单链表的插入和删除实验报告
- 格式:doc
- 大小:337.50 KB
- 文档页数:40
单链表的基本操作实验报告单链表的基本操作实验报告引言:单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
在本次实验中,我们将学习和实践单链表的基本操作,包括创建链表、插入节点、删除节点以及遍历链表等。
一、实验目的本次实验的主要目的是掌握单链表的基本操作,包括链表的创建、插入节点、删除节点和遍历链表。
通过实践操作,加深对单链表的理解,并掌握如何应用单链表解决实际问题。
二、实验过程1. 创建链表首先,我们需要创建一个空链表。
链表可以通过一个头节点来表示,头节点不存储数据,只用于标识链表的起始位置。
我们可以定义一个指针变量head,将其指向头节点。
2. 插入节点在链表中插入节点是常见的操作。
我们可以选择在链表的头部、尾部或者指定位置插入节点。
插入节点的过程可以分为以下几个步骤:a. 创建一个新节点,并为其赋值;b. 找到要插入位置的前一个节点;c. 将新节点的指针指向前一个节点的下一个节点;d. 将前一个节点的指针指向新节点。
3. 删除节点删除节点是另一个常见的操作。
我们可以选择删除链表的头节点、尾节点或者指定位置的节点。
删除节点的过程可以分为以下几个步骤:a. 找到要删除节点的前一个节点;b. 将前一个节点的指针指向要删除节点的下一个节点;c. 释放要删除节点的内存空间。
4. 遍历链表遍历链表是为了查看链表中的元素。
我们可以从头节点开始,依次访问每个节点,并输出节点的值。
三、实验结果在本次实验中,我们成功完成了单链表的基本操作。
通过创建链表、插入节点、删除节点和遍历链表等操作,我们可以方便地对链表进行增删改查操作。
四、实验总结通过本次实验,我们对单链表的基本操作有了更深入的了解。
单链表是一种非常重要的数据结构,广泛应用于各个领域。
掌握了单链表的基本操作,我们可以更好地解决实际问题,并且为以后学习更复杂的数据结构打下坚实的基础。
在实验过程中,我们还发现了一些问题和不足之处。
数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。
实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。
利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。
然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。
2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。
3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。
要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。
4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。
首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。
5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。
6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。
数据结构实验报告-答案数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。
实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。
实验主要步骤:1、分析、理解给出的示例程序。
2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。
3、修改程序:(1)增加插入结点的功能。
(2)将建立链表的方法改为头插入法。
程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存ListNode*AddNode();//修改程序:增加节点。
用头插法,返回头指针//==========主函数==============voidmain(){charch[10],num[5];LinkListhead;head=C reatList();//用头插入法建立单链表,返回头指针printlist(head);//遍历链表输出其值printf(“Deletenode(y/n):“);//输入“y“或“n“去选择是否删除结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){printf(“PleaseinputDelete_data:“);scanf(“%s“,ch);//输入要删除的字符串DeleteList(head,ch);printlist(head);}printf(“Addnode?(y/n):“);//输入“y“或“n“去选择是否增加结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){head=A ddNode(head);}printlist(head);DeleteAll(head);//删除所有结点,释放内存}//==========用尾插入法建立带头结点的单链表===========LinkListCreatListR1(void){charch[10];LinkListhead=(Li nkList)malloc(sizeof(ListNode));//生成头结点ListNode*s,*r,*pp;r=head;r->next=NULL;printf(“Input#toend“);//输入“#“代表输入结束printf(“\nPleaseinputN ode_data:“);scanf(“%s“,ch);//输入各结点的字符串while(strcmp(ch,“#“)!