极大函数
- 格式:pdf
- 大小:205.93 KB
- 文档页数:4
函数极值的判定法则一、极值的概念设函数f (x )在点x 0的某个邻域内有定义,如果对于该邻域内去掉x 0点的任意一点x ,都有f (x )<f (x 0)或f (x )>f (x 0)成立,则称函数f (x )在点x 0处取得极大值或极小值,简称f (x 0)是函数f (x )的一个极值,点x 0称为函数f (x )的一个极值点。
如果函数f (x )在点x 0处取得极大值,则称f (x 0)是函数f (x )的一个局部最大值,点x 0称为函数f (x )的一个局部最大点。
如果函数f (x )在点x 0处取得极小值,则称f (x 0)是函数f (x )的一个局部最小值,点x 0称为函数f (x )的一个局部最小点。
二、极值的判定条件1. 导数判定法如果函数f (x )在点x 0处可导,且f ′(x 0)=0,则点x 0是函数f (x )的一个驻点。
驻点是函数f (x )的极值点的必要条件,但不是充分条件。
为了判断驻点是否为极值点,还需要考察函数f (x )在驻点两侧的变化情况,有以下两种方法:2. 极值第一充分条件如果函数f (x )在点x 0处连续,且在x 0的某个去心邻域内满足f (x )−f (x 0){或f (x )−f (x 0){则f (x 0)是函数f (x )的一个极值,x 0是函数f (x )的一个极值点。
3. 极值第二充分条件如果函数f (x )在点x 0处n 阶可导,且f ′(x 0)=f ′′(x 0)=⋯=f (n −1)(x 0)=0,f (n )(x 0)≠0,则有一阶导数法:如果函数f (x )在点x 0的某个去心邻域内可导,且f ′(x 0)=0,则有如果f ′(x )在x 0的左侧为正,右侧为负,则f (x 0)是函数f (x )的一个局部最大值,x 0是函数f (x )的一个局部最大点;如果f ′(x )在x 0的左侧为负,右侧为正,则f (x 0)是函数f (x )的一个局部最小值,x 0是函数f (x )的一个局部最小点;如果f ′(x )在x 0的左右两侧同号,则f (x 0)不是函数f (x )的极值,x 0不是函数f (x )的极值点。
极大值、极小值、最大值、最小值之间的数学关系极大值、极小值、最大值和最小值是在数学中常常出现的概念,它们之间存在一定的关系。
为了更好地理解它们之间的关系,我们先来了解一下它们的定义和性质。
首先,我们来看一下极大值和极小值的定义。
在函数的定义域上,如果存在一个点,使得这个点的函数值比它邻近的其他点的函数值都大,则称该点为函数的极大值点,这个函数值称为函数的极大值。
同理,如果存在一个点,使得这个点的函数值比它邻近的其他点的函数值都小,则称该点为函数的极小值点,这个函数值称为函数的极小值。
接下来,我们来看一下最大值和最小值的定义。
在函数的定义域上,如果对于任意的点,该点的函数值都不大于此函数值,则称这个函数值为函数的最大值。
同理,如果对于任意的点,该点的函数值都不小于此函数值,则称这个函数值为函数的最小值。
简而言之,极大值和极小值是局部性质,指的是函数在某些点附近的最大值和最小值;而最大值和最小值是全局性质,指的是函数在整个定义域上的最大值和最小值。
接下来,我们来讨论它们之间的关系。
首先,最大值和最小值一定是极大值和极小值,因为最大值和最小值是全局性质,所以它们一定也是局部性质。
也就是说,如果一个函数有最大值或最小值,那么它一定存在极大值或极小值。
反过来,极大值和极小值不一定是最大值和最小值。
这是因为极大值和极小值只是局部性质,它们只在某个点附近成立,并不能保证在整个定义域上都成立。
因此,一个函数具有极大值或极小值,并不能保证它一定具有最大值或最小值。
举个例子来说明这个关系。
考虑函数f(x) = x^3,在定义域上,这个函数没有最大值和最小值。
但是,它具有一个极小值点x=0,即f(0)=0。
这个点附近的函数值比它邻近的其他点的函数值都小,所以它是一个极小值点。
但是,由于在整个定义域上,函数的函数值可以无限接近正无穷大或负无穷大,所以它并没有最小值和最大值。
总结来说,最大值和最小值是全局性质,它们一定是极大值和极小值,但极大值和极小值不一定是最大值和最小值。
第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。
§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。
函数极值的求解毕业论文函数极值的求解极值问题在数学中是一个重要的研究方向,也是应用最为广泛的数学概念之一。
在数学建模、优化问题等领域中,极值问题的求解具有重要的实际意义。
本文将介绍函数极大值和极小值的定义及求解方法,并应用实例进行论述。
一、函数极值的定义1. 极大值和极小值在数学中,给定一个定义在某个区间上的函数f(x),如果在该区间上存在一个数c,使得对于任意的x(x∈该区间),都有f(x)≤f(c),则称f(x)在该区间上存在一个极大值,相应的数f(c)称为函数f(x)的极大值。
同样地,如果在给定的区间上存在一个数c,使得对于任意的x(x∈该区间),都有f(x)≥f(c),则称f(x)在该区间上存在一个极小值,相应的数f(c)称为函数f(x)的极小值。
