函数y=a1 x2+b1 x+c1a2 x2+b2 x+c2(a1,a2不同时为零)值域的求法探讨
- 格式:pdf
- 大小:148.88 KB
- 文档页数:2
挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题30代数中的新定义问题【例1】(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若F(A)+G(A)16为整数,求出满足条件的所有数A .【例2】(2022秋•西城区校级期中)将n 个0或1排列在一起组成了一个数组,记为A =(t 1,t 2,…t n ),其中,t 1,t 2,…,t n 都取0或1,称A 是一个n 元完美数组(n ≥2且n 为整数).例如:(0,1),(1,1)都是2元完美数组,(0,0,1,1),(1,0,0,1)都是4元完美数组,但(3,2)不是任何完美数组.定义以下两个新运算:新运算1:对于x 和y ,x *y =(x +y )﹣|x ﹣y |,新运算2:对于任意两个n 元完美数组M =(x 1,x 2,…,x n )和N =(y 1,y 2,…,y n ),M ⊗N =12(x 1*y 1+x 2*y 2+…+x n *y n ),例如:对于3元完美数组M =(1,1,1)和N =(0,0,1),有M ⊗N =12(0+0+2)=1.(1)在(0,0,0),(2,0,1),(1,1,1,1),(1,1,0)中是3元完美数组的有: ;(2)设A =(1,0,1),B =(1,1,1),则A ⊗B = ;(3)已知完美数组M =(1,1,1,0)求出所有4元完美数组N ,使得M ⊗N =2;(4)现有m 个不同的2022元完美数组,m 是正整数,且对于其中任意的两个完美数组C ,D 满足C ⊗D =0;则m 的最大可能值是多少?写出答案,并给出此时这些完美数组的一个构造.【例3】(2022秋•茅箭区校级月考)对x ,y 定义一种新运算T ,规定T (x ,y )=ax 2+by 2x+y (其中a ,b 是非零常数,且x +y ≠0),这里等式右边是通常的四则运算.如:T (3,1)=a×32+b×123+1=9a+b 3+1,T (m ,﹣2)=am 2+4b m−2. (1)填空:T (4,﹣1)= (用含a ,b 的代数式表示);(2)若T (﹣2,0)=﹣2,且T (5,﹣1)=6.①求a 与b 的值;②若T (3m ﹣10,﹣3m )=T (﹣3m ,3m ﹣10),求m 的值.【例4】(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),(12,12),(−√2,−√2),……都是和谐点. (1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点(52,52). ①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【例5】(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”.(1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.一.解答题(共20题)1.(2022•渝中区校级模拟)材料1:若一个数各个数位上数字之和能被9整除,则这个数本身也能被9整除;材料2:如果一个各个数位上的数字均不为0的四位正整数m 可以被9整除,且m 的百位上的数字比十位上的数字大2,则称m 为“够二数”;将m 的千位数字与个位数字交换,百位数字与十位数字交换,得到的数为m ',F(m)=m−m′+1818999,例如:m =8424,∵8+4+2+4=18=9×2,4﹣2=2,∴8424是“够二数”,F(8424)=8424−4248+1818999=6. (1)判断1314,6536是否是“够二数”,请说明理由,如果是“够二数”,请计算F (m )的值;(2)若一个四位正整数n =abcd 是“够二数”,且c F(n)为5的倍数,请求出所有的“够二数”n 的值.2.(2022•九龙坡区校级模拟)对于任意一个四位数m ,若满足千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“倍和数”、例如:m =6132,∵6+2=2×(1+3),∴6132是倍和数”;m =1374,∵1+4≠2×(3+7),∴1374不是“倍和数”;(1)判断1047和4657是否为“倍和数”?并说明理由.(2)当一个“倍和数”m 千位上的数字与个位上的数字不相等,且千位上的数字与个位上的数字之和等于8时,记这个“倍和数”m 的千位上的数字与个位上的数字之差的绝对值为T (m ),记百位上的数字与十位上的数字之差的绝对值为R (m ),令G (m )=T(m)R(m),当G (m )能被3整除时,求出满足条件的所有“倍和数”m .3.(2022•两江新区模拟)材料一:若一个两位数恰好等于它的各位数字之和的4倍,则称这个两位数为“巧数”.材料二:一个四位数N =abcd 满足各个数位数字都不为0,且它的千位数字与百位数字组成的两位数ab ,以及十位数字与个位数字组成的两位数cd 均为“巧数”,则称这个四位数为“双巧数”.若p =ac −bd ,q =ad −bc ,则记F (N )=q ﹣p .(1)请任意写出两个“巧数”,并证明任意一个“巧数”的个位数字是十位数字的2倍;(2)若s ,t 都是“双巧数”,其中s =3010+100x +10y +z ,t =1100m +400+10n +2r ,(1≤x ,z ,n ≤9,1≤y ≤8,1≤m ≤5,1≤r ≤4,且x ,y ,z ,m ,n ,r 均为整数),规定K (s ,t )=F(s)F(t),当F (s )+F (t )=12时,求K (s ,t )的最大值.4.(2022•大足区模拟)对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“和谐数”.例如:m =7431,满足1+3=4,2×3+1=7,所以7431是“和谐数”.例如:m =6413,满足1+3=4,但2×1+3=5≠6,所以6413不是“和谐数”.(1)判断8624和9582是不是“和谐数”,并说明理由;(2)若m 是“和谐数”,且m 与22的和能被13整除,求满足条件的所有“和谐数”m .5.(2021•北碚区校级模拟)定义一种新运算:对于实数x 、y ,有L (x ,y )=ax +by (其中a ,b 均为非零常数),由这种运算得到的数称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对,若实数x ,y 都取正整数,称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=2x +7y ,则L (3,﹣2)= ,L (32,−12)= ; (2)已知L (5,13)=503,L (2,25)=8. ①若L (m ﹣1,m +2)为正格线性数,求满足66<L (m ﹣1,m +2)<99的正格数对有哪些?②若正格线性数L (x ,y )=55,满足这样的正格数对中,有满足问题①的数对吗,若有,请找出;若没有,请说明理由.6.(2022秋•岳麓区校级期中)对x 定义一种新运算E ,规定E (x )=(ax +2)(2bx ﹣3),其中a ,b 是非零常数.如:当a =1,b =1时,E (x )=(x +2)(2x ﹣3)=2x 2+x ﹣6.(1)当a ,b 满足(a −12)2+|b +6|=0时,计算E (x ); (2)已知E(2−3x)=32x 2−2x −163,请求出a b 的值; (3)若当a =3,b =2时,关于x 的不等式组{E(x)−2x(6x +3)≤2k 4E(2+x)−E(2x −1)<228恰好有5个整数解,求k 的取值范围.7.(2022春•五华区校级期中)阅读材料:对实数a 、b ,定义T (a ,b )的含义为,当a <b 时T (a ,b )=a +b ;当a ≥b 时,T (a ,b )=a ﹣b .例如:T (1,3)=1+3=4,T (2,﹣1)=2﹣(﹣1)=3;根据以上材料,回答下列问题:(1)若T (m 2+1,﹣1)=6,则m = ;(2)已知x +y =8,且x >y ,求T (4,x )﹣T (4,y )的值.8.(2022春•巴中期末)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x ﹣1=3和x +1=0为“美好方程”.(1)请判断方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是否互为“美好方程”;(2)若关于x 的方程x2+m =0与方程3x ﹣2=x +4是“美好方程”,求m 的值; (3)若关于x 方程12022x ﹣1=0与12022x +1=3x +k 是“美好方程”,求关于y 的方程12022(y +2)+1=3y +k +6的解.9.(2022春•岳麓区校级期末)对a ,b 定义一种新运算T ,规定:T (a ,b )=(2a ﹣b )(ax﹣by )(其中x ,y 均为非零实数).例如:T (1,1)=x ﹣y .(1)已知关于x ,y 的方程组{T(1,3)=a +3T(2,0)=8a,若a ≤﹣1,求2x ﹣y 的取值范围; (2)在(1)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O 'A ',坐标轴上有一点B 满足三角形BOA '的面积为15,请直接写出点B 的坐标.10.(2022春•遵义期末)我们规定.关于x ,y 的二元一次方程ax +by =c ,若满足a +b =c ,则称这个方程为“幸福”方程.例如:方程2x +3y =5,其中a =2,b =3,c =5,满足a +b =c ,则方程2x +3y =5是“幸福”方程,把两个“幸福”方程合在一起叫“幸福“方程组.根据上述规定,回答下列问题,(1)判断方程3x +5y =8 “幸福”方程(填“是”或“不是”);(2)若关于x ,y 的二元一次方程kx +(k ﹣1)y =9是“幸福”方程,求k 的值;(3)若{x =p y =q 是关于x ,y 的“幸福”方程组{mx +(m +1)y =n −1mx +2my =n的解,求4p +7q 的值.11.(2022秋•开福区校级期中)定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“青一函数”,该点称为“青一点”,例如:“青一函数”y =x +1,其“青一点”为(1,2).(1)①判断:函数y =2x +3 “青一函数”(填“是”或“不是”);②函数y =8x 的图象上的青一点是 ;(2)若抛物线y =(m −1)x 2+mx +14m 上有两个“青一点”,求m 的取值范围;(3)若函数y =x 2+(m −k +2)x +n 4−k 2的图象上存在唯一的一个“青一点”,且当﹣1≤m ≤3时,n 的最小值为k ,求k 的值.12.(2022秋•雨花区期中)2022年10月16日,习近平总书记在中共二十大会议开幕式上作报告发言,在阐述第四个要点“加快构建新发展格局,着力推动高质量发展”时,提出了两个“高水平”,即“构建高水平社会主义市场经济体制”和“推进高水平对外开放”在数学上,我们不妨约定:若函数图象上存在不同的两点A (x 1,y 1)、B (x 2,y 2)(x 1≠x 2),满足纵坐标相等,即y 1=y 2,则称点A 、B 为这个函数的一对“高水平点”,称这个函数为“高水平函数”.(1)若点P (2022,p )和点Q (q ,2023)为“高水平函数”y =|x +1|图象上的一对“高水平点”,求p +q 的值;(2)关于x 的函数y =kx +b (k 、b 为常数)是“高水平函数”吗?如果是,指出它有多少对“高水平点”,如果不是,请说明理由;(3)若点M (1,m )、N (3,n )、P (x 0,y 0)都在关于x 的“高水平函数”y =ax 2+bx +c (a 、b 、c 为常数,且a >0)的图象上,点M 、P 为该函数的一对“高水平点”,且满足m <n <c ,若存在常数w ,使得式子:w +13>−14x 02﹣x 0+2恒成立,求w 的取值范围.13.(2022秋•惠水县期中)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1,b 1,c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的“旋转函数”.小组同学是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y =x 2﹣4x +3的“旋转函数”是 ;(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,求(m +n )2022的值;(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,试求证:经过点A 1,B 1,C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.14.(2022秋•长沙期中)在平面直角坐标系中,我们不妨把纵坐标是横坐标3倍的点称为“一中点”,例如点(1,3),(2,6),(√3−1,3√3−3),……都是“一中点”.例如:抛物线y =x 2﹣4上存在两个“一中点”P 1(4,12),P 2(−1,−3).(1)在下列函数中,若函数图象上存在“一中点”,请在相应题目后面的括号中打“√”,若函数图象上不存在“一中点”的打“×”.①y =2x ﹣1 ;②y =x 2−1 ;③y =x 2+4 .(2)若抛物线y =−12x 2+(23m +3)x −29m 2﹣m +1上存在“一中点”,且与直线y =3x 相交于点A (x 1,y 1)和B (x 2,y 2),令t =x 12+x 22,求t 的最小值;(3)若函数y =14x 2+(b ﹣c +3)x +a +c ﹣2的图象上存在唯一的一个“一中点”,且当﹣1≤b ≤2时,a 的最小值为c ,求c 的值.15.(2022春•雨花区校级月考)定义:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为x 1,x 2如(x 1<x 2),分别以x 1,x 2为横坐标和纵坐标得到点M (x 1,x 2),则称点M 为该一元二次方程的衍生点.(1)若方程为x 2﹣3x =0,求出该方程的衍生点M 的坐标;(2)若关于x 的一元二次方程为x 2﹣(5m +1)x +5m =0的衍生点为M ,过点M 向x 轴和y 轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m 的值;(3)是否存在b ,c ,使得不论k (k ≠0)为何值,关于x 的方程x 2+bx +c =0的衍生点M 始终在直线y =kx +2(k +3)的图象上?若有,请求出b ,c 的值;若没有,请说明理由.16.(2022秋•如皋市校级月考)定义:一个函数图象上若存在横、纵坐标相等的点,则称该点为这个函数图象的“1倍点”,若存在纵坐标是横坐标的2倍的点,则称该点为这个函数图象的“2倍点”.例如,点(﹣1,﹣1)是函数y =4x +3图象的“1倍点”,点(−32,﹣3)是函数y =4x +3图象的“2倍点”.(1)函数y =x 2﹣8的图象上是否存在“2倍点”?如果存在,求出“2倍点”;(2)若抛物线y =ax 2+5x +c 上有且只有一个“1倍点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当a >1时,求:①c 的取值范围;②直接写出∠EMN 的度数.17.(2022秋•开福区月考)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“立信点”,例如点(﹣1,﹣1),(0,0),(2022,2022)…,都是“立信点”.(1)①函数y =﹣2x +1图象上的“立信点”坐标为 ;②函数y =x 2+2x −2图象上的“立信点”坐标为 .