=0){pp=LocateNode(head,ch);//按值查找结点,返回结点指针if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);r->next=s;r=s; r->next=NULL;}printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);}returnhead;//返回头指针}//==========用头插入法建立带头结点的单链表===========LinkListCreatList(void){charch[100];LinkListhead,p;head =(LinkList)malloc(sizeof(ListNode));head->next=NULL;while(1){printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);if(strcmp (ch,“#“)){if(LocateNode(head,ch)==NULL){strcpy(head->data,ch);p=(Li nkList)malloc(sizeof(ListNode));p->next=head;head=p;}}elsebreak;}retu rnhead;}//==========按值查找结点,找到则返回该结点的位置,否则返回NULL==========ListNode*LocateNode(LinkListhead,char*key){List Node*p=head->next;//从开始结点比较while(p!=NULL//扫描下一个结点returnp;//若p=NULL则查找失败,否则p指向找到的值为key的结点}//==========修改程序:增加节点=======ListNode*AddNode(LinkListhead){charch[10];ListNode*s,*pp ;printf(“\nPleaseinputaNewNode_data:“);scanf(“%s“,ch);//输入各结点的字符串pp=LocateNode(head,ch);//按值查找结点,返回结点指针printf(“ok2\n“);if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);printf(“ok3\n“);s->next=head->next;head->next=s;}returnhead;}//==========删除带头结点的单链表中的指定结点=======voidDeleteList(LinkListhead,char*key){ListNode*p,*r,*q=hea d;p=LocateNode(head,key);//按key值查找结点的if(p==NULL){//若没有找到结点,退出printf(“positionerror”);exit(0);}while(q->next!=p)//p 为要删除的结点,q为p的前结点q=q->next;r=q->next;q->next=r->next;free(r);//释放结点}//===========打印链表=======voidprintlist(LinkListhead){ListNode*p=head->next;//从开始结点打印while(p){printf(“%s,“,p->data);p=p->next;}printf(“\n“);}//==========删除所有结点,释放空间===========voidDeleteAll(LinkListhead){ListNode*p=head,*r;while( p->next){r=p->next;free(p);p=r;}free(p);}实验结果:Input#toendPleaseinputNode_data:batInput#toendPleaseinputNode_data: catInput#toendPleaseinputNode_data:eatInput#toendPleaseinputNode_da ta:fatInput#toendPleaseinputNode_data:hatInput#toendPleaseinputNode_ data:jatInput#toendPleaseinputNode_data:latInput#toendPleaseinputNode _data:matInput#toendPleaseinputNode_data:#mat,lat,jat,hat,fat,eat,cat,bat ,Deletenode(y/n):yPleaseinputDelete_data:hatmat,lat,jat,fat,eat,cat,bat,Ins ertnode(y/n):yPleaseinputInsert_data:putposition:5mat,lat,jat,fat,eat,put,c at,bat,请按任意键继续...示意图:latjathatfateatcatbatmatNULLheadlatjathatfateatcatbatmatheadlatjatfateat putcatbatmatheadNULLNULL心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。
一、实验目的1.掌握单链表的基本操作:插入、删除、查找以及表的合并等运算。
2.掌握运用C语言上机调试单链表的基本方法。
二、实验任务1.试编写在单链表上实现插入和删除的算法。
三、程序流程图四、测试过程及结果五、总结1.程序特点:最小化、模块化、for循环。
2.单链表特点:动态分配内存、必须从已知指针逐一查找数据、通过改变数据间的链接改变顺序。