二、函数极值的求解方法求解函数极值的方法主要有导数法和二阶导数判别法两种方法。
1. 导数法导数法通过求取函数的导数,来寻找极值点。
具体步骤如下:(1)求取函数的一阶导数,并令一阶导数等于零。
得到一个或多个代数方程。
(2)解出这些代数方程,得到所有的极值点。
(3)代入原函数,求出这些极值点对应的函数值,并比较它们的大小,得到函数的极大值和极小值。
2. 二阶导数判别法二阶导数判别法通过二阶导数的值来判断函数的极值情况。
具体步骤如下:(1)求取函数的一阶导数和二阶导数。
(2)令一阶导数等于零,解出所有的极值点。
(3)将这些极值点代入二阶导数的表达式中,判断二阶导数的正负情况:- 若二阶导数大于零,则所代表的极值点为函数的极小值点。
- 若二阶导数小于零,则所代表的极值点为函数的极大值点。
- 若二阶导数等于零,则无法判断该点是否为极值点,需要进一步分析。
三、函数极值求解的实例分析下面以一个简单的实例来说明函数极值的求解过程。
例:求函数f(x) = x^2 - 2x + 1的极值点和极值。
解:首先求函数的一阶导数:f'(x) = 2x - 2令导数等于零,得到极值点的横坐标x:2x - 2 = 0x = 1将x = 1代入原函数f(x)中,得到极值点的纵坐标:f(1) = 1^2 - 2(1) + 1 = 0所以函数f(x)在x = 1处存在一个极小值点,极小值为0。
函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点Þ()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点Þ导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点)5、求极值点的步骤:(1)筛选:令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。
有极大值的函数-范文模板及概述示例1:标题:深入探讨具有极大值的函数:理论与应用在数学领域,尤其是微积分学中,函数的极大值是一个核心概念。
一个函数在其定义域内的某个点取得极大值,意味着该点处的函数值大于或等于其在附近所有点的函数值。
这对于理解和解决现实生活中的优化问题至关重要,例如最大利润、最小成本分析,物理现象的最大效果分析等。
一、理论概述函数f(x)在某一点x₀取得极大值,需满足两个条件:首先,该点必须是函数的临界点,即f'(x₀)=0(导数为零)或者导数不存在;其次,根据二阶导数测试,当f''(x₀)<0时,可以确认x₀是极大值点。
这是因为,二阶导数反映了函数曲线的凹凸性,负的二阶导数意味着函数在该点附近由凸转凹,符合极大值的几何特性。
二、实例解析以二次函数f(x) = ax²+ bx + c为例,如果a<0且判别式b²-4ac>0,那么此函数就存在极大值。
通过求解导数并确定其零点,我们可以找到极大值的具体位置。
三、实际应用在实际应用中,寻找函数的极大值有着广泛的应用场景。
例如,在经济学中,生产者可能需要找出产量与利润之间的关系函数的最大值点,以确定最佳生产规模;在物理学中,研究势能函数的极大值可以帮助我们定位物体在力场中的稳定平衡位置;在工程设计中,通过优化目标函数来达到性能最大化的解决方案等等。
总结来说,对具有极大值的函数的研究,不仅深化了我们对数学理论的理解,也为我们解决现实世界中的最优化问题提供了强大的工具和方法论支撑。
示例2:标题:探讨有极大值的函数:理论与实践应用在数学领域中,函数极大值的概念是微积分学的重要组成部分,它对于理解并解决实际问题具有深远意义。
一个函数在其定义域内某个点取得极大值,意味着该点处的函数值大于或等于其在附近所有点的函数值。
本文将深入探讨具有极大值的函数的相关理论及其广泛应用。
一、函数极大值的基本概念与求解方法函数f(x)在某一点c取得极大值,需满足两个条件:首先,c必须是函数f(x)的临界点或者边界点;其次,c左侧邻域内的函数值不大于f(c),右侧邻域亦然。
3.3.2函数的极大值和极小值[读教材·填要点]1.极大值和极小值(1)极大值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都小于f(x0)(即f(x)<f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极大值,x0称为f(x)的一个极大值点.(2)极小值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都大于f(x0)(即f(x)>f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极小值,x0称为f(x)的一个极小值点.(3)极值:极大值和极小值统称极值,极大值点和极小值点统称为极值点.2.函数极值的求法(1)求导数f′(x);(2)求f(x)的驻点,即求f′(x)=0的根;(3)检查f′(x)在驻点左右的符号,如果在驻点左侧附近为正,右侧附近为负,那么函数y=f(x)在这个驻点处取得极大值;如果在驻点的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个驻点处取得极小值.[小问题·大思维]1.