初高中数学衔接(上课学生用3课时)
- 格式:docx
- 大小:87.40 KB
- 文档页数:4
初高中衔接数学教案
教学目标:通过本节课的学习,学生能够了解初中和高中数学之间的差异,掌握高中数学
学习的基础知识,并能够顺利完成初高中数学之间的过渡。
教学内容:初中数学与高中数学的差异、高中数学基础知识的学习、初中数学知识的延伸。
教学重点:初高中数学知识的差异、高中数学基础知识的学习。
教学难点:初中数学知识的延伸。
教学准备:
1. 教材:初中数学教科书、高中数学教科书。
2. 教具:黑板、彩色粉笔、教学PPT等。
3. 学生:初中生和高中生。
教学过程:
一、引入
教师通过对初中数学和高中数学的简单介绍,引导学生思考两者之间的差异,并激发学生
学习高中数学的兴趣。
二、知识讲解
1. 教师讲解高中数学基础知识,如函数、导数、积分等,并与初中数学进行比较。
2. 教师讲解初中数学知识的延伸,引导学生理解初中数学知识在高中数学中的应用。
三、练习与讨论
1. 设计一些练习题,让学生巩固所学知识并掌握高中数学的基本操作。
2. 鼓励学生互相讨论和交流,帮助他们理解数学知识。
四、总结反思
教师对本节课的内容进行总结,并引导学生反思学习过程中的问题和收获。
五、作业布置
布置作业,让学生巩固所学知识,并预习下节课的内容。
教学反思:
通过本节课,学生能够对初中数学和高中数学之间的差异有一个初步了解,并且掌握了高中数学的一些基础知识。
在教学过程中,应注重引导学生主动学习,培养他们的自学能力和解决问题的能力。
初中与高中的衔接数学教案教学目标:通过本课学习,学生将能够熟练掌握初中数学知识,为高中数学学习奠定良好基础。
教学内容:初中与高中数学知识的衔接,包括初中数学知识的复习与延伸,高中数学知识的引入。
教学重点:初中数学知识的回顾与巩固,高中数学知识的初步引入与理解。
教学难点:初中数学知识与高中数学知识的衔接,学生需要跨越知识的边界,理清逻辑关系。
教学准备:教师准备好教案、教材、多媒体设备等教学工具;学生准备好课本、笔记本和笔等学习用具。
教学步骤:1.复习初中数学知识。
教师可以通过课堂互动让学生回顾和巩固初中数学知识,如方程、函数、几何等内容。
2.引入高中数学知识。
教师可以简要介绍高中数学的内容和学习方法,让学生做好学习准备。
3.进行知识衔接。
教师可以通过案例讲解初中数学知识与高中数学知识的联系和衔接,引导学生拓展思路,加深理解。
4.分组讨论。
教师让学生小组合作讨论与解决一些涉及初中和高中数学知识的问题,培养学生的合作与解决问题的能力。
5.总结与反思。
教师带领学生总结本节课的学习内容,学生反思自己的学习收获和不足之处,并提出问题。
教学评价:通过教师的现场观察、学生的表现以及课后作业的完成情况,对学生的学习情况进行评价,并提出建议和指导。
教学反思:教师根据教学过程和学生的反馈,总结本节课的教学效果和不足之处,为下一节课的教学改进提供参考。
扩展活动:为学生提供相关拓展资料或参加数学竞赛等活动,激发学生学习兴趣,促进数学能力的提升。
教学结束语:本节课的目标是让学生理清初中数学与高中数学之间的联系,帮助学生顺利过渡到高中数学学习阶段。
希望大家在今后的学习中能够积极探索,勇攀高峰!谢谢大家的认真听讲,下节课见!。
初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。
教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。
教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。
教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。
教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。
第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。
第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。
第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。