(2)若二次函数y =x 2+2(k +2)x +k 2的图象上存在A (x 1,x 1),B (x 2,x 2)两个“立信点”和1x 1+1x 2=−1且求k 的值;(3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上有且只有一个“立信点”,令s =b 2+4a ,当t ≤b ≤t +1时,s 有最小值t ,试求t 的值.18.(2022秋•岳麓区校级月考)我们将使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x ﹣1,令y =0,可得x =1,我们就说1是函数y =x ﹣1的零点.(1)求一次函数y =2x ﹣3的零点;(2)若二次函数y =x 2+bx +32b 的零点为x 1,x 2,A ,B 两点的坐标依次A (x 1,0),B (x 2,0),如果AB =2,求b 的值;(3)直线y =﹣2x +b 的零点为1,且与抛物线y =kx 2﹣(3k +3)x +2k +4(k ≠0)交于C 、D 两点,若m +1≤1k ≤m +2时,线段CD 有最小值3√5,求m . 19.(2022•顺德区校级三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.(1)请直接写出函数y =2﹣x 的不动点M 的坐标;(2)若函数y =3x+8x+a有两个关于原点对称的不动点A ,B ,求a 的值; (3)已知函数y =ax 2+(b +1)x +(b ﹣1),若对任意实数b ,函数恒有两个相异的不动点,请直接写出a 的取值范围.20.(2022春•西城区校级期中)对任意的实数m 有如下规定:用[m ]表示不小于m 的最小整数,例如[52]=3,[5]=5,[﹣1.3]=﹣1,请回答下列问题: (1)①0≤[x ]﹣x <1;②[x ﹣2022]=[x ]﹣2022;③[3x ]=3[x ];④[x ]+[y ]=[x +y ];⑤若[x ]=a (a 为整数),则a ﹣1<x ≤a .以上五个命题中为真命题的是 (填序号).(2)关于x 的方程[x ﹣1]=2x +1的解为 .(3)某市出租车的起步价是13元(可行驶3千米),以后每多行1千米增加2.3元(不足1千米按1千米收费),现有某同学乘出租车从甲地到乙地共付费36元,如果他从甲地到乙地先步行800米,然后再乘坐出租车,车费也是36元.若该同学乘坐出租车从甲地出发去往乙地,由于突发情况,在距离乙地1公里处掉头原路返回,那么该同学返回甲地后应付费元.。
2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:132 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 已知四个数:,,,,其中最大的数是( )A.B.C.D.2. 某天的温度上升了的意义是 A.上升了B.没有变化C.下降了D.下降了3. 若,则 A.B.C.D.4. 下列各数中,是分数的是( )A.B.C.D.−2−101−2−11−2C ∘()−2C∘2C∘−2C∘m <0|m|+m =()2m−2mm−4150%5. 拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约,这个数据用科学记数法表示为 A.B.C.D.6. 数轴上,两点对应的有理数分别是-和,则,之间的整数有( )A.个B.个C.个D.个7. 下列图形中,是轴对称图形但不是中心对称图形的是( ) A. B.C. D.8. 中共十九大召开期间,到北京展览馆参观“砥砺奋进的五年”大型成就展的人数已经超过万,请将用科学记数法表示为( )50000000000kg ()0.5×101150×1095×1095×1010A B A B 45677878000078×4A.B.C.D. 9.根据如图所示的流程图中的程序,当输入数据为时,输出数值为( )A.B.C.D.10. 若,是等腰的两边长,且满足,此三角形的周长是( )A.B.或C.D.卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )11. 比较大小:________.12. 用四舍五入法按要求对取近似值精确到是________.78×1047.8×1057.8×1060.78×106x 1y 38−24a b △ABC |a −3|+=0(b −7)21313171720(−2)3(−3)20.050190.00113. ________的相反数是它本身;________的绝对值是它本身.14. 如图,直线与过点的直线交于点,与轴交于点.点在直线上, 轴,交直线于点,若,则点的坐标是________.三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15. 计算:(1)(2) 16. 解答下列问题:指出如图所示的数轴上,,,,各点分别表示的有理数.在数轴上表示出下列各有理数:,,,,;并按从小到大的顺序排列. 17. 小明在课外学习时遇到这样一个问题:定义:如果二次函数(,,,是常数)与(,,,是常数)满足,,,则这两个函数互为“旋转函数”.求函数的旋转函数,小明是这样思考的,由函数可知,,,,根据,,,求出,,就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:写出函数的旋转函数;若函数与互为“旋转函数”,求的值;已知函数的图象与轴交于,两点,与轴交于点,点,,关于原点的对称点分别是,,,试求证:经过点,,的二次函数与互为“旋转函数”.18. 若,求的值. 19. 观察下列各等式,并回答问题:;;;;:y =x +3l 1A (3,0)l 2C (1,m)x B M l 1MN//y l 2N MN =AB M −÷(−2×−12(−1725)21424)2019−18×(+−)122356(1)A B C D E (2)−2−3120−41312y =+x +a 1x 2b 1c 1≠0a 1a 1b 1c 1y =+x +a 2x 2b 2c 2≠0a 2a 2b 2c 2+=0a 1a 2=b 1b 2+=0c 1c 2y =2−3x +1x 2y =2−3x +1x 2=2a 1=−3b 1=1c 1+=0a 1a 2=b 1b 2+=0c 1c 2a 2b 2c 2(1)y =−4x +3x 2(2)y =5+(m −1)x +n x 2y =−5−nx −3x 2(m +n)2021(3)y =2(x −1)(x +3)x A B y C A B C A 1B 1C 1A 1B 1C 1y =2(x −1)(x +3)|a −2|+=0(b +3)22(ab +b)−(a +2ab −b)=1−11×212=−12×31213=−13×41314=−14×51415⋯1填空:________.(是正整数)填空:________.若与互为相反数,求的值.20. 规定 ,则 的值为________.21. 特路快速公交车从起点经过甲、乙、丙、丁站到达终点,到站点时乘客的上、下车情况如下表所示.(用正数表示上车的人数,负数表示下车的人数).上述表中,________;当特路快速公交车行驶在________站和________站(相邻两站)之间时,车上的乘客最多. 22. 计算:已知, .当时,求的值;若,求的最大值.23. 记,,,个相乘.计算:;求的值;说明与互为相反数.(1)=1n ×(n +1)n (2)+++⋯+=11×212×313×412019×2020(3)|a ×b −3||b −1|+++⋯1(a +2)×(b +2)1(a +4)×(b +4)1(a +6)×(b +6)+1(a +2010)×(b +2010)a ∗b =5a +2b −1(−4)∗62(1)a =(2)2=9m 2|n|=4(1)mn <0m +n (2)|m −n|=m −n 3m −2n =−2M (1)=(−2)×(−2)M (2)=(−2)×(−2)×(−2)M (3)⋯=n M (n)−2(1)+M (5)M (6)(2)2+M (2015)M (2016)(3)2M (n)M (n+1)参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】有理数大小比较【解析】因为正数是比大的数,负数是比小的数,正数比负数大;负数的绝对值越大本身就越小,根据有理数比较大小的法则即可选出答案【解答】解:因为正数是比大的数,负数是比小的数,正数比负数大,负数的绝对值越大本身就越小,所以在,,,这四个数的大小为,即最大的数是.故选.2.【答案】C【考点】正数和负数的识别【解析】在一般情况下,温度上升一般用正数表示,上升的度数是负数,则表示与上升相反意义的量,即下降了.【解答】解:上升一般用正数表示,则温度上升了的意义是下降了,故选.3.【答案】B0000−2−101−2<−1<0<11D 2C ∘−2C ∘2C ∘C绝对值【解析】根据得到,然后计算后面的整式运算即可.【解答】解:,,.故选.4.【答案】D【考点】有理数的概念及分类【解析】根据整数和分数统称有理数,据此判断即可.【解答】,,都是整数,是分数.5.【答案】D【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:绝对值大于的正数可以利用科学记数法表示,一般形式为..故选.6.m <0|m|=−m ∵m <0∴|m|=−m ∴|m|+m =−m +m =0B −40150%a ×10n 1≤|a |<10n n a n >1n <1n 1a ×10n 50000000000=5×1010DC【考点】数轴【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】有理数大小比较绝对值相反数【解析】此题暂无解析【解答】解:,既是轴对称图形,也是中心对称图形;,既是轴对称图形,也是中心对称图形;,是轴对称图形,不是中心对称图形;,即不是轴对称图形,也不是中心对称图形.故选.8.【答案】B【考点】科学记数法--表示较大的数【解析】把一个大于(或者小于)的整数记为的形式(其中)的记数法叫做科学记数法,A B C D C 101a ×10n |1|<n <|10|根据此方法来求解.【解答】解:因为科学记数法的表示形式为的形式,又因为把原数变为时,小数点移动了多少位,的绝对值与小数点移动的位数相同.所以.故选.9.【答案】D【考点】有理数的混合运算【解析】将=代入,计算其结果,再判断是否大于,否则将所得结果再代入计算,直到其结果大于,然后输出即可.【解答】当=时,==,当=时,==,∴输出数值为,10.【答案】C【考点】非负数的性质:绝对值非负数的性质:偶次方三角形三边关系等腰三角形的性质【解析】通过绝对值的非负性和偶数次幂的非负性,可求得,的值,进而求出等腰三角形的周长.【解答】解:∵,∴a ×10n a n 780000=7.8×105B x 12−4x 202−4x 20x 12−4x 22×−412−2<0x −22−4x 22×(−2−4)24>0y 4a b |a −3|+=0(b −7)2{a −3=0,b −7=0,a =3,解得∵等腰三角形的两边长为,,∴为腰时,三边长为,,,此时,不能构成三角形;为腰时,三边长为,,,此时等腰三角形的周长为故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )11.【答案】【考点】有理数大小比较【解析】首先根据乘方的意义可知:第一个表示个 相乘,第二个表示个 相乘;分别求出和的值,进而根据“正数大于负数”比较大小.【解答】解:∵,,,∴.故答案为:.12.【答案】【考点】近似数和有效数字【解析】把万分位上的数字进行四舍五入即可.【解答】解:(精确到).故答案为.13.【答案】{a =3,b =7.a b a 3373+3<7b 37717.C <3(−2)2(−3)(−2)3(−3)2=−8(−2)3=9(−3)2−8<9<(−2)3(−3)2<0.05010.05019≈0.0500.0010.050,非负数【考点】绝对值相反数【解析】根据相反数的定义:只有符号不同的两个数互为相反数,的相反数是;倒数的定义:若两个数的乘积是,我们就称这两个数互为倒数.绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.可知:的相反数是它本身;非负数的绝对值是它本身;的倒数是它本身.【解答】解:的相反数是它本身; 非负数的绝对值是它本身.故答案为:;非负数.14.【答案】或【考点】绝对值待定系数法求一次函数解析式一次函数图象上点的坐标特点【解析】先把点的坐标代入,求出的值,然后利用待定系数法求出直线的解析式,再由已知条件得出,两点的横坐标,利用两点间距离公式求出的坐标.【解答】解:在中,令,得,.把代入得,.设直线的解析式为,解得直线的解析式为,.设,由轴,得,,解得或,或.故答案为:或.0001000±100(3,6)(−1,2)C y =x +3m M N M y =x +3y =0x =−3∴B (−3,0)x =1y =x +3y =4∴C (1,4)l 2y =kx +b ∴{k +b =4,3k +b =0,{b =6,k =−2,∴l 2y =−2x +6∴AB =3−(−3)=6M (a ,a +3)MN//y N (a ,−2a +6)∴MN =|a +3−(−2a +6)|=AB =6a =3a =−1∴M (3,6)(−1,2)(3,6)(−1,2)三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15.【答案】=====;===.【考点】有理数的混合运算【解析】(1)先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)根据乘法分配律简便计算.【解答】=====;===.16.【答案】解:由题可得,表示,表示,表示,表示,表示;如图所示,−÷(−2×−12(−1725)21424)2019−32÷4×−12×(16−1714)2019−2−12×(−1)2019−2−12×(−1)−2+1210−18×(+−)122356−18×−18×−18×(−)122356−9−12+15−6−÷(−2×−12(−1725)21424)2019−32÷4×−12×(16−1714)2019−2−12×(−1)2019−2−12×(−1)−2+1210−18×(+−)122356−18×−18×−18×(−)122356−9−12+15−6(1)A −4B −1.5C 0.5D 3E 4.5(2)∴.【考点】有理数大小比较数轴【解析】(1)根据各点在数轴上的位置即可得出结论.(2)根据各数的符号以及绝对值,在数轴上表示出各数即可.【解答】解:由题可得,表示,表示,表示,表示,表示;如图所示,∴.17.【答案】解:由,得,,,∵,,,∴,,,∴函数的“旋转函数”为.解:∵与互为“旋转函数”,∴解得∴.证明:当时,,∴点的坐标为.当时,,解得,,∴点的坐标为,点的坐标为.∵点,,关于原点的对称点分别是,,,∴,,.设过点,,的二次函数解析式为,将代入,得,解得,∴过点,,的二次函数解析式为,即.−4<−3<−2<0<131212(1)A −4B −1.5C 0.5D 3E 4.5(2)−4<−3<−2<0<131212(1)y =−4x +3x 2=1a 1=−4b 1=3c 1+=0a 1a 2=b 1b 2+=0c 1c 2=−1a 2=−4b 2=−3c 2y =−4x +3x 2y =−−4x −3x 2(2)y =5+(m −1)x +n x 2y =−5−nx −3x 2{ m −1=−n ,n −3=0,{ m =−2,n =3,(m +n)2021=(−2+3=1)2021(3)x =0y =2(x −1)(x +3)=−6C (0,−6)y =02(x −1)(x +3)=0=1x 1=−3x 2A (1,0)B (−3,0)A B C A 1B 1C 1(−1,0)A 1(3,0)B 1(0,6)C 1A 1B 1C 1y =a(x +1)(x −3)(0,6)C 1y =a(x +1)(x −3)6=−3a a =−2A 1B 1C 1y =−2(x +1)(x −3)y =−2+4x +6x 2∴经过点,,的二次函数与函数互为“旋转函数”.