北师大版八年级数学下册《五章 分式与分式方程 1. 认识分式 分式的基本性质》公开课教案_12
- 格式:doc
- 大小:97.50 KB
- 文档页数:6
第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
第五章 分式与分式方程第一节 认识分式(一)一、学习准备1、分式的概念:整式A 除以整式B ,可以表示成AB的形式,如果 中含有字母,那么我们称AB为__________。
2、分式与整式的区别:分式一定含有分母,且分母中一定含有 ;而整式不一定...含有分母,若含有分母,分母中一定不含有字母。
3、分式有意义、无意义或等于零的条件: (1)分式AB有意义...的条件:分式的 的值不等于零; (2)分式AB 无意义...的条件:分式的 的值等于零; (3)分式AB的值为零的条件:分式的 的值等于零,且分式的 的值不等于零; 二、教材精读1、理解分式的概念253817233312y x x x xy y x y x y x x -++-, , ,-,-, , , ?些是整式?哪些是分式 在下列式子中,哪例π解:有意义?取何值时, 当例112-x x模块二 合作探究 1、下列代数式:132m -,31,x π,1x ,1xx -,32(1)x y x x --,其中是分式的有:__________________________________________。
2、当x 取何值时,下列分式有意义?()x 211 ()3x 71x 32-- ()132-x x3、当x 取何值时,下列分式无意义?()2x5x 1- ()5x 61x 22-+ ()2x 3x 3+-4、当x 取何值时,下列分式的值为零?()xx +21 ()x x 342- ()45233-+x x()33||4+-x x ()86452+-x x模块三 形成提升1、下列各式中,哪些是整式?哪些是分式?①5x -7,②3x 2-1,③123+-a b ,④7)(p n m +,⑤72,⑥1222-+-x y xy x ,⑦c b +54答:______________________________。
(填序号)2、当x 取何值时,分式2132x x +-无意义?3、当x 为何值时,分式232-+x x 的值为零?4、若分式2242x x x ---的值为零,则x 的值是____________。
第五章分式与分式方程第1节认识分式(第1课时)一、学情分析学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.二、教学分析本节课是分式的起始课,是学生学习了整式、因式分解基础上进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,所以分式的概念及分式在什么条件下有意义是本节课的重点和难点。
因为分式与分数类似,所以为了突破重点和难点,采用了类比的学习方法,让学生学会自主探索,合作交流,老师的讲和学生的学相结合。
分式是表示现实世界中一类量的数学模型,为了让学生体会这一点,在课题引入时从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
根据三维教学目标及新课程标准对本节课的要求,结合当前学生的心理特点以及现有的认知水平,拟定本课的教学目标:知识目标:1、了解分式的概念,明确分式和整式的区别;2、会判断一个分式何时有意义、何时无意义、何时值为0;3、会根据已知条件求分式的值。
能力目标:1、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.2、培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.教学重点:了解分式的概念,会判断一个分式何时有意义、何时无意义、何时值为0教学难点:会判断一个分式何时有意义、何时无意义三、教学过程分析本节课共设计了 四个教学环节:点评预习案——自主探索——课堂反馈——自我小结——作业布置第一环节,点评预习案(自学阅读:课本108—109页内容。
)1、 统称为整式;2、问题:下列式子中整式的是a , -3x 2y 3, 5x -1, x 2+xy +y 2, yxy ,19-a a ,3m ,ab c 3、面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成一原计划的任务。
第五章 分式与分式方程1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 或 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则 C B C A B A ⋅⋅=CB C A B A ÷÷=分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5.分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3)分式乘方法则: 分式乘方要把分子、分母分别乘方。
4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
第五章 分式与分式方程
1.认识分式(二)
一、学生知识状况分析
学生的技能基础:学生在上节课了解了分式的概念,在小学学过分数的基本性质,所以可类比分数的基本性质来学习分式的基本性质,在上节课已初步掌握了类比的学习方法,在前几章中还学习了分解因式,这些都为本节课的学习奠定基础.
学生活动经验基础:在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.
二、教学任务分析
本节课是北师大版八年级下册第五章第一节的第二课时,本节课学习任务是让学生掌握分式的基本性质和分式的约分,这也是本节课的重点。
在学习分式的的基本性质时,可类比分数的基本性质来学习,要引导学生用类比的方法,通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力。
本节课的教学目标为:
1.理解分式的基本性质并能利用性质进行分式的约分;(重点)
2.通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力;
3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.
三、教学过程分析
本节课设计了五个环节:知识准备——情景引入—— 讲授新课——课堂反馈——课堂小结。
第一环节 知识准备
活动内容:
复习分数的基本性质. 问题:2
163 的依据是什么? 活动目的:
通过分数的约分复习分数的基本性质,通过类比来学习分式的基本性质.