第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。
第六步:作业布置(5分钟)布置相关作业,巩固所学知识。
教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。
在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。
同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。
. ... .初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。
初高中数学衔接教案
教学目标:使学生能够顺利过渡从初中数学到高中数学,掌握所需基础知识和方法
重点难点:初中数学基础概念与高中数学深入理解的衔接,数学知识的逻辑性和抽象性,
学习方法和思维方式的转变
教学内容:
1. 复习初中数学重要知识点,如代数、几何、概率与统计等;
2. 讲解高中数学常见概念和方法,如函数、导数、积分等;
3. 拓展初中数学知识,引导学生学习更深层次和抽象性的数学内容;
教学步骤:
一、复习初中数学知识(30分钟)
1. 复习代数知识,如多项式、方程、不等式等;
2. 复习几何知识,如平面几何、立体几何等;
3. 复习概率与统计知识,如排列组合、概率计算等;
二、讲解高中数学概念方法(40分钟)
1. 引入高中数学常见概念,如函数的概念和基本性质;
2. 讲解导数和积分的初步概念和意义;
3. 演示高中数学解题方法和思维方式;
三、拓展深入数学知识(30分钟)
1. 引入高中数学中更深层次和抽象性的内容,如极限、微分方程等;
2. 演示高中数学的解题方法和证明步骤;
3. 指导学生如何应对高中数学学习的挑战和困难;
教学反馈:通过课堂练习和作业检查,评估学生对初高中数学衔接的掌握情况,并及时给
予指导和帮助。
教学延伸:组织学生进行数学竞赛、参加数学社团或研究小组等活动,拓宽学生数学视野,提高数学思维能力和解题能力。
教学评价:通过课后测试和作业绩效,评估学生对初高中数学衔接知识和方法的掌握情况以及学习态度和进步情况。
教学反思:根据学生的学习反馈和表现,调整教学内容和方法,及时帮助学生解决学习困难,推动学生数学学习的持续发展和提高。
初高中数学衔接知识教案教学目标:1. 知识技能:学生理解和掌握初中数学和高中数学之间的衔接知识,能够运用这些知识解决实际问题。
2. 过程方法:通过教师讲解、学生互动讨论和练习演练等方式,引导学生逐步掌握数学衔接知识。
3. 情感态度:培养学生对数学的兴趣和自信心,激发学生学习数学的积极性和主动性。
教学内容:1. 平面直角坐标系:引导学生理解平面直角坐标系的概念,掌握坐标系中点的坐标计算方法。
2. 直线方程:讲解一元一次方程的求解方法,引导学生理解直线的斜率和截距,能够根据斜率截距式写出直线方程。
3. 多项式的加减乘除:通过应用实际例题,让学生掌握多项式的加减乘除运算规则和方法。
4. 函数的概念与性质:解释函数的概念,培养学生对函数的理解能力,讲解函数的性质和分类。
教学步骤:1. 引入:通过生动的例题引入,激发学生的学习兴趣。
2. 讲解:教师讲解相关知识点,引导学生逐步理解和掌握。
3. 练习:学生进行练习和讨论,巩固所学知识。
4. 拓展:通过拓展性的练习,帮助学生加深对知识的理解和应用。
5. 总结:对本节课所学内容进行总结,巩固学生的学习成果。
教学资源:1. 课件资源:使用电子课件展示相关知识点,方便学生理解和记忆。
2. 练习资源:准备相关练习题,让学生进行巩固和提高。
评价方式:1. 学生表现:通过课堂练习和讨论,观察学生对数学衔接知识的理解和掌握情况。
2. 学习态度:在课后作业中,观察学生的学习态度和作业完成情况,对学生进行评价和鼓励。
扩展拓展:教师可以设计一些拓展性的问题和练习,引导学生进行深入思考和探究,拓展数学衔接知识在实际问题中的应用。
同时,鼓励学生积极参加数学竞赛和活动,进一步提高数学学习的兴趣和水平。
初高中数学衔接教案学生版一、教学目标:1. 了解初中数学和高中数学的主要内容和学习要求;2. 掌握初中数学和高中数学之间的衔接知识点;3. 提高数学学习的兴趣和自信心。
二、教学内容:1. 初中数学和高中数学的主要内容和学习要求;2. 初中数学和高中数学之间的衔接知识点;3. 数学学习的方法和技巧。