【考点】二次函数的定义相反数幂的乘方及其应用二次函数图象上点的坐标特征关于原点对称的点的坐标【解析】(1)由二次函数的解析式可得出,,的值,结合“旋转函数”的定义可求出,,的值,此问得解;(2)由函数=与=互为“旋转函数”,可求出,的值,将其代入即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点,,的坐标,结合对称的性质可求出点,,的坐标,由点,,的坐标,利用交点式可求出过点,,的二次函数解析式,由两函数的解析式可找出,,,,,的值,再由=,=,=可证出经过点,,的二次函数与函数=互为“旋转函数”.【解答】解:由,得,,,∵,,,∴,,,∴函数的“旋转函数”为.解:∵与互为“旋转函数”,∴解得∴.证明:当时,,∴点的坐标为.当时,,解得,,∴点的坐标为,点的坐标为.∵点,,关于原点的对称点分别是,,,∴,,.设过点,,的二次函数解析式为,将代入,得,解得,∴过点,,的二次函数解析式为,即.A 1B 1C 1y =2(x −1)(x +3)a 1b 1c 1a 2b 2c 2y 5+(m −1)x +n x 2y −5−nx −3x 2m n (m +n)2020A B C A 1B 1C 1A 1B 1C 1A 1B 1C 1a 1b 1c 1a 2b 2c 2+a 1a 20b 1b 2+c 1c 20A 1B 1C 1y 2(x −1)(x +3)(1)y =−4x +3x 2=1a 1=−4b 1=3c 1+=0a 1a 2=b 1b 2+=0c 1c 2=−1a 2=−4b 2=−3c 2y =−4x +3x 2y =−−4x −3x 2(2)y =5+(m −1)x +n x 2y =−5−nx −3x 2{ m −1=−n ,n −3=0,{ m =−2,n =3,(m +n)2021=(−2+3=1)2021(3)x =0y =2(x −1)(x +3)=−6C (0,−6)y =02(x −1)(x +3)=0=1x 1=−3x 2A (1,0)B (−3,0)A B C A 1B 1C 1(−1,0)A 1(3,0)B 1(0,6)C 1A 1B 1C 1y =a(x +1)(x −3)(0,6)C 1y =a(x +1)(x −3)6=−3a a =−2A 1B 1C 1y =−2(x +1)(x −3)y =−2+4x +6x 2∴经过点,,的二次函数与函数互为“旋转函数”.18.【答案】略【考点】非负数的性质:偶次方非负数的性质:绝对值有理数的混合运算【解析】此题暂无解析【解答】略19.【答案】∵与互为相反数,∴,∴,,解得,,∴原式.【考点】规律型:数字的变化类有理数的混合运算【解析】A 1B 1C 1y =2(x −1)(x +3)−1n 1n +120192020(3)|ab −3||b −1||ab −3|+|b −1|=0ab −3=0b −1=0a =3b =1=+++⋯+13×515×717×912011×2013=(−+−+−+⋯+−)121315151717191201112013=×(−)121312013=3352013(1)将分式进行拆项即可求解;(2)先拆项,再抵消即可求解;(3)先根据非负数的性质得到、的值,再拆项抵消即可求解.【解答】解:.故答案为:..故答案为:.∵与互为相反数,∴,∴,,解得,,∴原式.20.【答案】【考点】有理数的混合运算定义新符号【解析】本题考查新定义运算符,有理数混合运算.根据新定义的运算符,将式子转化 成有理数混合运算,再按有理数混合运算法则计算即可.【解答】a b (1)=−1n(n +1)1n 1n +1−1n 1n +1(2)+++⋯11×212×313×412019×2020=1−+−+⋯+−1212131201912020=1−12020=2019202020192020(3)|ab −3||b −1||ab −3|+|b −1|=0ab −3=0b −1=0a =3b =1=+++⋯+13×515×717×912011×2013=(−+−+−+⋯+−)121315151717191201112013=×(−)121312013=3352013−9解:,,故答案为:.21.【答案】乙,丙【考点】正数和负数的识别有理数的加减混合运算【解析】(1)根据正负数的意义,上车为正数,下车为负数,列出式子,即可得解;求出甲、乙、丙、丁站的人数即可作答.【解答】解:根据题意可得:到终点前,车上有人,即,解得,.故答案为:.根据图表:甲站车上的乘客人数为:(人),乙站车上的乘客人数为:(人),丙站车上的乘客人数为:(人),丁站车上的乘客人数为:(人),故公交车行驶在乙站和丙站之间时,车上乘客最多.故答案为:乙;丙.22.【答案】解:,,,,,,或,,或.,,,或,,,或,的最大值为.【考点】有理数的混合运算∵a ∗b =5a +2b −1∴(−4)∗6=5×(−4)+2×6−1=−20+12−1=−9−9−9(1)3418+15−3+12−4+7−10+8+a =34a =−9−9(2)18+15−3=3030+12−4=3838+7−10=3535+8−9=34(1)∵=9m 2|n|=1∴m =±3n =±2∵mn <0∴m =3n =−2m =−3n =2∴m +n =3−2=1m +n =−3+2=−1(2)∵|m −n|=m −n ∴m >n ∴m =3n =−4m =−3n =−4∴3m −2n =3×3+2×4=173m −2n =3×(−3)−2×(−4)=−1∴3m −2n 17有理数的乘方绝对值【解析】首先有理数的乘方及绝对值确定出,分别有两个值,再根据是负数,得到,异号,从而得到,的值,再代入计算即可.首先根据已知条件得到为正数,从而得到,的值,再代入计算即可.【解答】解:,,,,,,或,,或.,,,或,,,或,的最大值为.23.【答案】解:;.,∴与互为相反数.【考点】规律型:数字的变化类有理数的乘方(1)m n mn m n m n (2)m −n m n (1)∵=9m 2|n|=1∴m =±3n =±2∵mn <0∴m =3n =−2m =−3n =2∴m +n =3−1=2m +n =−3+2=−1(2)∵|m −n|=m −n ∴m >n ∴m =3n =−4m =−3n =−4∴3m −2n =3×3+2×4=173m −2n =3×(−3)−2×(−4)=−1∴3m −2n 17(1)+=(−2+(−2M (5)M (6))5)6=−32+64=32(2)2+=2×(−2+(−2M (2015)M (2016))2015)2016=−(−2)×(−2+(−2)2015)2016=−(−2+(−2)2016)2016=0(3)2+=−(−2)×(−2+(−2M (n)M (n+1))n )n+1=−(−2+(−2)n+1)n+1=02M (n)M (n+1)【解析】(1)根据有理数的乘方,偶数个负数相乘的积是正数得出答案即可;(2)根据乘方的意义,可得,,根据有理数的加法,可得答案;(3)根据乘方的意义,可得,,根据有理数的加法,可得答案.【解答】解:;.,∴与互为相反数.M (6)M (7)M (n )M (n+1)(1)+=(−2+(−2M (5)M (6))5)6=−32+64=32(2)2+=2×(−2+(−2M (2015)M (2016))2015)2016=−(−2)×(−2+(−2)2015)2016=−(−2+(−2)2016)2016=0(3)2+=−(−2)×(−2+(−2M (n)M (n+1))n )n+1=−(−2+(−2)n+1)n+1=02M (n)M (n+1)。
二次函数易错必考题简答题专训一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.3.如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.4.已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C 点.(1)求抛物线的解析式;(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y =t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.5.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)当四边形MNCB是平行四边形时,求点Q的坐标.6.在平面直角坐标系内,反比例函数和二次函数y=a(x2+x﹣1)的图象交于点A(1,a)和点B(﹣1,﹣a).(1)求直线AB与y轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y随着x的增大而增大,求a应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当Q在以AB为直径的圆上时,求a的值.7.如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.(1)求抛物线的解析式;(2)P是抛物线上的动点,连接PO交直线AB于点Q,当Q是OP中点时,求点P的坐标;(3)C在直线AB上,D在抛物线上,E在坐标平面内,以B,C,D,E为顶点的四边形为正方形,直接写出点E的坐标.8.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△P AM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB 的面积为2d,求点P的坐标.10.已知抛物线G:y=x2+(k﹣5)x+1﹣k,其中k为常数.(1)求证:无论k为何值,抛物线G总与x轴有两个交点;(2)若抛物线G的图象不经过第三象限,求k的取值范围;(3)对于一个函数,当自变量x取a时,函数值y也等于a,我们称a为这个函数的对等值.若函数y=x2+(k﹣5)x+1﹣k有两相异的对等值x1,x2,且x1<2<x2,求k的最大整数值.11.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?12.在平面直角坐标系xOy中,将点P1(a,b﹣a)定义为点P(a,b)的“关联点”.已知:点A(x,y)在函数y=x2的图象上(如图所示),点A的“关联点”是点A1.(1)请在如图的基础上画出函数y=x2﹣2的图象,简要说明画图方法;(2)如果点A1在函数y=x2﹣2的图象上,求点A1的坐标;(3)将点P2(a,b﹣na)称为点P(a,b)的“待定关联点”(其中,n≠0).如果点A (x,y)的“待定关联点”A2在函数y=x2﹣n的图象上,试用含n的代数式表示点A2的坐标.13.对于给定函数y=a1x2+b1x+c1(其中a1、b1、c1为常数,且a1≠0),则称函数y=(a1=a2,b1+b2=0,c1+c2=0)为函数y=a1x2+b1x+c1(其中a1,b1,c1为常数,且a1≠0)的“相关函数”,此“相关函数”的图象记为G.(1)已知函数y=﹣x2+4x+2.①直接写出这个函数的“相关函数”;②若点P(a,1)在“相关函数”的图象上,求a的值;③若直线y=m与图象G恰好有两个公共点,直接写出m的取值范围;(2)设函数y=﹣x2+nx+1(n>0)的相关函数的图象G在﹣4≤x≤2上的最高点的纵坐标为y0,当≤y0≤9时,直接写出n的取值范围.14.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.15.周师傅家的猕猴桃成熟上市后,她记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系为y=﹣x+16,日销售量p(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天135710日销量p(千克)320360400440500(1)从你学过的函数中,选择合适的函数类型刻画p随x的变化规律,请直接写出p与x的函数关系式及自变量x的取值范围;(2)在这10天中,哪一天销售额达到最大?最大销售额是多少元?(3)周师傅决定每销售1千克桃就捐款a(a>1)元,且希望每天的销售额不低于1500元以维持各项开支,求a的最大值.16.已知:抛物线y=x2﹣2x+m与y轴交于点C(0,﹣2),点D和点C关于抛物线对称轴对称.(1)求此抛物线的解析式和点D的坐标;(2)如果点M是抛物线的对称轴与x轴的交点,求MCD的周长.17.某公司生产的一种商品其售价是成本的 1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?18.某玩具厂安排30人生产甲、乙两种玩具,已知每人每天生产20件甲种玩具或12件乙种玩具,甲种玩具每件利润18元,当参与生产乙种玩具的工人为10人时,乙种玩具每件利润为40元,在10人的基础上每增加1人,每件乙种玩具的利润下降1元,设每天安排x人生产甲种玩具,且不少于10人生产乙种玩具.(1)请根据以上信息完善下表:玩具工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种玩具每天的总利润y(元)关于x(人)的表达式;(3)请你设计合理的工人分配方案,使得每天销售甲乙两种玩具的利润最大化,并求出这个最大利润.19.已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.20.某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?21.平面直角坐标系中,已知二次函数的图象经过点A(2,0)和点,直线l经过抛物线的顶点且与y轴垂直,垂足为Q.求该二次函数的表达式.22.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.23.如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.24.如图,将抛物线y=﹣x2+4平移后,新抛物线经过原抛物线的顶点C,新抛物线与x 轴正半轴交于点B,联结BC,tan B=4,设新抛物线与x轴的另一交点是A,新抛物线的顶点是D.(1)求点D的坐标;(2)设点E在新抛物线上,联结AC、DC,如果CE平分∠DCA,求点E的坐标.(3)在(2)的条件下,将抛物线y=﹣x2+4沿x轴左右平移,点C的对应点为F,当△DEF和△ABC相似时,请直接写出平移后得到抛物线的表达式.25.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB的正切值;(3)当△AOE与△ABC相似时,求点D的坐标.26.如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.(1)求抛物线的表达式及点A的坐标;(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠P AB=45°.求证:△PQA∽△ACB;(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.27.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)联结AC、BC,求∠ACB的正切值;(3)点P在抛物线上,且∠P AB=∠ACB,求点P的坐标.28.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.29.如图,若m是正数,直线l:y=﹣m与y轴交于点A;直线a:y=x+m与y轴交于点B;抛物线L:y=x2+mx的顶点为C,且L与x轴左交点为D.(1)若AB=12,求m的值,此时在抛物线的对称轴上存在一点P使得△OBP的周长最小,求点P坐标;(2)当点C在直线l上方时,求点C与直线l距离的最大值;(3)在抛物线L和直线a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出m=2020和m=2020.5时“美点”的个数.30.如图1,抛物线W:y=ax2﹣2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)过点C作CE⊥x轴,交x轴于点E,若AC平分∠DCE,求抛物线W的解析式;(3)若a=,将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.31.