注意事项:
学生对于分数的基本性质掌握较好,基本能说出分数的分子分母同时乘以或除以同一个不为零的数,分数的值不变。
第二环节 情景引入
活动内容:
思考:下列两式成立吗?为什么?
活动目的:因为字母可以表示任何数. 让学生能把数与分式联系起来 。
为后面分式的基本性质的提出打基础。
第三环节 讲授新课
一、分式的基本性质.
活动内容:
通过对上题的回答,来回答本题,寻求两者之间的联系.与同伴讨论交流,从而归纳出分式的基本性质。
1、问题:你认为分式a a 63与21相等吗?mn m 2与m
n 呢? 活动目的:
让学生通过观察,类比,推理出分式的基本性质,并让学生明白类比的理由是字母可以表示任何数.
注意事项:
通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.
2、 例题讲解
活动内容:
例1、下列等式的右边是怎样从左边得到的?
(1)
)0(22≠=y xy by x b (2)b a bx ax = )0 (c c 4c 343≠=)
0 (c 65c 6c 5≠=
活动目的:加深学生对分式的基本性质的理解和应用.
3、巩固训练
1.填空
(1)()()()
y x y x y x x +-=-________2 (2)()_______1422=-+y y 二、符号法则
活动内容:
不改变分式的值,使下列分子与分母都不含“-”号
(1) (2) (3)
活动目的: 让学生通过观察,推理出分式的符号法则:
分式的分子、分母和分时本身三者的符号改变其中任何两个,分式的值不变。
三、约分
活动内容:
1你能用分式的基本性质完成下列题目吗?
1)、 2)、 想一想:联想分数的约分,由上题你能想出如何对分式进行约分吗?关键是什么? 与分数约分类似,关键是要找出分式的分子与分母的公因式.
活动目的:活动目的:
通过例1加深学生对分式的基本性质的理解和应用.例2让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式。
2、例2、化简下列分式:
活动目的:让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式.引导学生找出他们的公因式,并学会利用分式的基本性质进行约分,使结果为最简分式或整式.
25x y -37a b --103m n --y
x x xy x +=+2
2
2
22-=-x x x x
229269
x x x ().-++23
225115a bc ab c ();-
注意事项:
有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式.有些学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底.
3、议一议 在y x xy 2205时,小明和小颖出现了分歧,小颖认为y x xy 2205=2
205x x ,而小明认为y x xy 2205=x
xy x xy 41545=∙,你对他们的做法有何看法?与同伴交流. 活动目的:
通过做一做,和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正. 注意事项:
在教学中让学生将约分的步骤分为这样几步,首先将找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式.最后看看结果是否为最简分式或整式.
4、练一练
化简: (1)ab bc a 2 (2)1
2122+--x x x 活动目的:通过练一练让学生进一步对分式的约分情况进行巩固,并且总结
约分的基本步骤:
(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;
(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式.
注意事项:
(1)约分前后分式的值要相等.
(2)约分的关键是确定分式的分子和分母的公因式.
(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.
(4)约分的依据是分式的基本性质.
第四环节 课堂小结
活动内容和目的:
通过问题的形式让学生自己总结出这节课的主要内容,谈谈在学习过程中有哪些困难和新发现.
1、这节课你有哪些收获?
注意事项:
在小结时学生能总结出本节课的重点是分式的基本性质,利用它可将分式化简,教师还可引导学生归纳出分式约分的步骤一是确定分子和分母的公因式,二是利用分式的基本性质,将分子和分母的整体都除以公因式。
类比的学习方法是学习新知识时常用的方法,让学生熟悉和初步掌握这种方法。
第五环节 布置作业:
(1)习题5.2 第 1 , 2 题 (2) 学习之友:69--70页
第六环节 板书设计:
四、教学反思 1.在分式的约分教学中,要及时发现学生的错误,并当作错误例题进行全班范围的分析,找出原因,让其他学生也认识到这种错误,不能只是改正答案.
分
式的
基本
内 容 0b b m b b m m a a m a a m (),.⋅÷==≠⋅÷ 作 用 分式进行约分的依据 进行分式运算的基础 注 意 (1)分子分母同时进行;
(2)分子分母只能同乘或同除,不能进行同加或同减; (3)分子分母只能同乘或同除同一个整式; (4)除式是不等于零的整式
2.在让学生小组讨论之前应给学生一定的时间独立思考,不要让一些思维活跃的同学的回答代替了其他学生的思考,从而掩盖了其他学生的疑问和错误.教师应对学生的讨论给予引导,对学习困难的学生给予及时的帮助,是小组合作学习更具实效性.3.找公因式是约分的关键,应设计一些找公因式的练习,作为铺垫,这样学生可能对约分掌握得更好.。