附录程序清单#include <stdio.h>#include <stdlib.h>struct NODE{int data;NODE *next;};NODE *creatlink(){NODE *head,*p,*s;int i,n;head=(NODE *)malloc(sizeof(NODE));p=head;scanf("%d",&n);for(i=0;i<n;i++){s=(NODE *)malloc(sizeof(NODE));scanf("%d",&s->data);p->next=s;p=s;}p->next=0;return head;}void print(NODE *p){for(p=p->next;p!=0;p=p->next)printf("%d ",p->data);printf("\n");}void insert(NODE *p,int i,int x){NODE *s;int j;for(j=1;j<i;j++)p=p->next;s=(NODE *)malloc(sizeof(NODE));s->data=x;s->next=p->next;p->next=s;}void Delete(NODE *p,int i){NODE *s;int j;for(j=1;j<i;j++)p=p->next;s=p->next;p->next=s->next;free(s);}void main(){int i,x;NODE A=*creatlink();scanf("%d%d",&i,&x);insert(&A,i,x);print(&A);scanf("%d",&i);Delete(&A,i);print(&A);}。
单链表的实验报告总结单链表是一种常用的数据结构,它由一系列节点组成,每个节点包含了数据和指向下一个节点的指针。
在实验中,我们对单链表进行了操作和实现,通过此次实验,我深刻理解了单链表的特点和应用。
以下是我对此次实验的总结和体会。
在实验中我们实现了单链表的创建和初始化。
通过创建一个头节点,并将头节点的指针指向空,我们成功地初始化了一个空的单链表。
这为后续的操作打下了基础。
接着,我们实现了单链表的插入操作。
通过指定要插入的位置和值,我们可以在单链表的任意位置插入一个新的节点。
这个操作非常灵活,让我感受到了单链表的动态性和可变性。
通过插入操作,我们可以在单链表中任意位置插入新的元素,从而灵活地调整单链表的结构和内容。
在实验中,我们还实现了单链表的删除操作。
通过指定要删除的节点位置,我们可以将该节点从单链表中删除。
这个操作也非常重要,可以帮助我们对单链表中的数据进行动态管理。
通过删除操作,我们可以方便地删除单链表中的某个元素,从而保持单链表的整洁和有序。
除了插入和删除操作,我们还实现了单链表的查找操作。
通过指定要查找的值,我们可以在单链表中查找到对应的节点。
这个操作非常实用,可以帮助我们快速定位和访问单链表中的数据。
通过查找操作,我们可以方便地获取单链表中特定元素的值,从而满足我们对数据的需求。
在实验中,我们还实现了单链表的修改操作。
通过指定要修改的节点位置和新的值,我们可以将单链表中某个节点的值进行修改。
这个操作也非常有用,可以帮助我们对单链表中的数据进行更新和改进。
通过修改操作,我们可以方便地对单链表中的某个元素进行数值的调整,从而满足我们对数据的要求。
通过本次实验,我对单链表的原理和操作有了更深入的理解。
单链表是一种非常灵活和实用的数据结构,可以应用于各种场景和问题。
它的特点是插入和删除操作的效率很高,但查找和修改操作的效率较低。
因此,在实际应用中,我们需要根据具体的需求和场景选择合适的数据结构。
数据结构单链表实验报告范本:数据结构单链表实验报告一、引言本实验旨在掌握数据结构中单链表的基本概念、操作和应用。
通过实际操作,理解单链表的结构与实现,提高数据结构的编程能力和问题解决能力。
二、实验目的1. 理解单链表的概念和特点;2. 掌握单链表的基本操作,包括插入、删除、遍历;3. 学会使用单链表解决实际问题。
三、实验内容1. 单链表的定义和结构设计;2. 单链表的基本操作的实现,包括插入节点、删除节点、遍历;3. 针对具体的问题,设计相应的单链表操作。
四、实验步骤1. 单链表的定义和结构设计:(1)定义单链表的结构体,包含数据域和指针域;(2)实现单链表的初始化函数;(3)实现单链表的销毁函数。
2. 单链表的基本操作的实现:(1)实现单链表的插入节点操作;(2)实现单链表的删除节点操作;(3)实现单链表的遍历操作。
3. 针对具体问题的单链表操作:(1)根据具体需求,设计并实现相应的操作函数;(2)利用单链表解决具体问题。
五、实验结果与分析1. 在实验过程中,成功实现了单链表的定义和结构设计,包括数据域和指针域的正确设置。
2. 实验中实现了插入节点、删除节点和遍历等基本操作。
3. 针对具体问题,通过单链表操作解决了相应的问题。
六、实验总结通过本次实验,加深了对单链表的理解和掌握。
掌握了单链表的基本操作和应用实现,提高了数据结构的编程能力和问题解决能力。
附件:1. 本文所涉及的代码文件;2. 实验过程中所用到的数据文件。
法律名词及注释:1. 数据结构:指的是一组数据的表示方法和相应的操作。
在计算机科学中,数据结构是计算机中存储、组织数据的方式。
2. 单链表:是一种链式存储结构,每个节点包含数据域和指针域。
数据域用于存储数据,指针域用于指向下一个节点。
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
单链表的操作实验报告《单链表的操作实验报告》在计算机科学领域,数据结构是非常重要的基础知识之一。
而单链表作为一种常见的数据结构,经常被用来存储和操作数据。
在本次实验中,我们将对单链表的操作进行实验,并撰写实验报告以总结和分享我们的实验结果。
实验目的:1. 了解单链表的基本概念和操作方法。
2. 掌握单链表的插入、删除、查找等操作。
3. 通过实际操作加深对单链表的理解和掌握。
实验环境:1. 编程语言:C/C++2. 开发环境:Visual Studio Code3. 实验工具:GCC编译器实验步骤:1. 定义单链表的结构体,并实现初始化、插入、删除、查找等操作的函数。
2. 编写测试用例,对单链表的各种操作进行测试。
3. 分析实验结果,总结操作的时间复杂度和空间复杂度。
4. 撰写实验报告,分享实验过程和结果。
实验结果:经过实验,我们成功实现了单链表的初始化、插入、删除、查找等操作,并对这些操作进行了充分的测试。
我们发现单链表的插入和删除操作的时间复杂度为O(1),而查找操作的时间复杂度为O(n),其中n为链表的长度。
这些结果与我们的预期相符合,说明我们对单链表的操作有了较好的掌握。
实验总结:通过本次实验,我们不仅加深了对单链表的理解,还提高了编程能力和数据结构的应用能力。
我们对单链表的操作有了更深入的了解,为以后在实际项目中应用单链表打下了良好的基础。
结语:单链表作为一种常见的数据结构,在实际应用中具有重要的作用。