在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m 的解析式.32.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.33.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.34.如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=﹣x+2经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.求△PBC面积最大值和此时m的值;(3)Q是抛物线上一点,若∠ABC=∠CBQ,直线BQ与y轴的交点M,请直接写出M 的坐标.35.利用函数图象探究方程x(|x|﹣2)=的实数根的个数.(1)设函数y=x(|x|﹣2),则这个函数的图象与直线y=的交点的横坐标就是方程x (|x|﹣2)=的实数根.(2)分类讨论:当x≤0时,y=﹣x2﹣2x;当x>0时,y=;(3)在给定的坐标系中,已经画出了当x≤0时的函数图象,请根据(2)中的解析式,通过描点,连线,画出当x>0时的函数图象.(4)在给定的坐标系中画直线y=、观察图象可知方程x(|x|﹣2)=的实数根有个.(5)深入探究:若关于x的方程2x(|x|﹣2)=m有三个不相等的实数根,且这三个实数根的和为负数,则m的取值范围是.36.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求项点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.37.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=3.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(3)如图3,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.38.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).(1)请你根据“月牙线”的定义,设计一个开口向下.“月牙线”,直接写出两条抛物线的解析式;(2)求M,N两点的坐标;(3)在第三象限内的抛物线C1上是否存在一点P,使得△P AM的面积最大?若存在,求出△P AM的面积的最大值;若不存在,说明理由.39.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.40.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.41.已知二次函数y=ax2﹣2ax﹣2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)若该二次函数的图象开口向下,对于该二次函数图象上的两点A(x1,y1)、B(x2,y2),当x2≥3时,均有y1≥y2,请结合图象,直接写出x1的取值范围.42.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.①试用含m的代数式表示线段PN的长;②求线段PN的最大值.43.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.44.已知抛物线y1=ax2+bx+c(a≠0,a≠c)与x轴交于点A(1,0),顶点为B.(Ⅰ)a=1时,c=3时,求抛物线的顶点B的坐标;(Ⅱ)求抛物线y1=ax2+bx+c与x轴的另一个公共点的坐标(用含a,c的式子表示);(Ⅲ)若直线y2=2x+m经过点B且与抛物线y1=ax2+bx+c交于另一点C(,b+8),求当x≥1时,y1的取值范围.45.如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC 于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.46.如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.47.如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.(1)求一次函数和二次函数的函数表达式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.48.如图:抛物线y=x2+bx+c与直线y=﹣x﹣1交于点A,B.其中点B的横坐标为2.点P(m,n)是线段AB上的动点.(1)求抛物线的表达式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平角直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形,在(2)的情况下,在平面内找出所有符合要求的整点R,使P、Q、B、R为整点平行四边形,请直接写出整点R的坐标.49.抛物线y=x2+bx+c与x轴交于点A和B(点A在点B的左侧),与y轴交于点C,OB =OC,点D(2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)点P(m,km+1),m为任意实数,当m变化时,点P在直线l上运动,若点A,D到直线l的距离相等,求k的值;(3)M为抛物线在第一象限内一动点,若∠AMB>45°,求点M的横坐标x M的取值范围.50.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二次函数简答题的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.【专题】535:二次函数图象及其性质;536:二次函数的应用;69:应用意识.【分析】(1)先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求n的值;(2)①先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求t的值;②结合图象1,可求k的取值范围;(3)结合图象,分类讨论可求解.【解答】解:(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,对于图象G1,在y轴右侧,当y=5时,则5=(x﹣2)2﹣5,∴x=2+>3,对于图象G2,在y轴左侧,当y=﹣5时,则﹣5=﹣(x+2)2+5,∴x=﹣2﹣,∵当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,∴﹣2﹣≤k≤﹣2;(3)如图2,∵图象G2的解析式为:y=﹣(x+2)2+4﹣n,图象G1的解析式为:y=(x﹣2)2+n﹣4,∴图象G2的顶点坐标为(﹣2,﹣n+4),与y轴交点为(0,﹣n),图象G1的顶点坐标为(2,n﹣4),与y轴交点为(0,n),当n≤﹣1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当﹣1<n<0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交点,当n=0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当0<n≤1时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有1交点,当1<n<3时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当3≤n<7时,图象G1与矩形ABCD有2个交点,当3≤n<5时,图象G2与矩形ABCD 有2个交点,n=5时,图象G2与矩形ABCD有1个交点,n>5时,没有交点,∵矩形ABCD的边与图象G有且只有三个公共点,∴n=5,当n≥7时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD没有交点,综上所述:当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【点评】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用数形结合思想解决问题是本题的关键.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.【专题】16:压轴题;65:数据分析观念.【分析】(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,即可求解;(2)则AC2=18,CE2=2,AE2=20,即可求解;(3)设出点D、G、H的坐标,求出:DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3,即可求解;【解答】解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;。
高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
专题20 新定义型二次函数问题【典型例题】1.(2021·江苏吴中·二模)定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1,b 1,c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“N ”函数.(1)写出y =﹣x 2+x ﹣1的“N ”函数的表达式;(2)若题(1)中的两个“N ”函数与正比例函数y =kx (k ≠0)的图象只有两个交点,求k 的值;(3)如图,二次函数y 1与y 2互为“N ”函数,A 、B 分别是“N ”函数y 1与y 2图象的顶点,C 是“N ”函数y 2与y 轴正半轴的交点,连接AB 、AC 、BC ,若点A (﹣2,1)且△ABC 为直角三角形,求点C 的坐标.【专题训练】一、解答题1.(2022·湖南·长沙市雅礼实验中学九年级期末)“三高四新”战略是习近平总书记来湘考察时,为建设现代化新湖南擘画的宏伟战略蓝图.在数学上,我们不妨约定:在平面直角坐标系中,将点()3,4P 称为“三高四新”点,经过()3,4P 的函数,称为“三高四新”函数. (1)下列函数是“三高四新”函数的有_____;①22y x =- ②2613y x x =-+ ③23611y x x =-++ ④12y x= (2)若关于x 的一次函数y kx b =+是“三高四新”函数,且它与y 轴的交点在y 轴的正半轴,求k 的取值范围;(3)关于x 的二次函数()2134y x =-的图象顶点为A ,点()11,M x y 和点()22,N x y 是该二次函数图象上的点且使得90MAN ∠=︒,试判断直线MN 是否为“三高四新”函数,并说明理由.2.(2021·山西大同·九年级期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为x 的二次函数2y ax bx c =++与2y ax bx c =-+(0a ≠,0b ≠)称为一对“亲密函数”,如2532y x x =-+的“亲密函数”是2532y x x =++.任务:(1)写出二次函数234y x x =+-的“亲密函数”:______;(2)二次函数234y x x =+-的图象与x 轴交点的横坐标为1和4-,它的“亲密函数”的图象与x 轴交点的横坐标为______,猜想二次函数2y ax bx c =++(240b ac ->)的图象与x 轴交点的横坐标与其“亲密函数”的图象与x 轴交点的横坐标之间的关系是______;(3)二次函数22021y x bx =+-的图象与x 轴交点的横坐标为1和2021-,请利用(2)中的结论直接写出二次函数2422021y x bx =--的图象与x 轴交点的横坐标.3.(2020·浙江·衢州市实验学校教育集团(衢州学院附属学校教育集团)九年级期末)定义:若抛物线与x 轴有两个交点,其顶点与这两个交点构成的三角形是等腰直角三角形,则这种抛物线就称为:“美丽抛物线”.(1)已知一条抛物线是“美丽抛物线”,且与x 轴的两个交点为(1,0)、(5,0),则此抛物线的顶点为 ; (2)若抛物线y =x 2﹣bx (b >0)是“美丽抛物线”,求b 的值;(3)如图,抛物线y =ax 2+bx +c 是“美丽抛物线”,此抛物线顶点为B (1,2),与轴交与A ,C ,AB 与y 轴交于点D ,连接OB ,在抛物线找一点Q ,使得∠QCA =∠ABO ,求Q 点的横坐标.4.(2021·北京房山·九年级期中)定义:如果抛物线C 1的顶点在抛物线C 2上,同时,抛物线C 2的顶点在抛物线C 1上,则称抛物线C 1与C 2关联.例如,抛物线2y x 的顶点(0,0)在抛物线22y x x =-+上,抛物线22y x x =-+的顶点(1,1)也在抛物线2y x 上,所以抛物线2y x 与22y x x =-+关联.(1)已知抛物线C 1:2(1)2y x =+-,分别判断抛物线C 2:221y x x =-++和抛物线C 3:2221y x x =++与抛物线C 1是否关联;(2)抛物线M 1:21(1)28y x =+-的顶点为A ,动点P 的坐标为(,2)t ,将抛物线M 1绕点(,2)P t 旋转180°得到抛物线M 2,若抛物线M 1与M 2关联,求抛物线M 2的解析式;(3)抛物线M 1:21(1)28y x =+-的顶点为A ,点B 是与M 1关联的抛物线的顶点,将线段AB 绕点A 按顺时针方向旋转90°得到线段AB 1,若点B 1恰好在y 轴上,请直接写出点B 1的纵坐标.5.(2021·山东中区·九年级期末)定义:关于x 轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y 1=(x ﹣1)2﹣2的“同轴对称抛物线”为y 2=﹣(x ﹣1)2+2. (1)请写出抛物线y 1=(x ﹣1)2﹣2的顶点坐标 ;及其“同轴对称抛物线”y 2=﹣(x ﹣1)2+2的顶点坐标 ;(2)求抛物线y =﹣2x 2+4x +3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B 是抛物线L :y =ax 2﹣4ax +1上一点,点B 的横坐标为1,过点B 作x 轴的垂线,交抛物线L 的“同轴对称抛物线”于点C ,分别作点B 、C 关于抛物线对称轴对称的点B '、C ',连接BC 、CC '、B C ''、BB '.①当四边形BB C C ''为正方形时,求a 的值.②当抛物线L 与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a 的取值范围.6.(2021·山东乳山·模拟预测)【信息提取】新定义:在平面直角坐标系中,如果两条抛物线关于坐标原点对称,则一条抛物线叫另一条抛物线的“友好抛物线”.新知识:对于直线()11110y k x b k =+≠和()22220y k x b k =+≠.若121k k ,则直线1y 与2y 互相垂直;若直线1y 与2y 互相垂直,则121k k .【感知理解】(1)若抛物线21()(0)y a x h k a =-+≠的“友好抛物线”为222(3)1y x =-++.则h ,k 的值分别是 ;(2)若抛物线21(0)y ax bx c a =++≠与22(0)y mx nx q m =++≠互为“友好抛物线”.则b 与n的数量关系为 ,c 与q 的数量关系为 .【综合应用】(3)如图,抛物线211:43l y x x =-+的顶点为E ,1l 的“友好抛物线”2l 的顶点为F ,过点O的直线3l 与抛物线1l 交于点A ,B (点A 在B 的左侧),与抛物线2l 交于点C ,D (点C 在D 的左侧).若四边形AFDE 为菱形,求AB 的长;7.(2021·江苏·镇江实验学校一模)定义:如图,若两条抛物线关于直线x a =成轴对称,当x a ≤时,取顶点在x a =左侧的抛物线的部分;当x a ≥时,取顶点在x a =右侧的抛物线的部分,则我们将像这样的两条抛物线称为关于直线x a =的一对伴随抛物线.例如:抛物线()2(0)1y x x =+≤与抛物线()2(0)1y x x =-≥就是关于直线0x =(y 轴)的一对伴随抛物线.(1)求抛物线()213 1.)5(y x x =++≤关于直线 1.5x =的“伴随抛物线”所对应的二次函数表达式. (2)设抛物线22220,()4y mx m x m m =-+≠≠交y 轴于点A ,交直线4x =于点B . ①求直线AB 平行于x 轴时的m 的值.②求AOB ∠是直角时抛物线2222y mx m x =-+关于直线4x =的“伴随抛物线”的顶点横坐标.8.(2021·浙江·九年级期末)定义:在平面直角坐标系中,有一条线段AB ,若抛物线21111y a x b x c =++的顶点是A ,经过点B ,抛物线22222y a x b x c =++的顶点是B ,经过点A ,称这两条抛物线是关于线段AB 的一对“有礼抛物线”,如图所示.(1)若抛物线()21213y x =-+与()2225y a x =-+是一对“有礼抛物线”,求a 的值. (2)若线段AB 两端点坐标是()(),,e f m n 、,关于线段AB 的一对有礼抛物线是21111y a x b x c =++和22222y a x b x c =++,猜想1a 与2a 的数量关系,并证明你的猜想.(3)若抛物线()21122y x =-的顶点为A ,它与y 轴交于点E ,点B 在抛物线上,关于线段AB 的另一条“有礼抛物线”22222y a x b x c =++与y 轴交点记为点F ,若6EF =,求2y 的函数关系式。
