渣气孔缺陷原因
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
铸造缺陷-----气孔的概述以及分析一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。
还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。
二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。
1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。
2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。
3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。
4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。
多出现在浇注位置的上面。
5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。
6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。
下面先说一说最常见、发生最多的侵入型气孔。
一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液时产生的气孔称为侵入性气孔。
1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。
2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。
3、一般尺寸较大,在几毫米以上。
4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。
5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。
二、形成机理:1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。
铸造缺陷分类标准铸造是一种广泛用于工业生产的工艺,它涉及到将熔融的金属倒入模具中,待其冷却凝固后形成所需形状的金属零件。
然而,铸造过程中可能会产生各种缺陷,这些缺陷会影响到产品的质量和性能。
为了更好地理解和控制铸造过程,制定一个铸造缺陷分类标准是非常必要的。
以下是一个基于常见铸造缺陷的分类标准:一、孔洞类缺陷孔洞类缺陷是指在铸造过程中,由于气泡或挥发物未能及时逸出,导致在铸件内部或表面形成的孔洞。
这类缺陷包括以下几种:1. 气孔:由于气体在金属液中形成气泡,未能及时逸出而形成的孔洞。
2. 夹渣孔:由于金属液中夹杂物未及时排除而形成的孔洞。
二、裂纹和冷隔类缺陷裂纹和冷隔类缺陷是指在铸造过程中,由于冷却速度过快、金属液收缩等因素导致的铸件开裂或冷隔现象。
这类缺陷包括以下几种:1. 热裂纹:由于金属液冷却速度过快,导致铸件内部应力过大而产生的裂纹。
2. 冷裂纹:由于铸件冷却过程中受到外力作用,导致铸件开裂。
3. 冷隔:由于金属液在冷却过程中未能完全融合,形成的分隔区域。
三、缩松和缩孔类缺陷缩松和缩孔类缺陷是指在铸造过程中,由于金属液冷却过程中体积收缩,导致在铸件内部或表面形成的缩松或缩孔。
这类缺陷包括以下几种:1. 缩松:由于金属液冷却过程中体积收缩不均匀,导致铸件内部形成的细小孔洞。
2. 缩孔:由于金属液冷却过程中体积收缩过大,导致铸件内部形成的较大孔洞。
四、气孔、夹杂和夹渣类缺陷气孔、夹杂和夹渣类缺陷是指在铸造过程中,由于金属液中混入气体、杂质或夹渣物而导致的缺陷。