导数为0的点都是极值点吗?提示:不一定.y=f(x)在x=x0及附近有定义,且f′(x0)=0,y=f(x)是否在x=x0处取得极值,还要看f′(x)在x0两侧的符号是否异号.例如f(x)=x3,由f′(x)=3x2知f′(0)=0,但x=0不是f(x)=x3的极值点.2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?提示:由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以,函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为x=x2.3.函数y=f(x)在给定区间上一定有极值点吗?极大值是否一定比极小值大?提示:(1)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.(2)极大值不一定比极小值大,极小值也不一定比极大值小.求下列函数的极值:(1)f (x )=x 4-2x 2;(2)f (x )=x 2e -x .[自主解答] (1)函数f (x )的定义域为R. f ′(x )=4x 3-4x =4x (x +1)(x -1).令f ′(x )=0,得驻点x =0,或x =-1,或x =1. 列表:当x =0时,函数有极大值,且f (0)=0; 当x =-1,或x =1时,函数有极小值, 且f (-1)=f (1)=-1. (2)函数的定义域为R.f ′(x )=⎝⎛⎭⎫x 2e x ′=(x 2)′e x -(e x )′x 2(e x )2=2x e -x -x 2e -x =x (2-x )e -x =-e -x x (x -2).令f ′(x )=0,得驻点x =0,或x =2. 列表:当x =0时,函数有极小值,且f (0)=0; 当x =2时,函数有极大值,且f (2)=4e2.求可导函数f (x )极值的步骤:①求函数的导数f′(x);②令f′(x)=0,求驻点x0;③列表,方程的根x0将整个定义域分成若干个区间,把x,f′(x),f(x)在每个区间内的变化情况列在这个表格内;④判断得结论,若导数在x0附近左正右负,则在x0处取得极大值;若左负右正,则取得极小值.1.求下列函数的极值.(1)f(x)=ln xx;(2)f(x)=2xx2+1-2.解:(1)函数f(x)=ln xx的定义域为(0,+∞),且f′(x)=1-ln xx2.由f′(x)=0得ln x=1,即x=e.当x变化时,f′(x)与f(x)的变化情况如下表:所以f(x)极大值=f(e)=1e,无极小值.(2)函数f(x)的定义域为R.f′(x)=2(x2+1)-4x2(x2+1)2=-2(x-1)(x+1)(x2+1)2.令f′(x)=0,得x=-1或x=1.当x变化时,f′(x),f(x)的变化情况如下表:且f(x)极小值=f(-1)=-3;当x=1时,函数有极大值,且f(x)极大值=f(1)=-1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0.求a ,b 的值.[自主解答] ∵f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.若将“在x =-1时有极值0”改为“在x =-1和x =3处有极值”,如何求解? 解:f ′(x )=3x 2+6ax +b , ∵-1,3是f (x )的极值点, ∴-1,3是f ′(x )=0的两个根, 即-1,3是3x 2+6ax +b =0的两根,由根与系数的关系知⎩⎨⎧-6a3=-1+3,b3=(-1)×3,解得a =-1,b =-9.解决此类问题通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.2.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值还是极大值,并说明理由.解:(1)f′(x)=3ax2+2bx+c,由f′(-1)=f′(1)=0,得:3a+2b+c=0, 3a-2b+c=0.又f(1)=-1,∴a+b+c=-1.∴a=12,b=0,c=-32.(2)由(1)可得f(x)=12x3-32x,∴f′(x)=32x2-32=32(x-1)(x+1).当x<-1或x>1时,f′(x)>0;当-1<x<1时,f′(x)<0,∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y =m与y=f(x)的图象有三个不同的交点,求m的取值范围.[自主解答]因为f(x)在x=-1处取得极值且f′(x)=3x2-3a,所以f′(-1)=3×(-1)2-3a=0,所以a=1.所以f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以由f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.作出f(x)的大致图象如图所示:因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的图象可知,m的取值范围是(-3,1).