专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。
(人教版)2023年九年级中考数学第一轮复习:新定义型问题一、选择题(本大题共10小题,每小题4分,满分40分)1. (2022·天津·一模)定义运算:a@b=a(1-b).若a,b 是方程()2300x x m -=<的两根,则b@b-a@a 的值为( )A.0B.1C.2D.与m 有关2. (2021内蒙古乌兰察布)定义新运算“⨂”,规定:a ⨂b =a-2b.若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A.-1B.-2C.1D.23. 7.(2021•包头)定义新运算“⨂”,规定:a ⨂b =a-2b.若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A.-1B.-2C.1D.24. (2020•河南)定义运算:m ☆n =mn 2﹣mn ﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( )A.有两个不相等的实数根;B.有两个相等的实数根;C.无实数根;D.只有一个实数根5. (2021·怀化中考)定义a ⊕b =2a +1b,则方程3⊕x =4⊕2的解为( ) A.x =15 B.x =25 C.x =35 D.x =456. (2021•永州)定义:若10x=N,则x =log 10N,x 称为以10为底的N 的对数,简记为lgN,其满足运算法则:lgM+lgN =lg(M •N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为( )A.5B.2C.1D.07. (2021甘肃威武定西平凉)对于任意的有理数a,b,如果满足32b a 3b 2a++=+,那么我们称这一对数a,b 为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n-1)]=( )A.-2B.-1C.2D.38. (2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P ′(m,n ′),若满足m ≥0时,n ′=n-4;m <0时,n ′=-n,则称点P ′(m,n ′)是点P(m,n)的限变点.例如:点P 1(2,5)的限变点是P 1′(2,1),点P 2(-2,3)的限变点是P 2′(-2,-3).若点P(m,n)在二次函数y =-x 2+4x+2的图象上,则当-1≤m ≤3时,其限变点P ′的纵坐标n'的取值范围是( )A.-2≤n ′≤2B.1≤n ′≤3C.1≤n ′≤2D.-2≤n ′≤39. (2021·荆州中考)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn +pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x]※[5-2k,k]=0有两个实数根,则k 的取值范围是( )A.k <54 且k ≠0B.k ≤54C.k ≤54且k ≠0 D.k ≥54 10. (2021湖南永州)定义:若10x =N,则x =log 10N,x 称为以10为底的N 的对数,简记为lgN,其满足运算法则:lgM+lgN =lg(M •N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为( )A.5B.2C.1D.0二、填空题(本大共8小题,每小题5分,满分40分)11. (2022·江苏盐城)规定a*b=2a ×2b ,例如:1*2=21×22=23=8,若2*(x+1)=64,则x 的值为_____.12. (2020毕节地区)对于两个不相等的实数a 、b,定义一种新的运算如下,0a a a a b *b b b +=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= . 13. (2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP =2,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为 .14. (2021浙江台州模拟)定义一种新运算:a ※b =()3()a b a b b a b -⎧⎨<⎩,则2※3﹣4※3的值______. 15. (2021山东乐陵模拟)对于x 、y 定义一种新运算“*”:x y ax by *=-,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:1110*=,2116*=,那么23*=_______.16. (2021•呼和浩特)若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A.定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n =⎩⎨⎧≠=++1n 1-n 1n 1-n x x 1x x 0,,并规定x 0=x n ,x n+1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 .17. (2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 .18. (2021四川凉山)阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)对数的定义:一般地,若a x =N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a (M •N)=log a M+log a N(a >0,a ≠1,M >0,N >0),理由如下:设log a M =m,log a N =n,则M =a m ,N =a n ,∴M •N =a m •a n =a m+n ,由对数的定义得m+n =log a (M •N).又∵m+n =log a M+log a N,∴log a (M •N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log 232= ,②log 327= ,③log 71= ;(2)求证:log a NM =log a M-log a N(a >0,a ≠1,M >0,N >0); (3)拓展运用:计算log 5125+log 56-log 530.三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2021•北京)在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A(0,t),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.20. (6分)(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x+c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x+c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x+1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x+1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x+3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x+n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y =2(x ﹣1)(x+3)的图象与x 轴交于A 、B 两点,与y 轴交于点C,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x+3)互为“旋转函数”.21. (8分)(2021湖南衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.4图象上的“雁点”坐标;(1)求函数y=x(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M 在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=-x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.22. (10分)(2021湖南长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r=,s=,t=(将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y =mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1-x1)-1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.23. (12分)(2021山东枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB =AD,CB =CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD 的对角线AC,BD 交于点O.猜想:AB 2+CD 2与AD 2+BC 2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC =4,AB =5,求GE 的长.24. (12分)(2020湖北随州模拟)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线22343yx x 2333与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. yxAB CO M。
中考数学复习考点知识与题型归类解析45---新定义型、阅读理解型问题一、选择题10.(2020·遵义)构建几何图形解决代数问题“数形结合“思想的重要性,在计算tan15°时,如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15° =AC CD2类比这种方法,计算tan22.5°的值为( )A .+1 B .- 1 C .D . 127.(2020·河南)定义运算:m ☆n =21mn mn .例如: 4☆2=4×22-4×2-1=7.则1☆x =0方程的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根9.(2020·枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .x =4 B .x =5 C .x =6 D .x =78.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为"幸福数".下列数中为"幸福数"的是A.205B.250C.502D.5209.(2020·随州)将关于x 的一元二次方程0=q +px -x 2变形为q -px x 2=,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如=-=⋅=)(23q px x x x x …,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:0=1-x -x 2,且x >0,则3x +2x -x 34的值为( ) A.51- B.53- C.51+ D.53+ 12.(2020·潍坊)若定义一种新运算:(2)6(2)a b a b a bab ab 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A. B. C. D.7.(2020·恩施)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A. 1- B. 1C. 0D. 2二、填空题12.(2020·衢州)定义(1)a b a b =+※,例如232(31)248=⨯+=⨯=※,则(1)x x -※的结果为 .18.(2020·枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S =a +21b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.16.(2020·乐山)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[-1.5]=-2,那么:(1)当-1<[x ]≤2时,x 的取值范围是________;(2)当-1≤x <2时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则实数a 的范围是________.11.(2020·青海)对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下: a ⊕b,如:3⊕212⊕4=______.17.(2020·宜宾)定义:分数nm (m ,n 为正整数且互为质数)的连分数123111a a a +++(其中a 1,a 2,a 3,…,为整数,且等式右边的每个分数的分子都为1),记作nm△11a +21a +31a +…, 例如:719=1197=1527+=11275+=112215++=1121152++=11211122+++,719的连分数为11211122+++,记作719△12+11+12+12,则 △11+12+13.三、解答题24.(2020·宁波)(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =a ,请用含a 的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD =BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.22.