这类缺陷包括以下几种:1. 气孔:由于金属液中混入气体而形成的气泡。
2. 夹渣:由于金属液中夹杂的固体颗粒物而形成的夹渣。
五、形状和表面类缺陷形状和表面类缺陷是指在铸造过程中,由于模具设计、制造或操作不当导致的铸件形状或表面质量的缺陷。
这类缺陷包括以下几种:1. 模具痕迹:由于模具设计或制造不当,导致铸件表面留下的痕迹。
2. 表面粗糙:由于金属液冷却过程中表面收缩不均匀,导致铸件表面粗糙。
焊接缺陷产生原因及防止措施一、焊接缺陷定义焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。
这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。
其中危害最大的是焊接裂纹和气孔。
二、焊接缺陷的分类焊接生产中产生焊接缺陷的种类是多种多样的,按其在焊接接头中所处的位置和表现形式的不同,可以把焊接缺陷大致分为两类:一类是外部缺陷;另一类是内部缺陷。
焊接缺陷的详细分类如图1所示。
图1 焊接缺陷分类图焊接缺陷示意图如图2所示:(a)裂纹(b)焊瘤(c)焊穿(d)弧坑(e)气孔(f)夹渣(g )咬边 (h )未融合 (i )未焊透图2 焊接缺陷示意图三、影响焊接缺陷的因素1. 材料因素所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂及保护气体等。
这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中,母材本身的材质对热影响区的性能起着决定性的作用,当然,所采用的焊接材料对焊缝金属的成分和性能也是关键因素。
如果焊材与母材匹配不当,不仅可能引起焊接区内的裂纹、气孔等各种缺陷,也可能引起脆化、软化等性能变化。
所以,为了保证得到良好的焊接接头,必须对材料因素予以重视。
2.工艺因素同一种母材,在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。
焊接方法对焊接质量的影响主要在两个方面:首先是焊接热源的特点,其可以直接改变焊接热循环的各项参数,如线能量、高温停留时间、冷却速度等;其次是对熔池和接头附近区域的保护方式,如渣保护、气保护等。
焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。
3.结构因素焊接接头的结构设计影响其受力状态,其既可能影响焊接时是否发生缺陷,又可能影响焊后接头的力学性能。
设计焊接结构时,应尽量使接头处于拘束度较小、能自由伸缩的状态,这样有利于防止焊接裂纹的产生。
4.使用条件焊接结构必须符合使用条件的要求,如载荷的性质、工作温度的高低、工作介质有无腐蚀性等,其必然会影响到接头的使用性能。
钢铁材料常见缺陷及其产生原因引言钢铁材料是工业生产中常用的材料之一,具有良好的力学性能和耐久性。
然而,由于制造过程中的各种因素,钢铁材料往往会出现一些缺陷。
本文将介绍钢铁材料常见的缺陷,探讨其产生的原因,并提出相应的解决方案。
一、气孔气孔是钢铁材料中常见的缺陷之一。
它们是由于熔体中的气体无法完全排除而形成的孔洞。
气孔的出现会降低钢铁材料的强度和韧性,导致材料易于断裂。
产生原因气孔的产生主要与以下几个因素有关:1.气体残留:在钢铁制造过程中,熔体中的气体不能完全排除,导致气孔的形成。
2.不良包壳材料:在铸造过程中使用的包壳材料可能含有化学成分,当熔体进入包壳时,会释放出气体并形成气孔。
3.渣浆不均匀:如果熔体中的渣浆没有均匀分布,会导致气孔的形成。
解决方案为了减少气孔的产生,可以采取以下措施:1.加强熔体的搅拌:通过加大搅拌力度,可以促使气体顺利排除。
2.选择合适的包壳材料:使用不含有气体产生物质的包壳材料,可以减少气孔的形成。
