安建工 地下水动力学 第一章(xiu)
- 格式:ppt
- 大小:1.23 MB
- 文档页数:54
地下水动力学习题及答案《地下水动力学》习题集第一章渗流理论基础二、填空题1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石和岩洛岩石中运动规律的科学。
通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为骨架。
多孔介质的特点是多相性、孔隙性、连通性和压缩性。
2.地下水在多孔介质中存在的主要形式有吸養丞、薄膜水、毛管水和重力也而地下水动力学主要研究重力水的运动规律。
3.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是空的, 但对贮水来说却是有效的。
4.地下水过水断面包括—空隙_和_固体颗粒一所占据的面积.渗透流速是—过水断上的平均速度,而实际速度是虐隙面积上—的平均速度。
在渗流中,水头一般是指测压管水头,不同数值的等水头面(线)永远止会相交。
5.在渗流场中,把大小等于—水头梯度值方向沿着—等水头西_的法线, 并指向水头—降低—方向的矢量,称为水力坡度。
水力坡度在空间直角坐标系中的a三个分量分别为「& -、6.渗流运动要素包括—流量Q_、_渗流速度丫_、_圧强戸_和—水头也等等。
7.根据地下水渗透速度—矢量方向_与_空间坐标轴_的关系,将地下水运动分为一维、二维和三维运动。
8.达西定律反映了渗流场中的—能量守恒与转换「定律。
9.渗透率只取决于多孔介质的性质,而与液体的性质无关,渗透率的单位为cm?或da。
10.渗透率是表征岩石渗透性能的参数,而渗透系数是表征岩层透水能力的参数,影响渗透系数大小的主要是岩层颗粒大小以及水的物理性质,随着地下水温度的升高,渗透系数增大。
11.导水系数是描述含水层出水能力的参数,它是定义在平面一、二维流中的水文地质参数。
12.均质与非均质岩层是根据—蚩石透水性与空间坐*示_的关系划分的,各向同性和各向异性岩层是根据—卧石透水性与水流方问—关系划分的。
13.渗透系数在各向同性岩层中是—标量在各向异性岩层是—量一。
在三维空间中它由丄个分量_组成,在二维流中则山」个分量_组成。
1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1 弹性释水瞬时完成不随时时间变化 2 重力释水存在滞后效应是时间的函数)3 两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7 渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8 渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头9 地下水头:书十页10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p1111,地下水运动特征的分类p11运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V ,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。
地下水动力学:是研究地下水在孔隙岩石、裂隙岩石和喀什特岩石中运动规律的科学。
多孔介质:具有孔隙的岩石孔隙介质=多孔介质:含有孔隙水的岩层,如砂层或疏松砂岩贮水率:面积为1平方m、厚度为1m的含水层,当水头下降1m时释放的水量。
贮水系数:面积为1个单位,厚度为含水层整个厚度(M)的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量。
渗流:用一假象的水流代替真实的水流,这种假想的水流的性质和真实的地下水相同,但它充满了既包含岩石颗粒所占据的空间,同时,假设这种假想的水流运动时,在任意岩石体积内所受的阻力等于真实水流所受的阻力;通过任意断面的流量及任一点的压力或水头均和实际水流相同。
这种假想的水流称为渗流渗流速度:通过过水断面(A)有一个渗流量(Q)则为渗流速度V水力坡度:大小等于梯度值,方向沿着等水头面的法线指向水头降低方向的矢量Depuit假设:由于坡角θ很小可以用tanθ代替sinθ,意味着假设潜水面比较平缓,等水头面铅直,水流基本水平,可忽略渗流速度垂直分量V。
完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器,并能全面进水的井不完整井:水井没有贯穿整个含水层,只有井底和含水层的部分厚度上能进水水跃:井中水位与井壁水位不一样配线法步骤:1、在双对数坐标纸上绘制W(u)-1/u的标准曲线2、在另一张模数相同的透明双对数纸上实施的s-t/r平方曲线3、将实际曲线置于标准曲线上,在保持对应坐标轴彼此平行的条件下相对平移,直至两曲线重合为止4、任取一匹配点记下匹配点的相应坐标值,代入公式求参数。
地下水向完整井运动的特点:1、在含水层和径向距离的比值r/M<1.5~2.0的区域内,流线有明显的弯曲,而且离不完整井越接近,弯曲越厉害形成三维流区。
在r/M>1.5~2.0的地方,流线近于与层面平行,垂向分速度很小,由三维流过度为平面径向流。
2、不完整井的流量小于完整井的流量3、必须考虑过滤器在含水层中的位置和顶底板对水流状态的影响,如果含水层很厚,则可近似忽略隔水底板对水流的影响,按半无界厚含水层来研究。
第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
第一章渗流理论基础一、解说术语浸透:重力地下水在岩石孔隙中的作用稳固流:渗流因素不随时间的变化而变化。
非稳固流:渗流因素随时间的变化而变化。
弹性释水理论:含水层骨架压密和水的膨胀开释出来的地下水的现象为弹性释水现象,反之为含水层的贮水现象。
重力给水度:在潜水含水层中,当水位下降一个单位时,从单位水平面积的含水层贮体中,因为重力疏干而开释地下水的体积。
1.浸透速度:又称浸透速度、比流量,是渗流在过水断面上的均匀流速。
它不代表任何真切水流的速度,不过一种设想速度。
记为v,单位 m/d。
2.实质速度:孔介质中地下水经过缝隙面积的均匀速度;地下水流经过含水层过水断面的均匀流速,其值等于流量除以过水断面上的缝隙面积,量纲为_L/T 。
记为u。
3.水力坡度:在渗流场中,大小等于梯度值,方向沿着等水头面的法线,并指向水头降低方向的矢量。
4.贮水系数:又称释水系数或储水系数,指面积为一个单位、厚度为含水层全厚度 M的含水层柱体中,当水头改变一个单位时弹性开释或储存的水量,无量纲。
m* = ms M。
5.贮水率:指当水头下降(或上涨)一个单位时,因为含水层内骨架的压缩(或膨胀)和水的膨胀(或压缩)而从单位体积含水层柱体中弹性开释(或贮存)的水量,量纲1/L 。
ms = rg (a+nb)。
6.浸透系数:也称水力传导系数,是表征岩层透水性的参数,影响浸透系数大小的主假如岩石的性质以及浸透液体的物理性质,记为 K。
是水力坡度等于 1 时的浸透速度。
单位: m/d 或 cm/s。
7.浸透率:表征岩层浸透性能的参数;浸透率只取决于岩石的性质,而与液体的性质没关,记为 k。
单位为 cm2或 D。
8.尺度效应:浸透系数与试验范围相关,跟着试验范围的增大而增大的现象, K=K(x) 。
9.导水系数:是描绘含水层出水能力的参数;水力坡度等于1 时,经过整个含水层厚度上的单宽流量;亦即含水层的浸透系数与含水层厚度之积, T=KM。