金属间化合物基叠层复合材料研究进展
- 格式:pdf
- 大小:232.93 KB
- 文档页数:4
金属基复合材料的发展现状与应用前景金属基复合材料( M MCs) 问世至今已有30 余年。
M MCs 的耐温性较高, 力学性能( 特别是刚度) 比一般金属的好, 此外它还具有导电性以及在高真空条件下不释放小分子的特点, 克服了树脂基复合材料在航宇领域中使用时存在的缺点, 因此受到航空航天部门的青睐。
然而, 尽管MM Cs 在航天飞机以及其他一些尖端技术中已经获得应用, 但用量很小, 不足以推动其发展。
近年来虽然努力在民用领域寻找机遇, 但终因成本偏高而缺乏与金属等其他传统材料竞争的优势。
因此发展MM Cs 的出路在于寻找降低成本的措施, 同时也要探索能充分发挥其特色的应用领域。
鉴于复合材料的成型工艺占其成本的60% ~ 70% , 所以研究发展高效、省时、低能耗、设备简单、能实现近似无余量成型的工艺方法是当务之急。
1、金属基复合材料制备技术1.1各种制备方法简评MMCs 通常按增强体的形式分类, 如连续纤维增强、短纤维或晶须增强、颗粒增强以及片层叠合等。
由于连续纤维增强的MM Cs 必须先制成复合丝或复合片等先驱体, 工艺复杂而成本高, 因此除了极少量有特殊要求的零件(如航天飞机的结构梁)采用外,目前尚看不到有扩大应用的可能性。
本文着重叙述的是颗粒、短纤维或晶须等非连续增强体的MM Cs, 其中, 颗粒增强的M MCs 已具备批量生产条件, 有良好的发展前景。
迄今, 已开发出不少非连续增强体MMCs的制备方法,见表1在表 1 列出的各种制备方法中, 搅拌混合法和挤压铸造法比较成熟,已具备批量生产的条件。
对搅拌混合法工艺已完成了大量研究工作,其中包括对增强体进行表面处理,以改善其与基体金属的浸润性;调整基体合金元素以减轻界面反应对MMCs性能的影响;在设备方面则改进了搅拌桨的形式以改善增强体分布的均匀性,此外,研究了增强体的加入机构,为降低气孔率还制作了施加负压的装置;在工艺条件上则研究了搅拌速度和金属熔体温度对混合均匀度和产生气泡的影响。
αT i A l金属间化合物的研究进展3周怀营 湛永钟(广西大学材料科学研究所,南宁,530004;第一作者42岁,男,教授)摘要 综述了T i A l金属间化合物的研究进展.介绍T i A l合金室温脆性的解决办法,对其制备和加工的新工艺进行分类评述,并从基础理论研究、制备与加工新技术、类单晶T i A l及T i A l 基复合材料的研制等方面指出其今后的研究与开发动向.关键词 T i A l;金属间化合物;室温脆性分类号 T G13213+2许多金属间化合物由于具有比重轻、强度高、高温力学性能和抗氧化性优异等特点,而被认为是一种理想的待开发的航空航天用高温结构材料[1].与其他金属间化合物相比,T i A l系由于铝化合物本身所具有的极高的抗氧化性、较高的比熔点、较低的密度以及钛极高的比熔点,而成为近年来人们研究开发的焦点,目前正在研究开发的主要有T i3A l(Α2),T i A l(Χ)和T i A l3(Σ).室温脆性和难加工成形性是其实用化进程上的主要障碍[2].人们经过对T i3A l合金比较全面系统的研究,可以期望它最先接近实用化;T i A l3则由于室温塑性更差,目前只限于在日本、美国和中国等少数国家进行基础性研究.目前,研究的重点主要集中在T i A l合金上,试图通过合金化及热加工等手段来改善其室温脆性问题.1 T i A l金属间化合物室温脆性问题的解决办法T i A l是典型的Betho llide型化合物,任何温度下均呈有序状态.根据A l含量的高低,T i A l合金可分为Χ单相合金(≥49at%A l)和Χ+Α2双相合金(<49at%A l),而Χ+Α2双相合金按组织形态又可分为4类:(1)全片层组织(FL),由较大的层片块组成;(2)近片层组织(NL),由较大的层片块及较细的Χ+Α2等轴晶组成;(3)近Χ组织(N G),由粗大的Χ等轴晶及较细的Χ+Α2混合组成;(4)双态组织(D up lex),为细小的层片块和细小的Χ+Α2等轴晶的混合组织.由于T i A l晶体为面心四方结构(L10型),晶胞c a比值为1102,晶体对称性低,滑移系少,且共价键成分大,电子云分布不均匀,因此室温时呈脆性.目前用于改善T i A l合金室温脆性的方法可归纳为合金化法和热加工法[3].111 合金化法通过合金化来改善ΧT i A l金属间化合物室温脆性,是近年来T i A l合金研究的一个重要方向.目前发展的T i A l基合金的成分为T i(46~52)at%A l(1~10)at%M,其中M为C r,M n,V,M o,T a 等元素中的一种或几种.合金化法改善T i A l合金室温脆性的基本机制为:(1)细化晶粒,以提高合金的延展性;(2)调控合金显微组织,获得具有较大体积百分量的细小的全片层组织,以均衡提高T i A l合金室温拉伸性能和断裂韧性[4];净化合金,降低氧、氮等间隙式杂质元素的含量.近年来,通过添加C r来改善T i A l金属间化合物室温脆性的研究取得了显著的成果.