三、教学过程:1. 导入:通过展示一道初中数学和高中数学之间的衔接题目,引起学生对数学衔接的思量和兴趣。
2. 了解初中数学和高中数学的主要内容和学习要求:a. 分组讨论,学生根据自己的经验,列举初中数学和高中数学的主要内容;b. 整理学生的回答,向学生介绍初中数学和高中数学的学习要求,包括知识点的深度和广度、解题能力的要求等。
3. 掌握初中数学和高中数学之间的衔接知识点:a. 教师通过课件和举例,向学生介绍初中数学和高中数学之间的衔接知识点,如函数、三角函数、数列等;b. 学生进行小组合作,完成一些衔接知识点的练习题,加深对知识点的理解和掌握。
4. 数学学习的方法和技巧:a. 学生通过小组合作,分享自己在初中数学学习中的方法和技巧;b. 教师向学生介绍高中数学学习的方法和技巧,如良好的学习计划、合理的时间安排、积极的思维方式等;c. 学生进行个人总结,制定自己的数学学习方法和技巧。
5. 总结和展望:a. 教师对本节课的内容进行总结,强调初中数学和高中数学的衔接重要性;b. 学生展望未来的数学学习,表达对数学学习的兴趣和自信心。
四、教学评价:1. 教师观察学生在小组合作中的参预程度和表现情况;2. 教师检查学生对初中数学和高中数学的学习要求和衔接知识点的掌握情况;3. 学生通过练习题和个人总结,展示对数学学习方法和技巧的理解和应用。
五、教学资源:1. 课件:包括初中数学和高中数学的主要内容和学习要求,衔接知识点的示意图等;2. 练习题:包括初中数学和高中数学之间的衔接练习题,用于巩固和提高学生的学习效果。
人教版初升高中数学衔接教材教案讲义引言本教案讲义是为了解决初中毕业生升入高中后数学学科的衔接问题而编写的。
首先,我们将分析初中数学和高中数学之间的差异,并提出解决方案。
然后,我们将介绍一套适用于人教版初升高中数学衔接教材的教案。
这些教案旨在帮助学生顺利过渡到高中数学,提高他们的研究成绩。
初中数学与高中数学的差异初中数学和高中数学在内容和难度上存在一定的差异。
初中数学主要侧重于基本的数学概念和计算能力培养,而高中数学则更加注重抽象思维、逻辑推理和问题解决能力的培养。
因此,初中毕业生在升入高中后可能会面临一些困难和挑战。
解决方案为了解决初中升高中数学衔接的问题,我们提出以下解决方案:1. 设置过渡课程:在初中阶段结束和高中阶段开始之间设置过渡课程,着重培养学生的抽象思维和问题解决能力,帮助他们适应高中数学的要求。
2. 教师培训:提供专门的培训课程,帮助初中数学老师了解高中数学的要求和难点,使他们能够更好地指导和辅导学生。
3. 个性化辅导:针对初中毕业生的不同水平和研究需求,提供个性化的辅导和指导,帮助他们克服困难,提高数学研究成绩。
人教版初升高中数学衔接教材教案针对人教版初升高中数学衔接教材,我们提供一套教案,旨在帮助学生顺利过渡到高中数学:1. 第一课:初中数学回顾和高中数学预此课程将回顾初中数学的基本概念和技巧,并预高中数学的一些重要概念,为学生打下良好的数学基础。
2. 第二课:数列和数列的应用本课程将介绍数列的概念,讲解数列的求和公式和递推公式,并提供一些数列的应用例题,帮助学生熟悉数列的思想方法。
3. 第三课:函数此课程将介绍函数的概念,讲解函数的性质和图像,帮助学生理解函数在数学中的重要性和应用。
4. ...(继续编写其他教案内容)结论通过以上的解决方案和教案,我们相信学生在初中升高中数学衔接的过程中将能够得到更好的支持和帮助。
希望这份教案讲义能够为初中毕业生顺利过渡到高中数学提供一定的指导和帮助。
初高中数学衔接课教案我们需要明确衔接课程的目标。
衔接课程的核心目的是使学生对高中数学的基本概念有一个初步的了解和认识,减少学习上的断层感。
因此,教案的设计应当注重基础知识的铺垫,以及初中与高中知识点的连接。
我们来具体设计教案的内容。
教案可以分为几个部分:回顾与复习、新知引入、知识链接、实际应用和总结提升。
1. 回顾与复习在这一部分,教师应该带领学生回顾初中阶段的重要数学概念和公式,如一次函数、二次函数、比例关系等。
通过举例和练习题的方式,帮助学生巩固旧知识,为新知识的学习打下坚实的基础。
2. 新知引入这一环节是引导学生进入高中数学的关键。
教师可以通过具体的实例或者问题,引出高中数学的新概念,比如集合的概念、函数的概念扩展等。
在介绍新知识时,要注意用生动的语言和形象的例子,让学生能够快速抓住新知识的核心。