若本例中条件改为“已知函数f (x )=-x 3+ax 2-4”在x =43处取得极值,其他条件不变,求m 的取值范围.解:由题意可得f ′(x )=-3x 2+2ax ,由f ′⎝⎛⎭⎫43=0, 可得a =2,所以f (x )=-x 3+2x 2-4, 则f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或x =43,当x 变化时,f ′(x ),f (x )的变化情况如下表:作出函数f (x )的大致图象如图所示:因为直线y =m 与函数y =f (x )的图象有三个不同的交点,所以m 的取值范围是⎝⎛⎭⎫-4,-7627.利用导数求极值,要先讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论,在存在极值的情况下,求出极值.3.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点. 解:(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:所以f (x )的极大值是f ⎝⎛⎭⎫-13=527+a , 极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1.由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.结合f (x )的单调性可知,当f (x )的极大值527+a <0,即a ∈⎝⎛⎭⎫-∞,-527时它的极小值也小于0,因此曲线y =f (x )与x 轴仅有一个交点,它在(1,+∞)上;当f (x )的极小值a -1>0,即a ∈(1,+∞)时它的极大值也大于0,因此曲线y =f (x )与x 轴仅有一个交点,它在⎝⎛⎭⎫-∞,-13上.所以当a ∈⎝⎛⎭⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根,有没有可能无实根?[巧思] 方程x 3-3x 2-a =0根的个数,即为直线y =a 和函数f (x )=x 3-3x 2图象交点的个数,因此可借助函数的单调性和极值画出函数f (x )=x 3-3x 2的图象,然后借助图象判断根的个数.[妙解] 令f (x )=x 3-3x 2, 则f (x )的定义域为R ,由f ′(x )=3x 2-6x =0, 得x =0或x =2,所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4,如图所示,故当a ∈(-∞, -4)∪(0,+∞)时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根;当a ∈(-4,0)时,原方程有三个不等实根;由图象可知,原方程不可能无实根.1.下列结论中,正确的是( ) A .导数为零的点一定是极值点B .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值C .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值D .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 解析:根据极值的概念,左侧f ′(x )>0,单调递增;右侧f ′(x )<0,单调递减,f (x 0)为极大值.答案:B2.函数f (x )=32x 2-ln x 的极值点为( )A .0,1,-1 B.33C .-33 D.33,-33解析:由已知,得f (x )的定义域为(0,+∞),f ′(x )=3x -1x =3x 2-1x ,令f ′(x )=0,得x =33⎝⎛⎭⎫x =-33舍去. 当x >33时,f ′(x )>0;当0<x <33时,f ′(x )<0. 所以当x =33时,f (x )取得极小值.从而f (x )的极小值点为33,无极大值点,选B. 答案:B3.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3, 则f ′(-3)=27-6a +3=0. ∴a =5. 答案:D4.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中正确的是________.①当x =32时函数取得极小值;②f (x )有两个极值点;③当x =2时函数取得极小值; ④当x =1时函数取得极大值.解析:由图象可知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.∴f (x )有两个极值点1和2,且当x =2时函数取得极小值,当x =1时,函数取得极大值,故②③④正确.答案:②③④5.函数f (x )=ax 2+bx 在x =1a 处有极值,则b 的值为________.解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a 处有极值, ∴f ′⎝⎛⎭⎫1a =2a ·1a +b =0,即b =-2. 答案:-2 6.求函数f (x )=2xx 2+1-2的极值. 解:函数的定义域为R.f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1,或x =1. 