添加C r后,可取代T i A l中的A l,有助于获得低A l的Χ相;同时降低了Α2相的稳定性,使片层Α2相变成粒状,形成了新生的细小的Χ+Α2晶体,因而可显著细化Χ+Α2两相合金铸态组织.K i m[5]认为,同时加入N b和C r对提高T i A l合金性能最为有效.曹名洲等人[6]的研究表明,在T i A l合金中添加M n后,使Χ相晶格a和c轴都减小,并使c a值接近1.M n促使Χ相中孪晶的形成,提高了T i A l合金的室温塑性.B lackburn等人[7]发现适量的V能有效地提高T i A l合金的塑性,并可降低韧脆转变温度.贺连龙[8]的研究表明,T i A l金1999年12月Journal of Guangx iU n iversity(N at Sci Ed)D ec.1999 α3国家自然科学基金(29771009)和广西自然科学基金(9824017)资助项目收稿日期:19990802属间化合物中加入少量Si 可使其电子云对称化,从而提高室温延性.计算结果表明,Si 比M n 的合金化效果更好.最近,有关T i A l 金属间化合物通过添加稀土元素改善室温脆性的研究也取得了长足的进展.刘昌明等人[9]发现N d 可明显增加铸锭柱状晶的长度和减小柱晶直径,同时细化了铸锭中心区的等轴晶粒.添加011at %N d 后,铸锭的平均晶粒尺寸由1400Λm 减小为450Λm .V asudevan 等人[10]在合金中加入014at %E r 后,发现由于形成E r 2O 3弥散粒子,降低了基体中杂质氧的含量,使塑性得以改善.陈仕奇等人[11]发现添加L a 也具有类似的效果.112 热加工法解决T i A l 室温脆性的另一重要途径是通过控制热加工工艺参数来达到的.这一方法的基本原理可归纳为:(1)获得细晶组织,减少滑移长度、增加非滑移系,从而提高塑性;(2)控制工艺参数,减少成分偏析和晶粒大小不均匀性.显微组织是影响T i A l 合金力学性能的重要因素.双态组织有利于提高合金的室温延性,但其高温抗蠕变强度低;而较粗大的全片层状组织具有优良的抗蠕变能力,但室温延性低.因而,为能在保证T i A l 基合金优良的高温力学性能的前提下解决其室温脆性的问题,细化其粗大全片层结构成为了近年来研究者追求的目标[9].K i m [12]报道了用等温热锻工艺可使T i A l 合金晶粒尺寸减小到500~1000Λm ;而采用复合热机械工艺破碎粗大片层组织,可使晶粒尺寸下降到20~30Λm ,从而获得性能优异的细晶组织,极大地改善了T i A l 合金室温塑性.H all 等人[13]研究发现,通过适当的热机械处理可获得具有层片状T i A l (Χ)+T i 3A l (Α2)组织的双相T i A l 合金,其室温塑性比单相T i A l 合金有明显改善.H ana m ura 等人[14]利用快速凝固技术研究了T i A l 基合金的显微组织.结果表明,在104~105K s 的冷却速度下可获得直径为1~3Λm 的细小晶粒,从而使该工艺成为一种解决T i A l 合金室温脆性的可能途径之一.在此基础上,曹名洲等人[15]采用气体雾化法制备了T i A l 合金的微晶粉末,其快冷态主要由Α2相和少量Χ.经900℃,2h 真空退火后,大部分Α2相转变成Χ相,使原来的组织更加细化.此外,蒲忠杰等[16]在同时加入C r 和V 的情况下,将T i A l 合金经1250℃再结晶处理,并适当控制冷却速度,获得了418%的室温延性.2 金属间化合物制备与加工新工艺目前,T i A l 合金尚未进入实用化阶段,但有关其制备技术的研究早已展开.除熔铸、粉末冶金等常规方法外,人们还根据材料自身的特点开发了许多种新的材料成型加工技术.(1)快速凝固法:该法将快速凝固技术与粉末冶金相结合,采用旋转盘雾化法,等离子旋转电极法或气体雾化法制得预合金粉末,而后装入钛合金包套中,经干燥,抽空和密封,再加热挤压成型[1].该法不但明显增加了B ,Si ,V 等溶质原子在基体中的固溶度极限,获得很好的固溶强化和沉淀强化效果,而且通过细化晶粒及第二相粒子,减少成分偏析,提高了强度和塑性.(2)机械合金化反应烧结:通过高能球磨使元素粉末在室温下通过固态反应生成合金粉末,甚至使互不相容的元素形成假合金.通过球磨,使成分分布均匀,晶粒及弥散颗粒比采用快速凝固法更不易长大,获得具有超塑性能的超细晶粒,有利于T i A l 合金室温脆性的改善.机械合金化处理后,T i A l 合金的室温延展性可达5%[17].(3)自蔓燃反应合成法(SH S ):该法利用物质反应热的自传导作用维持燃烧波的传播,使不同物质间发生化学反应,在极短时间内形成化合物.由于以单一金属粉末为原料,不必将材料全部熔化即可合成化合物,克服了金属间化合物制造上的困难.目前采用该法合成的T i A l 金属间化合物经H IP 可以制出致密的烧结坯,且性能和成本均达到了应用要求.(4)超塑性成形技术:超塑性成形技术是利用材料在一定温度和应变速率范围内表现出的超塑性进行材料成形的,其关键是要具有超细晶粒并选择合适的变形速率和变形温度.T i A l 合金超塑性的发现为解决其成形问题提供了广阔的前景.