通过本次实验,我们对单链表的操作有了更深入的了解,相信在以后的学习和工作中能够更好地应用和运用单链表。
希望本次实验报告能够对读者有所帮助,也欢迎大家对实验结果进行讨论和交流。
数据结构实验报告_单链表数据结构实验报告——单链表一、实验目的1.掌握单链表的基本概念和原理。
2.了解单链表在计算机科学中的应用。
3.掌握单链表的基本操作,如插入、删除、遍历等。
4.通过实验,加深对理论知识的理解,提高编程能力。
二、实验内容1.实验原理:单链表是一种线性数据结构,由一系列节点组成,每个节点包含数据域和指针域。
其中,指针域指向下一个节点,最后一个节点的指针域指向空。
单链表的主要操作包括插入、删除、遍历等。
2.实验步骤:(1)创建一个单链表。
(2)实现插入操作,即在链表的末尾插入一个新节点。
(3)实现删除操作,即删除链表中的一个指定节点。
(4)实现遍历操作,即输出链表中所有节点的数据。
3.实验代码:下面是使用Python语言实现的单链表及其基本操作的示例代码。
class Node:def __init__(self, data):self.data = dataself.next = Noneclass LinkedList:def __init__(self):self.head = Nonedef insert(self, data):new_node = Node(data)if self.head is None:self.head = new_nodeelse:current = self.headwhile current.next is not None:current = current.nextcurrent.next = new_nodedef delete(self, data):if self.head is None:returnif self.head.data == data:self.head = self.head.nextreturncurrent = self.headwhile current.next is not None and current.next.data != data:current = current.nextif current.next is None:returncurrent.next = current.next.nextdef traverse(self):current = self.headwhile current is not None:print(current.data)current = current.next4.实验结果:通过运行上述代码,我们可以看到单链表的基本操作得到了实现。
实验一、单链表的插入和删除一、目的了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。
二、要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。
三、程序源代码#include"stdio.h"#include"string.h"#include"stdlib.h"#include"ctype.h"typedef struct node //定义结点{char data[10]; //结点的数据域为字符串struct node *next; //结点的指针域}ListNode;typedef ListNode * LinkList; // 自定义LinkList单链表类型LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表ListNode *LocateNode(); //函数,按值查找结点void DeleteList(); //函数,删除指定值的结点void printlist(); //函数,打印链表中的所有值void DeleteAll(); //函数,删除所有结点,释放内存//==========主函数==============void main(){char ch[10],num[10];LinkList head;head=CreatListR1(); //用尾插入法建立单链表,返回头指针 printlist(head); //遍历链表输出其值printf(" Delete node (y/n):");//输入“y”或“n”去选择是否删除结点scanf("%s",num);if(strcmp(num,"y")==0 || strcmp(num,"Y")==0){ printf("Please input Delete_data:");scanf("%s",ch); //输入要删除的字符串 DeleteList(head,ch);printlist(head);}DeleteAll(head); //删除所有结点,释放内存}//==========用尾插入法建立带头结点的单链表===========LinkList CreatListR1(void){char ch[10];LinkList head=(LinkList)malloc(sizeof(ListNode)); //生成头结点ListNode *s,*r,*pp;r=head;r->next=NULL;printf("Input # to end "); //输入“#”代表输入结束printf("Please input Node_data:");scanf("%s",ch); //输入各结点的字符串while(strcmp(ch,"#")!=0) {pp=LocateNode(head,ch); //按值查找结点,返回结点指针 if(pp==NULL) { //没有重复的字符串,插入到链表中s=(ListNode *)malloc(sizeof(ListNode));strcpy(s->data,ch);r->next=s;r=s;r->next=NULL;}printf("Input # to end ");printf("Please input Node_data:");scanf("%s",ch);}return head; //返回头指针}//==========按值查找结点,找到则返回该结点的位置,否则返回NULL==========ListNode *LocateNode(LinkList head, char *key){ListNode *p=head->next; //从开始结点比较while(p&&strcmp(p->data,key)!