列表:由上表可以看出:当x =-1时,函数有极小值,且f (-1)=-22-2=-3;当x =1时,函数有极大值,且f (1)=22-2=-1.一、选择题1.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,-1C .-1D .-3解析:f ′(x )=-x 2+x +2=-(x -2)(x +1), ∵在x =-1的附近左侧f ′(x )<0,右侧f ′(x )>0,∴x =-1时取极小值. 同理可知x =2时取极大值. 答案:C2.如图是函数y =f (x )的导函数y =f ′(x )的图象,下列说法错误的是( )A .-2是函数y =f (x )的极小值点B .1是函数y =f (x )的极值点C .y =f (x )在x =0处切线的斜率大于零D .y =f (x )在区间(-2,2)上单调递增解析:由图象可知f ′(1)=0,但是当-2<x <1时,f ′(x )>0,且当1<x <2时,f ′(x )>0.故1不是函数f (x )的极值点.答案:B3.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极值情况为( ) A .极大值为427,极小值为0B .极大值为0,极小值为427C .极小值为-427,极大值为0D .极大值为-427,极小值为0解析:f ′(x )=3x 2-2px -q ,根据题意,x =1是函数的一个极值点,则⎩⎪⎨⎪⎧f ′(1)=0,f (1)=0,解得⎩⎪⎨⎪⎧p =2,q =-1,所以f ′(x )=3x 2-4x +1.令f ′(x )=0,得x =1或x =13.易判断当x =13时,f (x )有极大值为427,当x =1时,f (x )有极小值为0.答案:A4.设函数f (x )=e x sin x ,x ∈[0,π],则( ) A.π2为f (x )的极小值点 B.π2为f (x )的极大值点 C.3π4为f (x )的极小值点 D.3π4为f (x )的极大值点 解析:∵f (x )=e x sin x ,∴f ′(x )=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4,由f ′(x )≤0,得sin ⎝⎛⎭⎫x +π4≤0, ∴2k π+π≤x +π4≤2k π+2π,k ∈Z ,即2k π+3π4≤x ≤2k π+7π4,k ∈Z.∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤0,3π4上单调递增, f (x )在⎣⎡⎦⎤3π4,π上单调递减,∴x =3π4为f (x )的极大值点.答案:D 二、填空题5.已知函数f (x )=ax 3+bx 2+c ,其导数f ′(x )的图象如图所示,则函数的极小值是________.解析:由图象可知,当x <0时, f ′(x )<0,当0<x <2时,f ′(x )>0, 故x =0时函数f (x )取极小值f (0)=c . 答案:c6.已知实数a ,b ,c ,d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad =________.解析:∵y ′=3-3x 2,令y ′=0得x =±1, 且当x >1时,y ′<0, 当-1≤x ≤1时,y ′≥0, 当x <-1时,y ′<0,故x =1为y =3x -x 3的极大值点,即b =1, 又c =3b -b 3=3×1-1=2,∴bc =2. 又∵a ,b ,c ,d 成等比数列, ∴ad =bc =2. 答案:27.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0,得x =ln(-a ), 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)8.若函数y =-x 3+3x 2+m 的极大值等于2,则实数m 等于________.解析:y ′=-3x 2+6x ,由y ′=0,得x =0或x =2,容易得出当x =2时函数取得极大值,所以-23+3·22+m =2,解得m =-2.答案:-2 三、解答题9.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).10.已知函数f (x )=ax -ae x(a ∈R ,a ≠0). (1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e 2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F(x)没有零点,当且仅当F(2)=ae2+1>0,解得a>-e2,所以此时-e2<a<0;②当a>0时,F(x),F′(x)的变化情况如下表:当x>2时,F(x)=a(x-1)e x+1>1,当x<2时,令F(x)=a(x-1)e x+1<0,即a(x-1)+e x<0,由于a(x-1)+e x<a(x-1)+e2,令a(x-1)+e2≤0,得x≤1-e2a,即x≤1-e2a时,F(x)<0,所以F(x)总存在零点,综上所述,所求实数a的取值范围是(-e2,0).。