在5×10-5s -1的应变速率下,T i A l 合金晶粒尺寸可达2Λm ,而最大塑性超过了230%[1].3 研究及开发动向(1)基础理论研究.广泛测定T i A l X 系相图,寻找新的合金元素,确定合金的最优成分与组362第4期周怀营等:T i A l 金属间化合物的研究进展462广西大学学报(自然科学版)第24卷 织,以全面提高T i A l合金的综合性能;深入研究合金的塑性变形机理,掌握T i A l金属间化合物的超塑性变形机制,并寻求其实际应用途径;发展一套关于T i A l合金的系统的成分—组织—性能的理论体系.(2)开发制备与加工的新工艺.开发无污染熔炼、制粉工艺,降低氧、氮等杂质元素的有害作用;研究T i A l合金领域热等静压的条件、方式对压块的影响;确定合理的热处理工艺参数,改善合金微观组织,解决其室温脆性问题;利用冲击波、电、磁等手段解决成形问题.(3)类单晶T i A l合金及T i A l基复合材料的研制.研究类单晶T i A l的变形和断裂特征,利用其良好的塑性和高强度、高断裂韧性,在较短时间内能作为高温结构材料获得实际应用.寻找新的高质、价廉的共容增强颗粒,解决与T i A l基体间的相容性问题;加强T i A l基复合材料的优化设计,开发新的复合材料制备技术,为T i A l合金的广泛应用开拓更广阔的前景.参考文献1 曹 阳,李国俊.金属间化合物高温结构材料的研究动向.材料导报,1994,(4):14~182 N obuk iM,H ash i m o to K,T suji m o to K,et al.D efom ati on of T i A l in ter m etallic compound at elevated te mperatures.J Jpn In st M et,1986,50(9):840~8443 刘志坚,曲选辉,黄伯云.粉末冶金法制备T i A l合金的进展.材料导报,1995,(2):23~284 张继,张志宏,邹敦叙,等.T i A l合金细小全片层组织断裂机理.金属学报,1996,32A(10):1044~10485 K i m Y W.O rdered In ter m etallic A ll oys III.Gamm a T itan ium A lum in ides.JOM,1994,49(7):30~396 曹名洲,韩东,周敬,等.含M n的T i A l基合金的组织和性能.金属学报,1990,26(3):A223~A2277 B lackburn M J,S m ith M P.T itan ium A ll oys of the T i A l T ype.U S Pat,4294615.197907258 贺连龙,叶恒强,徐仁根,等.T i A l-V-Si合金中T i5Si3析出相与基体相的取向关系.金属学报,1994,30(4):A145~A1499 刘昌明,李华基,何乃军,等.钕对T i-44A l合金组织和晶粒尺寸的影响.材料工程,1998,(11):20~2310 V asudevan V K,Court S A,Kurath P,et al.Effect of purity on the defo r m ati on m echan is m in the in ter m etallic compound T i A l.Scri p ta M etall,1989,23(6):907~91211 陈仕奇,曲选辉,雷长明,等.T i A l+L a有序合金的室温力学性能.金属学报,1994,30(1):A20~A2412 K i m Y W.Effects of m icro structure on the defo r m ati on and fracture ofΧT i A l all oys.M ater Sci Eng,1995,A192-A193:519~53313 H all E L,H uang S C.Sto ich i om etry effects on the defo r m ati on of binary T i A l all oys.J M ater R es,1989,4(3):595~60214 H anam ura H,Sugai T,T an ino M.R ap idly Q uenched in ter m etallic compounds.T i A l and A l3T i.In:N i ppon Steel,ed.Sin tering′87.Tokyo:E lsevier A pp lied Science Poblishers,1988.617~62815 曹名洲,韩东,张涛,等.快速凝固T i A l基合金微晶的显微组织.金属学报,1992,28(10):A426~A42916 蒲忠杰,石建东,邹敦叙,等.T i A l基合金组织对拉伸性能的影响.