(2020·黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形 B.正五边形C.菱形 D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.22.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除. (1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.28.(2020·北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A ´B ´(A´,B´分别为点A ,B 的对应点),线段AA ´长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12P P 和34P P ,则这两条弦的位置关系是 ;xyP 2P 1P 3P 41BOA在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y +上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.27.(2020·常州)(10分)如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点________(填“A ”“B ”“C ”或“D ”),⊙O 关于直线m 的“特征数”为________;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy ,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,2为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是45,求直线l 的函数表达式.(2020·山西)20.阅读与思考下面是小宇同学的数学日记,请仔细阅读,并完成相应的任务.任务:(1)填空:“办法一”依据的一个数学定理是 ; (2) 根据“办法二”的操作过程,证明∠RCS =90°;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线( 在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可) .x 年x 月x 日 星期日 没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出CD = 30cm ,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则∠DCE 必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS =MN ,得到点S ,作直线SC ,则∠RCS =90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也第20题图①50cm40cm 30cmEABDC第20题图②N MQ SABRC{解析} ({答案}18.(2020·湖北荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:2224250x x xx 【提示】可以用“换元法”解方程. 解:设t (t ≥0),则有222x x t , 原方程可化为:2450t t 【续解】229t21.(2020·怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交第20题图③第20题图④BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.20. (2020·张家界)阅读下面材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______; (2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. (1)﹣1 ;(2)x≥13424.(2020·长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①x y 2=( ) ②()0≠m xmy =( ) ③13-=x y ( ) (2)若点A (1,m )与点B (n ,-4)关于x 的“H 函数”()02≠a c bx ax y ++=的一对“H 点”,且该函数的对称轴始终位于直线x =2的右侧,求a ,b ,c 的值或取值范围;的(3)若关于x 的“H 函数”c bx ax y 322++=(a ,b ,c 是常数)同时满足下列两个条件:①0=++c b a ,②()()0322<++-+a b c a b c ,求该“H 函数”截x 轴得到的线段长度的取值范围.25. (2020·湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积.(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA 、OBC ABCS S 是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若1CMES=,求正方形ABCD 的面积.26.(2020·内江)我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()mf x n=. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==. (1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=.20.(2020·通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n , 如:1※2=12×2﹣1×2﹣3×2=﹣6.(1)求(﹣2(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.22.(7分)(2020•呼和浩特)“通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程x ﹣=0,就可以利用该思维方式,设=y ,将原方程转化为:y 2﹣y =0这个熟悉的关于y 的一元二次方程,解出y ,再求x ,这种方法又叫“换元法”.请你用这种思维方式和换元法解决下面的问题.已知实数x ,y 满足,求x 2+y 2的值.21.(9分)(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y =2(x﹣1)(x+3)互为“旋转函数”.。
【母题来源】2015浙江杭州19【母题原题】如图1,☉O 的半径为r(r>0),若点P ′在射线OP 上,满足OP ′•OP=r 2,则称点P ′是点P 关于☉O 的“反演点”,如图2,☉O 的半径为4,点B 在☉O 上,∠BOA=60°,OA=8,若点A ′、B ′分别是点A ,B 关于☉O 的反演点,求A ′B ′的长 图2图1A B O P 'P O【命题意图】本题主要考查利用圆的性质、等边三角形的性质与判定、勾股定理来解决新定义型问题。
【方法、技巧、规律】题目给出一些新定义,或者给出一段阅读材料,学生通过阅读,将材料所给出的信息加以整理,在此基础上,按照题目的要求进行推理解答。
考查内容有考查基础知识的,有考查学生自主学习能力,有考查学生探索能力的,有考查学生综合应用知识解决问题能力的。
能正确选择适当的知识来处理是解决此类问题的关键.【探源、变式、扩展】有些问题是通过学生动手通过操作来形成的,在这个过程中会形成自己独到的见解,然后利用这个见解来解决一些相关问题.【变式】(2015·辽宁朝阳)问题:如图(1),在Rt △ACB 中,∠ACB =90°,AC =CB ,∠DCE =45°,试探究AD 、DE 、EB 满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD 绕点C 逆时针旋转90°得到△CBH ,连接EH ,由已知条件易得∠EBH =90°,∠ECH =∠ECB +∠BCH =∠ECB +∠ACD =45°.根据“边角边”,可证△CEH ≌ ,得EH =ED . 在Rt △HBE 中,由 定理,可得BH 2+EB 2=EH 2,由BH =AD ,可得AD 、DE 、EB 之间的等量关系是 .[实践运用](1)如图(2),在正方形ABCD 中,△AEF 的顶点E 、F 分别在BC 、CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数;(2)在(1)条件下,连接BD ,分别交AE 、AF 于点M 、N ,若BE =2,DF =3,BM =2,运用小聪同学探究的结论,求正方形的边长及MN 的长.1.(2015·温州)如图,在Rt ∠AOB 的平分线ON 上依次取点C ,F ,M ,过点C 作DE ⊥OC ,分别交OA ,OB 于点D ,E ,以FM 为对角线作菱形FGMH ,已知∠DFE=∠GFH=120°,FG=FE 。
以函数新定义为背景阅读材料压轴题1.考向分析1(2023•义乌市校级模拟)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点13,13 是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x图象的“2阶方点”.(1)在①-2,-12 ;②(-1,-1);③(1,1)三点中,是反比例函数y =1x图象的“1阶方点”的有 ②③ (填序号);(2)若y 关于x 的一次函数y =ax -3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =-(x -n )2-2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2(2023•西城区校级模拟)在平面直角坐标系xOy 中,我们给出如下定义:将图形M 绕直线x =3上某一点P 顺时针旋转90°,再关于直线x =3对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次关联图形.已知点A (0,1).(1)若点P 的坐标是(3,0),直接写出点A 关于点P 的二次关联图形的坐标;(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知⊙O 的半径为1,点A 关于点P 的二次关联图形在⊙O 上且不与点A 重合.若线段AB =1,其关于点P 的二次关联图形上的任意一点都在⊙O 及其内部,求此时P 点坐标及点B 的纵坐标y B 的取值范围.3(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+1的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y=x+1(x≥0)-x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=-2x+l的“新生函数“的图象.(2)函数y=x2-2x+2的“新生函数“与直线y=-x+m有三个公共点,求m的值.(3)已知A(-1,0),B(3,0),C(3,-2),D(-1,-2),函数y=x2-2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.2.压轴题速练1(2023•信阳模拟)定义:在平面直角坐标系中,有一条直线x=m,对于任意一个函数,作该函数自变量大于m的部分关于直线x=m的轴对称图形,与原函数中自变量大于或等于m的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x=m的“镜面函数”.例如:图①是函数y=x+1的图象,则它关于直线x=0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y=x+1(x≥0),也可以写成y=|x|+1.-x+1(x<0)(1)在图③中画出函数y=-2x+1关于直线x=1的“镜面函数”的图象.(2)函数y=x2-2x+2关于直线x=-1的“镜面函数”与直线y=-x+m有三个公共点,求m的值.(3)已知抛物线y=ax2-4ax+2(a<0),关于直线x=0的“镜面函数”图象上的两点P(x1,y1),Q(x2,y2 ),当t-1≤x1≤t+1,x2≥4时,均满足y1≥y2,直接写出t的取值范围.2(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2-3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2-3x+1可知,a1=2,b1=-3,c1=1,根据a1+a2=0,b1=b2,c1+c2 =0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2-4x+3的“旋转函数”是2;(2)若函数y=5x2+(m-1)x+n与y=-5x2-nx-3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x-1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x-1)(x+3)互为“旋转函数”.3(2022•长沙县校级三模)规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O-函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(-1,-1)在函数y=-x-2上,点P与点Q关于原点对称,此时函数y=x2和y=-x-2互为“O-函数”,点P与点Q则为一组“XC点”.(1)已知函数y=-2x-1和y=-6x互为“O-函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n-2022互为“O-函数”,求n的最大值并写出“XC点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O-函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=c2-2c+6c,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为-t,连接OP,AP,BP.若∠OPA=∠OBP,求t 的最小值.4(2022•顺德区校级三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.(1)请直接写出函数y=2-x的不动点M的坐标;(2)若函数y=3x+8x+a有两个关于原点对称的不动点A,B,求a的值;(3)已知函数y=ax2+(b+1)x+(b-1),若对任意实数b,函数恒有两个相异的不动点,请直接写出a的取值范围.5(2022•长沙二模)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ 三角形”.(1)判断下列三角形是否为“CJ 三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形;②其中有两内角分别为50°,60°的三角形;③其中有两内角分别为70°,100°的三角形;(2)如图1,点A 在双曲线y =k x(k >0)上且横坐标为1,点B (4,0),C 为OB 中点,D 为y 轴负半轴上一点,若∠OAB =90°.