哈代李特尔伍德极大函数
哈代李特尔伍德极大函数
哈代李特尔伍德极大函数,又称“哈代极大函数”,是一种常见的数学函数。
它是由英国数学家哈代李特尔伍德于1903年提出的,它可以用来表示函数在某点的极值。
哈代李特尔伍德极大函数定义为:
f(x,y) = (x-x0)^2 + (y-y0)^2
其中x0和y0是极值点的横纵坐标。
哈代李特尔伍德极大函数可用于求解函数极值问题,它是一种很有用的数学工具。
哈代李特尔伍德极大函数也可以用来分析函数的变化,它可以描述函数的变化趋势,以及函数的极值点。
哈代李特尔伍德极大函数不仅可以用于分析函数的变化,还可以用于分析函数的参数。
它可以帮助我们更好地理解函数的特性,从而帮助我们更好地解决函数问题。
哈代李特尔伍德极大函数是一种有用的数学工具,它可以用来分析函数的变化趋势,以及函数的参数,从而更好地理解函数的特性。
函数的极大值就是函数在区间内的最大值
极大值和最大值的区别:1、包含关系不同;2、含义不同。
极大值、极小值是一个局部概念。
由定义,极大值、极小值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。
1、包含关系不同
2、含义相同
极大值是指在某个区域内,左右两边的函数值均比该值小。
而最大值是指在某个区域内,所有的函数值均比该值小。
极大值可能是最大值,也可能不是最大值。
1、函数的极值不是唯一的,即为一个函数在某区间上或定义域内极大值或极小值可以远不止一个。
2、极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,极小值也未必小于极大值。
3、函数的极值点一定发生在区间的内部,区间的端点无法沦为极值点,而并使函数获得最大值、最小值的点可能将在区间的内部,也可能将在区间的端点。
极大值函数
函数的极值:极值是一个函数的极大值或极小值。
如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大,这函数在该点处的值就是一个极大值。
若函数f(x)在x的一个邻域d有定义,且对d中除x的所有点,都有f(x)<f(x),则称f(x)是函数f(x)的一个极大值。
同理,若对d的所有点,都存有f(x)>f(x),则表示f(x)就是函数f(x)的'一个极小值。
极值的概念来自数学应用中的最大最小值问题。
根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。
如果极值点不是边界点,就一定是内点。
因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。
极大值的定义在数学中,我们经常遇到需要求取函数的最大值或最小值的问题。
这些问题中的最大值和最小值被称为极值,其中极大值指的是函数在某个区间或定义域内取得的最大值。
但是,什么样的数可以被称为极大值?本文将从定义、实例等多个方面来探讨极大值的含义和应用。
一、什么是极大值?在数学中,极大值是一种在曲线或函数中存在的现象,当函数在某段区间内取得最大值并且该最大值不是严格最大值时,我们称这个最大值为极大值。
以函数y = f(x)为例,当函数在区间[a, b]中取得最大值f(c)(c∈[a,b]),且f(c)≥f(x)(x∈[a,b],x≠c)时,f(c)被称为函数y=f(x)在区间[a,b]上的极大值。
需要注意的是,一个函数可能存在多个极大值,也可能没有极大值。
此外,当函数在某个点附近有极大值时,该点被称为临界点。
二、极值与函数的图像函数的图像可以显式地表示出函数在定义域上的取值情况。
当函数在某个点处取得最大值或最小值时,该点就是函数的极值点。
我们可以通过观察函数图像,来判断函数是否存在极值。
例如,以下是函数y=x³-3x在定义域[-3,3]上的图像:(图片不展示)通过观察可以发现,在函数图像上存在两个峰值点-1和1,因此在定义域[-3,3]上,函数y=x³-3x存在两个极大值,分别为y=2和y=-2。
三、极大值的求解方法在解决实际问题中,我们需要求出函数的极值,以便更好地理解函数的行为。
下面是一些求解函数极值的常见方法:1. 运用导数法对于函数y=f(x),求取它的极值可以通过求导数的方式实现。
首先,我们可以求出函数f(x)在其定义域上的一阶导数f’(x),然后令f’(x)=0,求解出方程的解x0,这时f(x)在x0处取得极值。
2. 利用开口尺寸法在一些低阶函数中,例如二次函数或三次函数,我们可以通过观察函数的开口大小判断函数的极值。
当函数为开口向下的二次函数时,其顶点是函数的极大值点,当函数为开口向上的二次函数时,其谷底是函数的极小值点。
函数的极值一、基础知识: 1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点 极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点⇒()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤:(1)筛选: 令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。