金属学报,1993,29(8):A363~A36917 Suryanarayana C,F roes F H.M echan ical all oying of titan ium base all oys.A dv M ater,1993,5(2):96~106D evelop men t of Studi es on Ti A l I n ter metall i csZhou H uaiying Zhan Yongzhong(In stitute of M aterial Science ,Guangx iU n iversity,N ann ing,530004)Abstract T h is paper describes the status quo of studies on the T i A l in ter m etallic compound and in troduces the s o luti on s to its room brittle.It als o revie w s the ne w p roducti on and p rocesses by classificati on s. Further research directi on s,such as theo retical research,ne w p rocessing techno l ogies and single crystal like T i A l etc.is po in ted out.Keywords T i A l;in ter m etallic compound;room brittle(责任编辑 唐汉民)。
科学研究创Nb3Sn金属间化合物材料的制备技术及其研究发展现状和发展趋势江涛(西安石油大学材料科学与工程学院陕西西安710065)摘 要:N b3Sn金属间化合物材料具有很多优秀的性能,如较高的熔点、较高的密度、较高的力学性能,以及良好的耐磨损性能、良好的抗高温氧化性能、良好的耐腐蚀性能等。
此外,Nb3Sn金属间化合物材料还是具有超导性能的超导材料。
本文主要叙述了Nb3Sn金属间化合物材料的研究发展现状,并对Nb3Sn金属间化合物材料的未来研究发展趋势和发展方向进行分析和预测。
关键词:N b3Sn金属间化合物制备技术研究发展现状发展趋势中图分类号:T G146.15文献标识码:A文章编号:1674-098X(2022)09(c)-0005-07 Preparation Technology, Research Status and DevelopmentTrend of Nb3Sn Intermetallic Compound MaterialsJIANG Tao(School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi Province,710065 China)Abstract:Nb3Sn intermetallic compound materials exhibit many excellent properties, such as high melting point, high density, high mechanical property and excellent wear resistance, excellent high temperature oxidation resistanceand excellent corrosion resistance. In addition, Nb3Sn intermetallic compounds are superconducting materials withsuperconducting properties. This paper mainly describes the research and development status of Nb3Sn intermetalliccompound materials, and analyzes and forecasts the future research and development trend of Nb3Sn intermetallic compound materials.Key Words: Nb3Sn intermetallic compounds; Preparation technology; Research and development status; Develop-ment trendNb3Sn金属间化合物材料具有很多优秀的性能,如较高的力学性能和良好的耐磨损性能、良好的抗高温氧化性能和良好的耐腐蚀性能及良好的超导性能等。
