
18、(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.【答案】【考点】解二元一次方程组【解析】【解答】解:方程整理得:,根据方程组解是,得到,解得:,故答案为:【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。