=0 ) //直到p为NULL或p-> data为key止p=p->next; //扫描下一个结点return p; //若p=NULL则查找失败,否则p指向找到的值key的结点}//==========删除带头结点的单链表中的指定结点=======void DeleteList(LinkList head,char *key){ListNode *p,*r,*q=head;p=LocateNode(head,key); //按key值查找结点的if(p==NULL ) { //若没有找到结点,退出printf("position error");exit(0);}while(q->next!=p) //p为要删除的结点,q为p的前结点q=q->next;r=q->next;q->next=r->next;free(r); //释放结点}//===========打印链表=======void printlist(LinkList head){ListNode *p=head->next; //从开始结点打印while(p){printf("%s, ",p->data);p=p->next;}printf("\n");}//==========删除所有结点,释放空间===========void DeleteAll(LinkList head){ListNode *p=head,*r;while(p->next){r=p->next;free(p);p=r;}free(p);}运行结果:加的添加结点的代码:int Insert(ListNode *head) // the insert function {ListNode *in,*p,*q;int wh;printf("input the insert node:");in=(ListNode *)malloc(sizeof(ListNode));in->next=NULL;p=(ListNode *)malloc(sizeof(ListNode));p->next=NULL;q=(ListNode *)malloc(sizeof(ListNode));q->next=NULL;if(!in)return 0;scanf("%s",in->data);printf("input the place where you want to insert you data:");scanf("%d",&wh);for(p=head;wh>0;p=p->next,wh--);q=p->next;p->next=in;in->next=q;return 1;}运行结果:最后提示为OK 添加成功。
实验心得:这个实验中主要修改的是ch 和num 把它们由指针改成数组因为不改的话在后面delect函数中会出现没有地址的情况找不到地址就不能执行功能然后把locate函数的判断语句改一下避免矛盾的出现。
实验二、二叉树操作一、目的掌握二叉树的定义、性质及存储方式,各种遍历算法。
二、要求采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。
三、程序源代码#include"stdio.h"#include"string.h"#define Max 20 //结点的最大个数typedef struct node{char data;struct node *lchild,*rchild;}BinTNode; //自定义二叉树的结点类型typedef BinTNode *BinTree; //定义二叉树的指针int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数//==========基于先序遍历算法创建二叉树==============//=====要求输入先序序列,其中加入虚结点“#”以示空指针的位置==========BinTree CreatBinTree(void){BinTree T;char ch;if((ch=getchar())=='#')return(NULL); //读入#,返回空指针else{T=(BinTNode *)malloc(sizeof(BinTNode)); // 生成结点T->data=ch;T->lchild=CreatBinTree(); //构造左子树T->rchild=CreatBinTree(); //构造右子树return(T);}}//========NLR 先序遍历=============void Preorder(BinTree T){if(T) {printf("%c",T->data); //访问结点Preorder(T->lchild); //先序遍历左子树Preorder(T->rchild); //先序遍历右子树}//========LNR 中序遍历===============void Inorder(BinTree T){if(T) {Inorder(T->lchild); //中序遍历左子树printf("%c",T->data); //访问结点Inorder(T->rchild); //中序遍历右子树}}//==========LRN 后序遍历============void Postorder(BinTree T){if(T) {Postorder(T->lchild); //后序遍历左子树Postorder(T->rchild); //后序遍历右子树printf("%c",T->data); //访问结点}}//=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法========int TreeDepth(BinTree T)int hl,hr,max;if(T){hl=TreeDepth(T->lchild); //求左深度hr=TreeDepth(T->rchild); //求右深度max=hl>hr? hl:hr; //取左右深度的最大值NodeNum=NodeNum+1; //求结点数if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。