20.2.1极差和方差(1课时
- 格式:ppt
- 大小:281.50 KB
- 文档页数:14
八年级数学下册 20.2.1极差与方差的意义导学案新人教版一、课题20、2、1极差与方差的意义编写备课组二、本课学习目标与任务:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、理解方差概念的产生和形成的过程;掌握方差的定义和计算公式。
3、会用方差计算公式来比较两组数据的波动大小。
三、知识链接:“早穿皮袄午穿纱”是一句地方民谣,它形象地在我们面前描绘出一幅奇妙的景象:早上寒冷得穿上又厚又重的皮袄,中午却炎热得只穿又薄又轻的纱衣、为什么会出现这种现象?那是因为在我国的西北地区一日之间气温变化较大,有时午后的最高,气温达到30℃以上,但清晨最低气温却只有几度、下面是我国西北和南方一些地区某日的最高、最低气温,看看西北该日的极差有多大?再和南方比较一下,你将不难理解在我国的西北地区为什么广为流传“早穿皮袄午穿纱”这一句民谣、2003年6月28日,我国部分地区天气情况西北最高气温(℃)最低气温(℃)极差乌鲁木齐331914>10达坡城341915石河子33xx吐鲁番442519银川34xx敦煌341816南方汕头34277<10高雄33312海口34277广州34268四、自学任务(分层)与方法指导:一、熟读课文,理解概念方差的概念:一般地,设有n个数据、其中平均数为,数据与平均数的差的平方的平均数叫这组数据的方差记作s2,它可以描述一组数据的波动大小、二、看懂例题,尝试练习甲、乙西支仪仗队员的身高(单位:cm)如下甲队178177179179178178177178177179乙队178177179176178180180178176178哪支仪仗队更为整齐?你是怎么判断呢?五、小组合作探究问题与拓展:段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?测试次数12345段巍1314131213金志强1013161412六、自学与合作学习中产生的问题及记录当堂检测题1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是、2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= 、3、下列几个常见统计量中能够反映一组数据波动范围的是()A、平均数B、中位数C、众数D、极差4、一组数据X、X…X的极差是8,则另一组数据2X+1、2X+1…,2X+1的极差是()A、8B、16C、9D、175、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
20.2 极差、方差与标准差【教学目标】一、知识目标1.理解极差、方差与标准差的概念及应用.2.学会用极差、方差与标准差来处理数据.3.学会用计算器求标准差。
二、能力目标1.学生通过主动思考与探索,发现方差计算的合理性.2.培养学生的探索知识的能力.三、情感态度目标学生在经历独立思考、合作探索与发现的过程中,初步体验极差、方差与标准差来分析数据,然后作出决策;体验用现代算工具处理数据的作用。
【重点难点】重点:方差计算式的导出过程.难点:方差概念的引入.【教学设想】课型:新授课.教学思路:从复习旧知入手(平均数、中位数和众数的概念)-观察导图-研究用什么数据来表示数据高低起伏的变化大小-得出极差、方差和标准差的概念-导出方差的计算式—利用计算器或计算机求标准差。
【课时安排】4课时。
【教学设计】第一课时【本课目标】1.理解极差的概念及应用.2.明确极差是刻画数据离散程度的一个统计量.3.能够举出一些利用极差进行比较的例子.【教学过程】1.情境导入播放多媒体—教材中的导图“你喜欢住在哪个城市?”(或用投影幻灯片或由教学挂图展示).观察导图,讨论用什么样的数来反映数据的高低起伏的变化大小比较合适2、课前热身刻画数据平均水平的统计量有哪些,它们有什么作用?举例说明。
3、合作探究(1)整体感知从观察导图、复习旧知入手,引导学生自主探索,理解极差的概念及其应用,明确极差是刻画数据离散程度的一个统计量。
(2)四边互动互动1:师:用平均数、中位数、众数代表数有什么不同?生:思考、交流。
明确:通过复习旧知,导入本节课的内容。
互动2:师:在导图中,为什么说北京“四季分明”而新加坡“四季温差不大”。
生:观察,思考,交流。
明确:通过讨论,学生初步感知:最大值与最小值的差可以用来表示数据高低起伏的变化大小。
出示投影:课本么135页表20.1.1 上海每日最高气温统计表(单位:℃)表20.2.1上海每日最高气温统计表(单位:℃)互动3:师:表20.2.1显示的是上海2001年2月下旬和2002年同期的每日最高气温.从表上看,2002年和2001年2月下旬的气温相比,有4天的温度相对高些,有3天的温度相对低些,还有1天的温度相同.我们是否可以由此认为2002年2月下旬的气温比2001年高呢?生:小组交流、发表意见.师:比较两段时间气温的高低,求平均气温是一种常用的方法.请你计算其平均数。
八年级数学《方差(第1课时)》教案
教学过程设计
板书设计:
20.2方差(1课时)
教学流程:
教学设计说明
“数据的波动”安排在第二十章第二节,根据教材的安排,在前面学习了数据的收集与整理,数据的描述之后,让学生懂得数据的分析方法,了解和掌握衡量一组数据波动大小的方法规律。