3国家自然科学基金资助项目(50471007);福建省教育厅科技发展项目(K02005) 汪才良:男,1980年生,硕士研究生 朱定一:通讯作者,博士生导师,教授 Tel :0591283768831 E 2mail :zdy7081@金属间化合物Fe 3Al 的研究进展3汪才良,朱定一,卢 铃(福州大学材料科学与工程学院,福州350002) 摘要 对Fe 3Al 基合金及其相关领域的研究进展进行了综合评述,主要包括:Fe 3Al 基合金的制备方法和加工性能的改善、Fe 3Al 基合金的超塑性变形工艺、Fe 3Al 基复合材料性能的改善、热处理对Fe 3Al 基合金的强韧化作用。
着重论述了Fe 3Al 基合金的制备方法、强韧化措施、热处理以及复合材料等研究现状,并介绍了近年来Fe 3Al 基合金及其复合材料在工程上的一些应用情况。
关键词 Fe 2Al 金属间化合物 热处理 超塑性 Fe 3Al 基复合材料 耐磨性Progress in Study on Fe 3Al IntermetallicsWAN G Cailiang ,ZHU Dingyi ,L U Ling(School of Materials Science and Engineering ,Fuzhou University ,Fuzhou 350002)Abstract The recent progresses in study on Fe 3Al 2based alloy and related research fields are described ,main 2ly including :the improvement on the preparation methods and processing technologies ,superplastic processing tech 2nique ,the improvement on the performance of Fe 3Al 2based composites ,the effect of heat treatment on the strength and toughness of Fe 3Al 2based alloy.The preparation of Fe 3Al 2based alloy ,the methods of improving strength and tough 2ness ,superplasticity and heat treatment are emphasized in this review.Various engineering applications of Fe 3Al 2based alloy and composites are also described.K ey w ords Fe 2Al intermetallics ,heat treatment ,superplasticity ,Fe 3Al 2based composites ,wear resistance 金属间化合物是航空材料和高温结构材料领域内具有重要应用价值的新材料[1~4]。
Nb-Al系金属间化合物及其复合材料研究进展罗民;陈焕铭;王怀昌;何力军;李星【摘要】综述了Nb-Al系金属间化合物作为高温结构材料的最新研究进展和发展趋势.对目前国内外Nb-Al系金属间化合物及其复合材料的制备工艺、组织结构控制和力学性能的研究现状进行评述.结果表明:通过延性相增韧、合金化、层状结构设计、复合材料设计等方法,可以显著改善Nb-Al金属间化合物的室温脆性、抗氧化能力、高温强度及抗蠕变性能.Nb-Al系金属间化合物的研究方向应集中发展以Nb3Al及NbAl3金属间化合物为基体,以SiC、Al2O3及TiC等陶瓷相为增强相强化的陶瓷-铌基合金复合材料.%The recent research progress and prospects of Nb-Al intermetallics compounds for structural applications were discussed.The processing and mechanical properties of the Nb-Al intermetallics and their composites were reviewed.The results show that the ductile phase toughening, alloying, microlamination and composite design can improve the brittle fracture at room temperature, oxidation resistance, high-temperature strength and creep resistance.The research on Nb-Al system materials should be focused on the ceramics phase (SiC, Al2O3 and TiC) reinforced Nb3Al and NbAl3 matrix composites.【期刊名称】《中国有色金属学报》【年(卷),期】2011(021)001【总页数】8页(P72-79)【关键词】Nb-Al系;金属间化合物;复合材料;高温结构材料【作者】罗民;陈焕铭;王怀昌;何力军;李星【作者单位】宁夏大学,化学化工学院,银川,750021;宁夏大学,物理电气信息学院,银川,750021;宁夏大学,化学化工学院,银川,750021;宁夏大学,物理电气信息学院,银川,750021;宁夏大学,化学化工学院,银川,750021【正文语种】中文【中图分类】TF841.6金属间化合物由于具有密度小、熔点高、高温性能优越、化学稳定性良好等特点,在航空、舰艇和工业用燃气轮机的高温部件、航天器及火箭发动机、核反应堆、石油化工设备等领域应用具有独特的优势。