①求k 的值,并求证:△ABC 为“CJ 三角形”;②若△OAB 与△OBD 相似,直接写出D 的坐标;(3)如图2,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,E 为BC 边上一点,BE >CE 且△ABE 是“CJ 三角形”,已知A (-6,0),记BE =t ,过A ,E 作抛物线y =ax 2+bx +c (a >0),B 在A 右侧,且在x 轴上,点Q 在抛物线上,使得tan ∠ABQ =1t -3,若符合条件的Q 点个数为3个,求抛物线y =ax 2+bx +c 的解析式.6(2022•滨海县模拟)如图1,直线l:y=kx+b(k<0,b>0)与x、y轴分别相交于A、B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线W叫做直线l的关联抛物线,而直线l 叫做抛物线W的关联直线.(1)已知直线l1:y=-3x+3,求直线l1的关联抛物线W1的表达式;(2)若抛物线W2:y=-x2-x+2,求它的关联直线l2的表达式;(3)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=102,求直线l3的关联抛物线W3的表达式;(4)在(3)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1-y2|≤4,请直接写出m的取值范围.7(2022•淮安二模)我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(-1,1),则P为二次函数y=x2图象上的“互反点”.(1)分别判断y=-x+3、y=x2+x的图象上是否存在“互反点”?如果存在,求出“互反点”的坐标;如果不存在,说明理由.(2)如图①,设函数y=-5x(x<0),y=x+b的图象上的“互反点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为5时,求b的值;(3)如图②,Q(m,0)为x轴上的动点,过Q作直线l⊥x轴,若函数y=-x2+2(x≥m)的图象记为W1,将W1沿直线l翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有2个“互反点”时,直接写出m的取值范围.8(2022•石家庄三模)抛物线L:y=x2-2bx+c与直线a:y=kx+2交于A、B两点,且A(2,0).(1)求k和c的值(用含b的代数式表示c);(2)当b=0时,抛物线L与x轴的另一个交点为C.①求△ABC的面积;②当1≤x≤5时,则y的取值范围是.(3)抛物线L:y=x2-2bx+c的顶点M(b,n),求出n与b的函数关系式;当b为何值时,点M达到最高.(4)在抛物线L和直线a所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当b=-20时,直接写出“美点”的个数;若这些美点平均分布在直线y=kx的两侧,k的取值范围: -22 21<k<-4543<4341 .9(2023春•雨花区期中)约定:如果函数的图象经过点(m,n),我们就把此函数称作“(m,n)族函数”.比如:正比例函数y=2x的图象经过点(1,2),所以正比例函数y=2x就是“(1,2)族函数”.(1)①以下数量关系中,y不是x的函数的是(填选项)②以下是“(-1,1)族函数”的是(填选项)A.y=-1xB.|y|=xC.y=x2+2x-4D.y=|x|+1E.y2=-xF.y=2x+3(2)已知一次函数y=kx-k+1(k为常数,k≠0).①若该函数是“-1 2,4族函数”,求k的值.②无论k取何值,该函数必经过一定点,请写出该定点的坐标.(3)已知一次函数y=2x+4和y=-x+1都是“(m,n)族函数”.当m≤x≤1时,一次函数y=kx+b的函数值y恰好有12n≤1y≤-12m,求该一次函数的解析式.10(2022秋•海门市期末)定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W上,则称点M为函数图象W的“直旋点”.例如,点-1 3,13是函数y=x图象的“直旋点”.(1)在①(3,0),②(-1,0),③(0,3)三点中,是一次函数y=-13x+1图象的“直旋点”的有(填序号);(2)若点N(3,1)为反比例函数y=k x图象的“直旋点”,求k的值;(3)二次函数y=-x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y =-x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.11(2022秋•大兴区校级期末)在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB 为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“从属点”.已知点A的坐标为(0,1).(1)如图1,若点B为(2,1),在点C1(0,-2),C2(2,2).C3(1,0),C4(0,3)中,线段AB的“从属点”是,C2 ;1(2)如图2,若点B为(1,0),点P在直线y=-2x-3上,且点P为线段AB的“从属点”,求点P的坐标;(3)点B为x轴上的动点,直线y=4x+b(b≠0)与x轴,y轴分别交于M,N两点,若存在某个点B,使得线段MN上恰有2个线段AB的“从属点”,直接写出b的取值范围.12(2023春•鄱阳县期中)对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义:记a=-x,b=x-y,那么我们把点M(a,b)与点N(b,a)称为点P的一对“和美点”.例如:点P(-1,2)的一对“和美点”是点(1,-3)与点(-3,1).(1)点A(4,1)的一对“和美点”坐标是与;(2)若点B(2,y)的一对“和美点”重合,则y的值为;(3)若点C的一个“和美点”坐标为(-2,7),求点C的坐标.13(2022秋•石景山区校级期末)在平面直角坐标系xOy中,已知矩形OABC,其中点A(5,0),B (5,4),C(0,4).给出如下定义:若点P关于直线l:x=t的对称点P'在矩形OABC的内部或边上,则称点P为矩形OABC关于直线l的“关联点”.例如,图1中的点D,点E都是矩形OABC关于直线l:x=3的“关联点”.(1)如图2,在点P1(4,1),P2(-3,3),P3(-2,0),P4(-6,-2)中,是矩形OABC关于直线l:x=-1的“关联点”的为2,P3 ;(2)如图3,点P(-2,3)是矩形OABC关于直线l:x=t的“关联点”,且△OAP'是等腰三角形,求t的值;(3)若在直线y=12x+b上存在点Q,使得点Q是矩形OABC关于直线l:x=-1的“关联点”,请直接写出b的取值范围.14(2023春•崇川区校级月考)我们定义:若点P在一次函数y=ax+b(a≠0)图象上,点Q在反比例函数y=cx(c≠0)图象上,且满足点P与点Q关于y轴对称,则称二次函数y=ax2+bx+c为一次函数y=ax+b与反比例函数y=cx的“衍生函数”,点P称为“基点”,点Q称为“靶点”.(1)若二次函数y=x2+2x+1是一次函数y=ax+b与反比例函数y=c x的“衍生函数”,则a=,b=,c=;(2)若一次函数y=x+b和反比例函数y=c x的“衍生函数”的顶点在x轴上,且“基点”P的横坐标为1,求“靶点”的坐标;(3)若一次函数y=ax+2b(a>b>0)和反比例函数y=-2x的“衍生函数”经过点(2,6).①试说明一次函数y=ax+2b图象上存在两个不同的“基点”;②设一次函数y=ax+2b图象上两个不同的“基点”的横坐标为x1、x2,求|x1-x2|的取值范围.15(2023•定远县校级一模)已知一系列具备负整数系数形式规律的“负倍数二次函数”:y1=-x2-2x,y2=-2x2-4x,y3=-3x2-6x,⋯(1)探索发现,所有“负倍数二次函数”都有同一条对称轴直线x=.(2)求二次函数y n的解析式及其顶点坐标.(3)点(-1,10)是否是“负倍数二次函数”中某一抛物线的顶点,若是,请求出它所在的抛物线解析式,并求出-2≤x≤1对应的y的取值范围;若不是,请说明理由.16(2023春•兰溪市月考)阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=-a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y=a2;当x=-a时,y=(-a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2-2|x|+1的图象如图2所示,当它与直线y=-x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(-3,0),B(2,0),C(2,-3),D(-3,-3),当二次函数y=x2-b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.17(2023春•东台市校级期中)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=-x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x-2)2+1关于原点O的“伴随函数”的函数解析式为2;(2)已知函数y=x2-2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2-2x 与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2-2ax-3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2-2ax-3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.18(2023春•北京月考)在平面直角坐标系xOy中.⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A′B′(A′,B′分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段AB是⊙O的关于直线l对称的“关联线段”.(1)如图2,点A1,B1,A2,B2,A3,B3的横、纵坐标都是整数.①在线段A1B1,A2B2,A3B3中,⊙O的关于直线y=x+2对称的“关联线段”是1B1 ;②若线段A1B1,A2B2,A3B3中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则m=;(2)已知直线y=-33x+b(b>0)交x轴于点C,在△ABC中,AC=3,AB=1.若线段AB是⊙O的关于直线y=-33x+b(b>0)对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.。
中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数” ;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2 二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为 ;②抛物线y=﹣x2+3x+3的“特征值”为 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________ “明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3 二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA 与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△AB P的Q点(异于点P)的坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m 翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标 ,点B 坐标 ,惊喜四边形ABCD属于所学过的哪种特殊平行四边形 ,|D|为 .(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1 -x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤ 2,则在2≤x ≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤ 2,∴b≥﹣4,即b=﹣4,若≤ 3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤ 4,则在2≤x ≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤ 4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴。
专题20新定义型二次函数问题【中考考向导航】目录【直击中考】 (1)【考向一新定义型二次函数问题】 (1)【直击中考】【考向一新定义型二次函数问题】求解体验:(1)已知抛物线23y x bx =-+-经过点(1,0-心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线(2y ax bx c a =++线,则我们又称抛物线为抛物线y 的“衍生抛物线(2)已知抛物线225y x x =--+关于点(0,m【变式训练】m轴对称且对称轴相同的两条抛物线叫作(1)请将点Q “去隐”,得到该抛物线表达式;(2)记(1)中抛物线为W (如图),W 与x 轴交于点A ,B (A 在B 的左侧),其顶点为点平移后的抛物线W '始终过点A ,点C 的对应点为C '.ⅰ)试确定点C '运动路径所对应的函数表达式;ⅱ)在直线2x =-的左侧,是否存在点C ',使ACC '△为等腰三角形?若存在,求出点说明理由.5.(2022秋·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)定义若抛物线2y ax bx c =++(0a ≠)与直线有两个交点,则称抛物线为直线的“双幸运曲线”,其交点为该直线的“幸运点”.(1)已知直线解析式为1y x =-,下列抛物线为该直线的“双幸运曲线”的是________;(填序号)①21y x =+;②22y x x =+-;③2y x x =-;(2)如图,已知直线l :4y x =-,抛物线23y x x =--为直线l 的“双幸运曲线”,“幸运点”分别为A 、B ,在直线l 上方抛物线部分是否存在点P 使△PAB 面积最大,若存在,请求出面积的最大值和点P 坐标,若不存在,请说明理由;(3)已知x 轴的“双幸运曲线”2y ax bx c =++(0a b >>)经过点(1,3),(0,2-),在x 轴的“幸运点”分别为M 、N ,试求MN 的取值范围.6.(2022·湖南湘西·统考中考真题)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM 的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG 为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.7.(2022秋·安徽淮北·九年级淮北市第二中学校联考阶段练习)在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.8.(2022春·九年级课时练习)定义:若二次函数()21y a x h k =-+的图象记为1C ,其顶点为()A h k ,,二次函数()22y a x k h =-+的图象记为2C ,其顶点为()B k h ,,我们称这样的两个二次函数互为“反顶二次函数”.分类一:若二次函数()211:C y a x h k =-+经过2C 的顶点B ,且()222:C y a x k h =-+经过1C 的顶点A ,我们就称它们互为“反顶伴侣二次函数”.(1)所有二次函数都有“反顶伴侣二次函数”是______命题.(填“真”或“假”)(2)试求出245y x x =-+的“反顶伴侣二次函数”.(3)若二次函数1C 与2C 互为“反顶伴侣二次函数”,试探究1a 与2a 的关系,并说明理由.(4)分类二:若二次函数()211:C y a x h k =-+可以绕点M 旋转180°得到二次函数2C ;()22y a x k h =-+,我们就称它们互为“反顶旋转二次函数”.①任意二次函数都有“反顶旋转二次函数”是______命题.(填“真”或“假”)②互为“反顶旋转二次函数”的对称中心点M 有什么特点?③如图,1C ,2C 互为“反顶旋转二次函数”,点E ,F 的对称点分别是点Q ,G ,且EF GQ x ∥∥轴,当四边形EFQG 为矩形时,试探究二次函数1C ,2C 的顶点有什么关系.并说明理由.t轴对称且对称轴相同的两条抛物线叫作。