本节课是“方差”第1课时,在教学设计中,根据新的教育理念,教师要转为角色,全面参与渗透数学知识来源于实践,又服务于实践的观点,关注学生的学习兴趣和积极性,促进学生形成积极主动的学习态度。
---------------------------------------------------------------最新资料推荐------------------------------------------------------极差和方差(1)20.2.1 极差和方差(1)设计人: 林洋第 12 周第 5 课时总第( 61 ) 节时间:__________ 班级____________姓名____________ 教师寄语:数学正如一座高峰,就看你有无攀登的勇气!一、学习目标: 1.知道极差的定义,极差是用来反映数据波动范围的一个量2.会求一组数据的极差重点:会求一组数据的极差难点:本节课内容较容易接受,不存在难点。
二、自主学习:1、知识我先懂:极差:。
2、自主检测小练习:1、一组数据:473、 865、 368、 774、 539、 474 的极差是; 2、一组数据 1736、 1350、 -2114、 -1736 的极差是。
3、下列几个常见统计量中能够反映一组数据波动范围的是() A.平均数 B.中位数 C.众数 D.极差三、新课讲解:引例:1 / 4、已知;某学校六年级学生的身高的一个样本如下(单位:cm) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 在这个样本中身高最高者与身高最低者的差值是多少请你列式计算。
归纳:这样我们把一组数据中最数据与数据的差叫这组数据的极差。
极差反映一组数据的变化。
它是最简单的一种度量数据波动情况的量。
受得影响大。
(一)例题讲解:例 1、某活动小组为使全小组成员的成绩都要达到优秀,打算实施以优帮困计划,为此统计了上次测试各成员的成绩(单位:分) 90、 95、 87、 92、 63、 54、 82、 76、 55、 100、45、 80 (1)计算这组数据的极差,这个极差说明什么问题?(2)将数据适当分组,做出频率分布表和频数分布直方图。
20.2数据的波动程度第1课时方差教学设计课题方差授课人素养目标1.理解方差概念的产生和形成的过程,体会方差在实际生活中的应用价值.2.会求一组数据的方差,会利用计算的结果比较两组数据的波动大小.3感悟到方差是一种描述数据离散程度的统计量,能根据方差的大小对实际问题做出评判教学重点方差概念的理解与方差的计算.教学难点理解方差的意义,应用方差对数据波动情况做比较、判断.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过情境吸引学生的注意力,引发学生对新知识的学习欲望.【情境导入】现要从甲、乙两名射击选手中挑选一名射击选手参加比赛.若你是教练,你认为挑选哪一位比较合适?甲、乙两名射击选手的测试成绩统计如下:我们先来看他们的平均成绩:x甲=7+8+8+8+95=8(环),x乙=10+6+10+6+85=8(环).平均成绩一样,那么作为教练该如何挑选呢?接下来我们一起探讨新的统计量——方差.【教学建议】学生独立计算,得出两名射击选手的平均成绩相同,无法做出判断,教师从而引出方差的概念与计算.活动二:设置悬念,引出新知设计意图通过统计图的方式进行展示,并比较射击成绩的离散程度,更加形象直观,并引出新的统计量——方差探究点方差的概念根据上面的材料,我们分步来解决这个问题:(1)请根据这两名选手的成绩在右图中画出折线统计图;答:画图如图所示.(2)谁的稳定性好?答:由图可以看出,甲的波动小,比较稳定.(3)验证:我们在折线统计图中可以看出,两个人的成绩都在平均成绩附近波动,那么用每一个数据与平均数的距离去刻画波动程度,该如何求出它们的距离呢?答:用作差的方式.(4)整组数据的波动程度如何求呢?答:把它们的结果相加.【教学建议】由实际生活中的问题引发学生思考,当两组数据的平均数相等或相近时,为了更好地做出选择,需要去了解数据的波动大小,此处采用数形结合的方法更直观地展现了数教学步骤师生活动甲的射击成绩与平均成绩的偏差的和为(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0,乙的射击成绩与平均成绩的偏差的和为(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0.(5)这两组数据是在平均数的上下波动的,所以相加会使正负数相互抵消,如何来解决这种情况呢?答:可以取平方或绝对值,这节课我们研究平方的形式.(此处不选绝对值的原因教师应向学生讲明,理由见右栏教学建议)甲的射击成绩与平均成绩的偏差的平方和为(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=2,乙的射击成绩与平均成绩的偏差的平方和为(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=16.(6)这里各偏差的平方和的大小还与什么有关呢?答:与射击次数有关.所以要进一步用各偏差平方的平均数来衡量数据的稳定性.概念引入:为了刻画一组数据波动的大小,可以采用很多方法.