金属基复合材料界面的研究进展及发展趋势周奎(佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。
重点阐述了金属基复合材料在各个领域的应用情况。
最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。
关键词金属基复合材料界面特性应用发展趋势The research progress of metal matrix composites interface and development trendZHOU Kui(jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected.Keywords: metal matrix composites application Interface features the development trend1前言金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。
层状金属复合材料技术创新及发展趋势综述
多层状金属复合材料是由多层状复合体和复合材料组成的新型材料,其具有优异的力学性能和绝热性能,应用范围很广泛。
随着近十年来材料科技工艺的发展,多层状金属复合材料也逐渐发展成功,并被广泛用于航空航天、汽车、家庭电器以及其他工业领域。
多层状金属复合能够提供比传统金属材料更优越的耐腐蚀和绝热性能,符合现代工业领域在高温、低温以及恶劣环境条件下使用的需求。
同时,多层状金属复合材料还具有低拉伸模量和抗弯强度,并且具有低密度和减轻性能,是航空航天、汽车制造等领域优质的节能材料。
大量研究表明,多层状金属复合材料技术发展趋势以改善材料结构、优化材料性能为主。
目前,研究正着力于改进多层状金属复合材料的表面性能和耐搅拌性能,以及增加材料的抗氧化能力。
此外,人们还在发展利用多层状金属复合材料来提高结构强度的新技术,以满足不断发展的工业领域。
展望未来,随着技术和工艺的不断进步,多层状金属复合材料技术也将在传统材料性能改善、环境友好等方面取得更大进展。
目前,随着新型材料的发展,期望这种新型的多层状金属复合材料技术将能够令工业领域更加可持续以及低碳发展。
随着现代化生产对材料综合性能要求的不断提升,在很多领域,单一材料已经很难满足使用需求。
近二三十年来,复合材料一直受到科研工作者们的广泛关注,各种复合材料及其制备方法得到蓬勃发展,其中一个很重要的分支就是层状金属复合材料(Laminated metal composites, LMCs)。
LMCs是通过采用各种复合技术使两种或两种以上物理、化学各组成材料的优良性能整合到一起的潜能,在保持各组成金属或合金特性的同时具有“相补效应”[2],可以弥补各自的不足, 经过恰当的组合可以得到优异的综合性能。
1. LMCs的发展历程LMCs的起源可以追溯到公元前几百年。
研究发现[3]公元前800年的阿喀琉斯盾(Achilles shield)就是典型的LMCs,该盾由两层青铜、两层锡和一层金构成,顺序是青铜/锡/金/锡/青铜,就算是最锋利的矛也很难刺穿该盾。
此外,很多古代的刀剑也运用了LMCs的原理,如中世纪的波纹刀、著名的大马革士刀、唐刀、日本武士刀等。
从历史上看,LMCs叠层材料产生的原因可以归纳为两点,一是提高制件的综合机械性能,二是在贵金属外包覆较便宜的金属材料以降低经济成本。
文献报道的有关LMCs的近现代研究始于二十世纪六十年代,美国率先提出了“表面处理–冷轧复合(Cold roll bonding, CRB)–退火强化”的生产工艺流程[4],从此掀开了LMCs的研究热潮,中国、日本、法国、德国、巴西、印度等众多国家都展开了对LMCs 的研究。
但在很长的一段时间,高昂的制造成本都限制着LMCs的工业应用。
LMCs的实际工程应用始于前苏联,莫斯科钢铁和合金研究院提出了一种独一无二的径向剪切螺旋轧制技术用于形成Steel/Steel LMCs,被广泛用于大型管道[5]和大型压力容器[6]。
薄钢板被紧紧地包裹在一起并焊接成同心壳体,层间的内部界面通过几种不同的工艺限制了裂纹的传播,延长了使用寿命。
除了Steel/Steel LMCs,在这一时期莫斯科高温研究所和新西伯利亚高速流体力学设计技术研究所分别提出了爆炸复合法和焊接法两种双材料LMCs制备技术,成功制备了包括Al/Steel、Cu/Steel和Al/Steel在内的一系列LMCs[5]。