例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,则我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。
根据上述定义,距离坐标为(2,3)的点的个数是_______。
例4.如果三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB =____; ②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.BA0P几何新定义练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形.②当△ACE是直角三角形时,求∠AOC的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x+]=5,则x的取值可以是()A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,则曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BEDC EC=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。
第26章 二次函数全章复习与测试【知识梳理】1.二次函数的概念 解析式形如2(0)y ax bx c a =++≠的函数;它的定义域为一切实数; 2.二次函数的图像与性质24a a【考点剖析】 一.二次函数的定义(共3小题)1.(2023•杨浦区一模)下列函数中,二次函数是( ) A .y =x +1B .y =x (x +1)C .y =(x +1)2﹣x 2D .2.(2022秋•宝山区校级期末)如果函数y =(m +1)x+2是二次函数,那么m = .3.(2022秋•黄浦区校级月考)已知二次函数y =﹣x 2+bx +3,当x =2时,y =3.则这个二次函数的表达式是 . 二.二次函数的图象(共2小题)4.(2022秋•徐汇区校级期末)如图所示的抛物线y =x 2﹣bx +b 2﹣9的图象,那么b 的值是 .5.(2022秋•宝山区校级期末)如果二次函数y=a(x﹣1)2(a≠0)的图象在它的对称轴右侧部分是上升的,那么a的取值范围是.三.二次函数图象与系数的关系(共7小题)6.(2022秋•浦东新区校级期末)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a<0,b<0,c<07.(2022秋•金山区校级期末)如果抛物线y=(k﹣2)x2的开口向上,那么k的取值范围是.8.(2023•普陀区一模)如果二次函数y=(x﹣m)2+k的图象如图所示,那么下列说法中正确的是()A.m>0,k>0B.m>0,k<0C.m<0,k>0D.m<0,k<09.(2023•虹口区一模)已知二次函数y=ax2+bx+c的图象如图所示,那么下列四个结论中,错误的是()A.a<0B.b<0C.c>0D.abc<010.(2022秋•嘉定区校级期末)如果抛物线y=(a+2)x2+a的开口向下,那么a的取值范围是.11.(2023•徐汇区一模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP =1,下列选项中正确的是()A.a>0B.c<0C.a+b+c>0D.b<012.(2023•杨浦区一模)已知抛物线y=ax2在对称轴左侧的部分是下降的,那么a的取值范围是.四.二次函数图象上点的坐标特征(共13小题)13.(2023•普陀区一模)下列函数图象中,与y轴交点的坐标是(0,1)的是()A.y=2x B.y=2x﹣1C.y=2x2+1D.y=2(x+1)214.(2023•长宁区一模)某同学在用描点法画二次函数的图象时,列出了下面的表格:x……﹣2﹣1012……y……﹣10﹣3﹣4﹣3……由于粗心,他算错了其中的一个y值,那么这个错误的数值是()A.﹣3B.﹣4C.0D.﹣115.(2022秋•徐汇区校级期末)下列各点中,在二次函数y=x2﹣8x﹣9图象上的点是()A.(1,﹣16)B.(﹣1,﹣16)C.(﹣3,﹣8)D.(3,24)16.(2023•徐汇区一模)已知点A(﹣3,m)、B(﹣2,n)在抛物线y=﹣x2﹣2x+4上,则m n(填“>”、“=”或“<”).17.(2022秋•青浦区校级期末)已知点A(0,y1)、B(﹣1,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1y2(填“>”、“=”或“<”).18.(2022秋•金山区校级期末)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:x…﹣4﹣3﹣2﹣10…y…m﹣3﹣2﹣3﹣6…那么m的值为.19.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.20.(2022秋•黄浦区校级期末)如果二次函数y=(m﹣1)x2+x+(m2﹣1)的图象过原点,那么m=.21.(2022秋•青浦区校级期末)函数y=2x2+4x﹣5的图象与y轴的交点的坐标为.22.(2023•青浦区二模)已知点M(﹣1,2)和点N都在抛物线y=x2﹣2x+c上,如果MN∥x轴,那么点N的坐标为.23.(2023•崇明区一模)已知点A(2,y1),B(﹣3,y2)为二次函数y=(x+1)2图象上的两点,那么y1 y2(填“>”,“=”或“<”).24.(2023•长宁区一模)已知抛物线y=ax2﹣2ax+2(a>0)经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”,“<”或“=”).25.(2023•静安区校级一模)抛物线y=(x+1)2﹣2与y轴的交点坐标是.五.二次函数图象与几何变换(共6小题)26.(2023•虹口区一模)在平面直角坐标系xOy中,将抛物线y=x2+2x沿着y轴向下平移2个单位,所得到的新抛物线的表达式为.27.(2023•金山区一模)将抛物线y=2(x+4)2向右平移3个单位,得到新抛物线的表达式是.28.(2023•松江区一模)把抛物线y=x2+1向左平移2个单位,所得新抛物线的表达式是.29.(2023•宝山区一模)将抛物线y=x2+3向右平移3个单位长度,平移后抛物线的表达式为()A.y=x2B.y=x2﹣3C.y=(x+3)2+3D.y=(x﹣3)2+330.(2022秋•金山区校级期末)若将抛物线y=2(x﹣1)2+3向下平移3个单位,则所得到的新抛物线表达式为.31.(2023•上海)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.六.二次函数综合题(共9小题)32.(2023•静安区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4x+c(a≠0)与x轴分别交于点A(1,0)、点B(3,0),与y轴交于点C,联结BC,点P在线段BC上,设点P的横坐标为m.(1)求直线BC的表达式;(2)如果以P为顶点的新抛物线经过原点,且与x轴的另一个交点为D;①求新抛物线的表达式(用含m的式子表示),并写出m的取值范围;②过点P向x轴作垂线,交原抛物线于点E,当四边形AEDP是一个轴对称图形时,求新抛物线的表达式.33.(2023•长宁区二模)已知抛物线y=ax2+2x+6与x轴交于点A、点B(点A在点B的左侧,点B在原点O右侧),与y轴交于点C,且OB=OC.(1)求抛物线的表达式.(2)如图1,点D是抛物线上一点,直线BD恰好平分△ABC的面积,求点D的坐标;(3)如图2,点E坐标为(0,﹣2),在抛物线上存在点P,满足∠OBP=2∠OBE,请直接写出直线BP 的表达式.34.(2023•奉贤区二模)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+3与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求该抛物线的表达式和对称轴;(2)联结AC、BC,D为x轴上方抛物线上一点(与点C不重合),如果△ABD的面积与△ABC的面积相等,求点D的坐标;(3)设点P(m,4)(m>0),点E在抛物线的对称轴上(点E在顶点上方),当∠APE=90°,且=时,求点E的坐标.35.(2023•杨浦区三模)已知抛物线与x轴交于点A(3,0)和点B,与y轴交于点C(0,2),顶点为点D.(1)求抛物线的表达式和顶点D的坐标;(2)点P是线段AB上的一个动点,过点P作x轴的垂线交抛物线于点E,如果PE=PB,求点P的坐标;(3)在第(2)小题的条件下,点F在y轴上,且点F到直线EC、ED的距离相等,求线段EF的长.36.(2023•虹口区二模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2(m+1)x+2m﹣3的顶点为A,与y轴相交于点B,异于顶点A的点C(2,n)在该抛物线上.(1)如图,点B的坐标为(0,1).①求点A的坐标和n的值;②将抛物线向上平移后的新抛物线与x轴的一个交点为D,顶点A移至点A1,如果四边形DCAA1为平行四边形,求平移后新抛物线的表达式;(2)直线AC与y轴相交于点E,如果BC∥AO且点B在线段OE上,求m的值.37.(2023•崇明区二模)如图.在直角坐标平面xOy中,直线y=﹣x+5分别与x轴、y轴交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)抛物线与x轴的另一个交点为C,点在抛物线对称轴左侧的图象上,将抛物线向上平移m个单位(m>0),使点M落在△ABC内,求m的取值范围;(3)对称轴与直线AB交于点E,P是线段AB上的一个动点(P不与E重合),过P作y轴的平行线交原抛物线于点Q,当PE=QD时,求点Q的坐标.38.(2023•浦东新区模拟)如图,已知在平面直角坐标系xOy中,抛物线y=﹣ax2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.39.(2023•普陀区二模)在平面直角坐标系xOy中(如图),已知抛物线y=ax2﹣2x+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C.抛物线的顶点为点D.(1)求抛物线的表达式,并写出点D的坐标;(2)将直线BC绕点B顺时针旋转,交y轴于点E.此时旋转角∠EBC等于∠ABD.①求点E的坐标;②二次函数y=x2+2bx+b2﹣1的图象始终有一.部分落在△ECB的内部,求实数b的取值范围.40.(2023•青浦区二模)如图,已知抛物线经过点B(6,0)和C(0,3),与x轴的另一个交点为点A.(1)求抛物线的解析式及点A的坐标;(2)将该抛物线向右平移m个单位(m>0),点C移到点D,点A移到点E,若∠DEC=90°,求m的值;(3)在(2)的条件下,设新抛物线的顶点为G,新抛物线在对称轴右侧的部分与x轴交于点F,求点C 到直线GF的距离.【过关检测】一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣4一定经过点()A.(2,﹣4)B.(1,2)C.(﹣4,0)D.(3,2)2.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点3.下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x4.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0B.a<0、b<0、c>0C.a<0、b>0、c<0D.a<0、b<0、c<05.将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3D.y=2x2﹣36.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b)其中正确的结论的个数是()A.1B.2C.3D.4二.填空题(共12小题)7.如果抛物线y=ax2+2经过点(1,0),那么a的值为.8.如果函数是关于x的二次函数,那么k的值是.9.如果抛物线y=﹣2x2+bx+c的对称轴在y轴的左侧,那么b0(填入“<”或“>”).10.将抛物线y=2x2+4绕原点O旋转180°,则旋转后的抛物线的解析式为.11.若抛物线y=ax2+bx+c的系数a,b,c满足a﹣b+c=0,则这条抛物线必经过点.12.如果抛物线y=(k﹣1)x2+9在y轴左侧的部分是上升的,那么k的取值范围是.13.将抛物线y=2(x+2)2+2经过适当的几何变换得到抛物线y=2x2﹣2,请写出一种满足条件的变换方法.14.如图,在平面直角坐标系中,抛物线y=x2﹣mx+4与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点A作x轴的平行线交抛物线于点E.若点A、D的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为.15.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.16.已知二次函数y1=x2+2x﹣3的图象如图所示.将此函数图象向右平移2个单位得抛物线y2的图象,则阴影部分的面积为.17.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是.18.如图,正方形OABC和矩形CDEF在平面直角坐标系中,CD=2DE,点O、C、F在y轴上,点A在x 轴上,O为坐标原点,点M为线段OC的中点,若抛物线y=ax2+b经过M、B、E三点,则的值等于.三.解答题(共7小题)19.已知二次函数y=x2﹣4x+3.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.21.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.22.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积.23.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y=x2﹣2x+2与x轴的“和谐值”;(2)求抛物线y=x2﹣2x+2与直线y=x﹣1的“和谐值”.(3)求抛物线y=x2﹣2x+2在抛物线y=x2+c的上方,且两条抛物线的“和谐值”为2,求c的值.24.在平面直角坐标系xOy中,抛物线C:y=x2+(3﹣m)x经过点A(﹣1,0).(1)求抛物线C的表达式;(2)将抛物线C沿直线y=1翻折,得到的新抛物线记为C1,求抛物线C1的顶点坐标;(3)将抛物线C沿直线y=n翻折,得到的图象记为C2,设C与C2围成的封闭图形为M,在图形M上内接一个面积为4的正方形(四个顶点均在M上),且这个正方形的边分别与坐标轴平行.求n的值.25.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y1=x2﹣x+n与y2=﹣x2+mx﹣3互为“旋转函数”,求(m+n)2016的值;(3)已知函数y=(x﹣1)(x+4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试证明经过点A1、B1、C1的二次函数与函数y=(x﹣1)(x+4)互为“旋转函数”.。