3.控制渣浆成分:保证渣浆成分的均匀分布,可以防止气孔的出现。
二、夹杂物夹杂物是钢铁材料中常见的缺陷之一。
它们是由于在钢铁制造过程中,杂质无法被完全排除而形成的。
夹杂物会降低钢铁材料的力学性能和耐蚀性,影响其使用寿命。
产生原因夹杂物的产生主要与以下几个因素有关:1.不纯净原材料:如果原材料中存在杂质,这些杂质可能无法被完全去除,从而形成夹杂物。
2.冶炼过程不当:在冶炼过程中,温度、压力等因素的控制不当会导致夹杂物的形成。
3.金属液流动不畅:如果金属液的流动不畅,如存在死角、漩涡等情况,会导致夹杂物的形成。
解决方案为了减少夹杂物的产生,可以采取以下措施:1.选择优质原材料:使用净化程度高的原材料,能够有效降低夹杂物的含量。
2.控制冶炼参数:严格控制冶炼过程中的温度、压力等参数,确保金属的纯净度。
3.优化液流动态:通过改善冶炼设备的结构和增加搅拌力度,可以改善金属液的流动状态,减少夹杂物的形成。
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
六种铸件常见缺陷的产⽣原因及防⽌⽅法⽓孔(⽓泡、呛孔、⽓窝)特征⽓孔是存在于铸件表⾯或内部的孔洞,呈圆形、椭圆形或不规则形,有时多个⽓孔组成⼀个⽓团,⽪下⼀般呈梨形。
呛孔形状不规则,且表⾯粗糙,⽓窝是铸件表⾯凹进去⼀块,表⾯较平滑。
明孔外观检查就能发现,⽪下⽓孔经机械加⼯后才能发现。
形成原因1、模具预热温度太低,液体⾦属经过浇注系统时冷却太快。
2、模具排⽓设计不良,⽓体不能通畅排出。
3、涂料不好,本⾝排⽓性不佳,甚⾄本⾝挥发或分解出⽓体。
4、模具型腔表⾯有孔洞、凹坑,液体⾦属注⼊后孔洞、凹坑处⽓体迅速膨胀压缩液体⾦属,形成呛孔。
5、模具型腔表⾯锈蚀,且未清理⼲净。
6、原材料(砂芯)存放不当,使⽤前未经预热。
7、脱氧剂不佳,或⽤量不够或操作不当等。
防⽌⽅法1、模具要充分预热,涂料(⽯墨)的粒度不宜太细,透⽓性要好。
2、使⽤倾斜浇注⽅式浇注。
3、原材料应存放在通风⼲燥处,使⽤时要预热。
4、选择脱氧效果较好的脱氧剂(镁)。
5、浇注温度不宜过⾼。
缩孔(缩松)特征缩孔是铸件表⾯或内部存在的⼀种表⾯粗糙的孔,轻微缩孔是许多分散的⼩缩孔,即缩松,缩孔或缩松处晶粒粗⼤。
常发⽣在铸件内浇道附近、冒⼝根部、厚⼤部位,壁的厚薄转接处及具有⼤平⾯的厚薄处。
形成原因1、模具⼯作温度控制未达到定向凝固要求。
2、涂料选择不当,不同部位涂料层厚度控制不好。
3、铸件在模具中的位置设计不当。
4、浇冒⼝设计未能达到起充分补缩的作⽤。
5、浇注温度过低或过⾼。
防⽌⽅法1、提⾼磨具温度。
2、调整涂料层厚度,涂料喷洒要均匀,涂料脱落⽽补涂时不可形成局部涂料堆积现象。
3、对模具进⾏局部加热或⽤绝热材料局部保温。
4、热节处镶铜块,对局部进⾏激冷。
5、模具上设计散热⽚,或通过⽔等加速局部地区冷却速度,或在模具外喷⽔,喷雾。
6、⽤可拆缷激冷块,轮流安放在型腔内,避免连续⽣产时激冷块本⾝冷却不充分。
7、模具冒⼝上设计加压装置。
8、浇注系统设计要准确,选择适宜的浇注温度。
铸造常见的缺陷与产生原因铸造是一种常用的金属加工方法,其用途广泛,但在生产过程中常常会产生一些缺陷,如气孔、夹渣、缩孔等。
这些缺陷不仅会影响铸件的外观质量,还可能降低其力学性能和使用寿命。
下面我将从不同的缺陷类型和产生原因两个方面详细介绍。
一、缺陷类型1. 气孔:气体在铸造过程中产生,并被封入铸件内部,形成孔隙。
气孔的尺寸和分布形态不同,可能是小孔、球形孔、管状孔等。
气孔的产生主要与以下几个因素有关:(1) 铝液中的气体:铝液中含有的氧和氢会在高温下产生氧化反应和水解反应,释放出氧气和氢气。
(2) 表面液相:铝液在铸模表面形成的氧化膜或润滑剂残留等可能导致铝液表面的液相存在,进一步促使气体产生。