统计中常采用下面的做法:设有n 个数据x 1,x 2,…,x n ,各数据与它们的平均数x 的差的平方分别是(x 1-x )2,(x 2-x )2,…,(x n -x )2,我们用这些值的平均数,即用1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]来衡量这组数据波动的大小,并把它叫做这组数据的方差,记作s 2.活动一中的问题中s 甲2=0.4,s 乙2=3.2,所以甲的成绩比较稳定,与折线统计图相符,应该挑选甲.归纳总结:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小,方差就较小.反过来也成立,这样就可以用方差刻画数据的波动程度,即:方差越大,数据的波动越大;方差越小,数据的波动越小.【对应训练】1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为6.2.教材P126练习第1题.据的波动程度.老师逐步引导,并提醒学生以下几点:(1)使用方差的前提条件是平均数相等或相近.(2)各个数据与其平均数的差不取绝对值的原因是在许多问题中含有绝对值的式子不便于计算,且在衡量一组数据的波动大小的“功能”上,取平方更强些.(3)计算方差的步骤可概括为“先平均,后求差,平方后,再平均”.活动三:知识运用,巩固提升设计意图巩固学生对方差的概念及计算方式的认知.例(教材P 125例1)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm )如下表:哪个芭蕾舞团女演员的身高更整齐?【教学建议】学生独立思考并解答问题,提醒学生以下两点:(1)在做题时方差的大小与数据本身的大小无关,可能一组数据比较小,但方差较大;也可能解题方法:(1)计算方差的步骤可概括为“先平均,后求差,平方后,再平均”.在求一组数据x 1,x 2,…,xn 的方差时,首先要先求出它们的平均数x ,再计算出各数据与它们的平均数x 的差的平方:(x 1-x )2,(x 2-x )2,…,(xn -x )2,最后求出它们的平均数.教学步骤师生活动【对应训练】1.某水果店某一周内甲、乙两种水果每天的销售量(单位:kg )统计如下:(1)分别求出这一周内甲、乙两种水果每天销售量的平均数;(2)哪种水果的销售量比较稳定?解:(1)x 甲=45+44+48+42+57+55+667=51(kg ),x 乙=48+44+47+54+51+53+607=51(kg ).(2)s 甲2=17×[(45-51)2+(44-51)2+(48-51)2+(42-51)2+(57-51)2+(55-51)2+(66-51)2]=4527,s 乙2=17×[(48-51)2+(44-51)2+(47-51)2+(54-51)2+(51-51)2+(53-51)2+(60-51)2]=24.因为s 甲2>s 乙2,所以乙种水果的销售量比较稳定.2.教材P 126练习第2题.一组数据比较大,但方差较小.(2)方差的计算量较大,使用计算器的统计功能可以求方差,注意不同品牌的计算器的操作步骤有所不同,操作时需要参阅计算器的使用说明书.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:怎么算方差?方差有什么用?【作业布置】1.教材P 128习题20.2第1,4题.2.相应课时训练.板书设计20.2数据的波动程度第1课时方差1.方差的概念2.方差的意义教学反思创设生活情境导入本节课,有利于学生培养自主探究的意识,再通过设置悬念,让学生经历数学知识的探究过程,了解方差在实际生活中的应用,有利于提高学生分析问题、解决问题的能力.即s 2=1n[(x 1-x )2+(x 2-x )2+…+(xn -x )2]就是这组数据的方差.(2)方差越大,数据的波动越大;方差越小,数据的波动越小.(3)方差是反映一组数据偏离平均数的情况的特征数,它是一种描述数据离散程度的统计量.例1若一组数据4,x ,5,y ,7,9的平均数为6,众数为5,则这组数据的方差为83.例2为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数141144145146学生人数5212则关于这组数据的结论正确的是(B )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.4例某射箭队准备从王方、李明中选派1人参加射箭比赛,在选拔赛中,两人的10次射箭成绩(单位:环)如下:次序12345678910王方7109869971010李明89898898108(1)根据以上数据,将下面两个表格补充完整,并求出两人这10次射箭成绩的平均数;(2)从两人成绩的稳定性角度分析,选派谁参加射箭比赛更合适?解:(1)填表如下:x 王方=6×0.1+7×0.2+8×0.1+9×0.3+10×0.3=8.5(环),x 李明=8×0.6+9×0.3+10×0.1=8.5(环).(2)s 王方2=110×[(6-8.5)2+2×(7-8.5)2+(8-8.5)2+3×(9-8.5)2+3×(10-8.5)2]=1.85,s 李明2=110×[6×(8-8.5)2+3×(9-8.5)2+(10-8.5)2]=0.45.因为s王方2>s李明2,所以李明的成绩较稳定,所以选派李明参加射箭比赛更合适.。