3. 知识链接在学生对新知识有了初步了解之后,教师需要做的是搭建起初中知识和高中知识之间的桥梁。
例如,可以通过对比分析,展示初中所学的二次函数如何在高中被推广到更一般的函数概念。
通过这样的链接,学生不仅能够看到数学知识的连贯性,还能激发他们对数学深层次探索的兴趣。
4. 实际应用理论知识的学习需要通过实践来巩固。
在教案中,应设计一些实际问题的解决环节,让学生将学到的知识应用到实际问题的解决中。
这不仅能够检验学生的学习效果,还能培养学生的问题解决能力。
5. 总结提升在课程的教师应引导学生进行总结,梳理本次课程的学习内容,明确学习的重难点。
同时,教师可以根据学生的学习情况,提供一些拓展资料或建议,帮助学生在课后进行深入学习。
数学初高中知识衔接课教案
教学目标:
1. 理解初中数学和高中数学之间的联系和衔接;
2. 掌握初中数学知识对后续高中数学学习的重要性;
3. 培养学生对数学知识的综合运用能力。
教学重点:
1. 初中数学和高中数学的知识点衔接;
2. 初中数学知识在高中数学学习中的应用。
教学难点:
1. 初中数学与高中数学之间的知识转换和深化;
2. 如何对初中数学知识进行有效的运用和延伸。
教学方法:
1. 讲授结合实例分析;
2. 实例演练,引导学生思考。
教学过程:
一、导入(5分钟)
教师引入数学初高中知识衔接的话题,激发学生学习的兴趣。
二、复习初中数学知识(10分钟)
教师复习初中数学知识,让学生回顾和巩固基础知识。
三、初高中数学知识的联系与衔接(15分钟)
教师讲解初中数学和高中数学之间的知识联系,引导学生理解初中知识在高中学习中的重要性。
四、实例分析与演练(20分钟)
教师通过实例分析初中数学知识如何在高中数学学习中运用,引导学生进行实例演练并展示解题过程。
五、课堂讨论与总结(10分钟)
教师组织学生进行课堂讨论,总结初高中数学知识的衔接关系,引导学生总结学习收获。
六、作业布置(5分钟)
教师布置作业,要求学生结合初中数学知识,尝试解决高中数学题目,巩固学习成果。
教学反思:
通过本节课的教学,学生初步了解了初高中数学知识的联系与衔接,并对如何在高中数学学习中运用初中数学知识有了初步的认识。
但在以后的教学中,应进一步拓展学生对数学知识的理解和运用能力,促进初高中数学知识的深度衔接,培养学生综合运用数学知识的能力。
初高中数学衔接 第三课时2.1 一元二次方程2.1.1根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根(1)0322=-+x x (2) 0122=++x x (3) 0322=++x x }我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1) 当Δ>0时,方程有两个不相等的实数根 x 1,2=2b a-±;(2)当Δ=0时,方程有两个相等 x 1=x 2=-2ba;(3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -+=,22b x a-=,则有122222b b b bx x a a a a---+=+==-;221222(4)42244b b b b ac ac cx x a a a a a----=⋅===. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0.例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求221211x x +的值;(3)x 13+x 23.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x =2x =,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.例7. 当m 取什么实数时,方程4x 2+(m-2)x+(m-5)=0分别有:①两个正根; ②一正根和一负根; ③正根绝对值大于负根绝对值;④两根都大于1.习题 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根. (1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.。