(3) 细小颗粒:铝液中存在的颗粒会成为气体生成的核心,进而形成气孔。
2. 夹渣:铝液在充填过程中携带入模型腔内的杂质、氧化物或熔渣等,最终导致铸件内部出现夹杂物。
夹渣的产生原因主要有:(1) 原材料中的杂质:铝合金原材料中可能含有一些杂质,如氧化物、砂粒等。
(2) 熔化过程中的氧化:铝液在高温条件下容易与空气发生氧化反应,形成氧化物。
(3) 流动过程中的杂质:铝液在流动过程中可能带动模具内部的砂粒、润滑剂残留等。
3. 缩孔:铸件内部或者表面出现的凹陷或裂纹。
缩孔的产生原因主要有:(1) 升温不均:铝液升温不均会导致热胀冷缩不一致,从而在铸件内部产生收缩应力,进一步造成缩孔。
(2) 施加过大应力:当铸件过早地受到了外界应力(例如从模型中取出时),铸件内部的温度还没有完全降低,容易产生缩孔。
(3) 金属液体凝固时的收缩:铝合金在凝固过程中会出现一定的收缩,如果凝固过程中支撑不稳定,就会导致缩孔产生。
二、缺陷产生的原因1. 原材料:如果原材料中含有过多的杂质或者粒度过大、成分不均匀等情况,会直接导致铝液在充填模具的过程中产生缺陷。
2. 熔化处理:熔炼过程中的温度不稳定、炉温控制不当,以及熔化时间过长等问题都会导致铝液中含气量增加,从而产生气孔等缺陷。
铸件缺陷的种类产生的原因铸造生产工序繁多,铸件缺陷的种类很多,产生的原因也很复杂。
类别缺陷名称和特征主要原因分析孔洞气孔铸件内部出现的孔洞,常为梨形、球形,孔的内壁较光滑1.砂型和型芯紧实度过高2.型砂太湿,起模、修型时刷水过多3.砂芯未烘干或通气道堵塞4.浇注系统不正确,气体排不出去缩孔铸件厚截面处出现的形状极不规则的孔洞,孔的内壁粗糙缩松铸件截面上细小而分散的缩孔1.浇注系统或冒口设置不正确,无法补缩或补缩不足2.浇注温度过高,金属液收缩过大3.铸件设计不合理,壁厚不均匀无法补缩4.与金属液化学成分有关,铸铁中C、si含量少、合金元素多时易出现缩松砂眼铸件内部或表面带有砂粒的孔洞1.型砂和芯砂强度不够或局部没舂实,掉砂2.型腔、浇注系统内散砂未吹净3.合箱时砂型局部挤坏,掉砂4.浇注系统不合理,冲坏砂型(芯)渣气孔铸件浇注时的上表面充满熔渣的孔洞,常与气孔并存,大小不一,成群集结1.浇注温度太低,熔渣不易上浮2.浇注时没挡住熔渣3.浇注系统不正确,挡渣作用差表面缺陷机械粘砂铸件表面粘附着一层砂粒和金属的机械混合物,使表面粗糙1.砂型舂得太松,型腔表面不致密2.浇注温度过高,金属液渗透力大3.砂粒过粗,砂粒间空隙过大夹砂铸件表面产生的疤片状.金属突起物。
表面粗糙,边缘锐利,在金属片和铸件之间夹有一层型砂1.型砂热湿强度较低,型腔表面受热膨胀后易鼓起或开裂2.砂型局部紧实度过大,水分过多,水分烘干后,易出现脱皮3.内浇道过于集中,使局部砂型烘烤厉害4.浇注温度过高,浇注速度过慢裂纹热裂铸件开裂,裂纹断面严重氧化,呈暗蓝色,外形曲折而不规则冷裂裂纹断面不氧化,并发亮,有时轻微氧化,呈连续直线状1.砂型(芯)退让性差,阻碍铸件收缩而引起过大的内应力2.浇注系统开设不当,阻碍铸件收缩3.铸件设计不合理,薄厚差别大。
渣气孔缺陷原因
1、铁水浇注时流速不稳定,浇注时一开始较慢后续位置方向准确后流速提升。
刚开始浇注时就会有铁流溅到远处形成了豆状,如果后续进入的铁水温度降低后不能融化此铁豆就会形成渣气孔。
2、合箱时发生了掉砂现象,浇注时有了渣子和气体。
解决方案:
1.设计时适当放宽内浇道,减少铁流溅射。
浇注时先
对好位置,尽量不要在浇注过程再调整,控制好流速。
2.合箱时减少掉砂,铁水尽量除渣除干净。
缩孔(缩松)
缩松,缩孔或缩松处晶粒粗大。
常发生在铸件内浇道附近、冒口根部、厚大部位,壁的厚薄转接处及具有大平面的厚薄处。
250经常出现在内平面,可能原因涂料选择不当,不同部位涂料层厚度控制不好。
应调整涂料层厚度,涂料要均匀,涂料脱落而补涂时不可形成局部涂料堆积现象。