典型液压系统
- 格式:docx
- 大小:107.57 KB
- 文档页数:12
优秀论文审核通过未经允许切勿外传目录引言............................................................................................................................................正文............................................................................................................................................1.1 液压传动系统的特点.........................................................................................1.2 液压传动应用于汽车起重机上的优缺点 ........................................................2 汽车起重机总体方案设计 ...........................................................................................2.1 传动型式的选定.................................................................................................2.2 动力装置的选定.................................................................................................2.3 起升机构液压油路方案设计 ............................................................................2.4 支臂控制机构液压油路方案设计 ....................................................................2.5 回转机构液压油路方案设计 ............................................................................2.6 支腿机构液压油路方案设计 ............................................................................3 起重机液压系统元件的选择 ......................................................................................3.1汽车起重机液压系统功能、组成和工作特点 ...............................................3.2 典型工况分析及对系统的要求 (1)4 起重机各液压回路组成原理和性能分析 (1)4.1 汽车起重机典型液压系统原理图 (1)4.2 起升回路 (1)4.3 变幅回路 (1)4.4 伸缩回路 (1)4.5 回转回路 (1)4.6 支腿回路 (1)4.7 制动回路 (1)5 起重机液压系统的常见故障及预防 (2)5.1 起重机液压系统的主要故障 (2)5.2 汽车起重机液压系统故障的预防 (2)5.3 起重机液压系统故障的排除 (2)结论 (2)致谢 (2)参考文献 (2)引言汽车起重机是各种工程建筑广泛应用的起重设备,是用来对物料进行起重、运输、装卸或安装等作业的机械设备,在工业和民用建筑中作为主要施工机械而得到广泛运用。
液压系统应用实例及分析液压系统,在工程领域中广泛应用于各种机械设备中,提供了强大的力量和可靠性。
以下是几个典型的液压系统应用实例及分析。
1. 挖掘机挖掘机是一种常见的工程机械设备,其液压系统用于提供机械臂的力量和控制。
液压马达和液压缸驱动机械臂和斗杆的伸缩和旋转运动。
液压系统的主要优势是能够提供足够的力量以应对重工作量,并且具有精确的运动控制,使得挖掘机能够精确地进行各种工作,如挖掘、装载和解体。
2. 压力机压力机是一种用于冷压和热压工艺的设备,液压系统用于提供高压力和精确的压力控制。
液压泵提供高压液体,并通过液压缸将力传递到工作台或模具上。
液压系统可根据需要调整压力和速度,实现产品的压制和形状调整。
液压系统的优势在于其高压力输出和可靠性,使得压力机能够在高负荷条件下进行长时间运行。
3. 汽车制动系统液压制动系统是汽车重要的安全设备,用于控制汽车的制动力和转向力。
制动时,驾驶员通过踩下踏板使液压油压力增加,液压力传递到制动腌盘上的刹车片。
液压制动系统的优势在于其响应速度快、可靠性高、刹车力量可调节。
此外,液压制动系统还能适应各种行驶条件和速度,保证了汽车行驶时的安全性。
4. 风力发电装置风力发电装置中的液压系统常用于调节叶片角度和旋转转速。
液压马达和液压缸用于精确地调整叶片角度,以最大化风力的捕捉效率。
液压系统还能通过调节转子的转速来保护发电机和风力机。
液压系统的主要优势是响应速度快,能够提供精确的动力控制,并且能够适应不同的风力条件,使风力发电装置能够在各种风速下高效运行。
总的来说,液压系统在工程领域中的应用非常广泛,并且在许多机械设备中都能发挥重要的作用。
液压系统具有高压力输出、精确的运动控制和可靠性等优势,能够满足不同应用需求。
随着科技的进步和工程技术的不断发展,液压系统将继续在各个领域中发挥重要的作用,并不断得到改进和创新。
第四章典型液压传动系统实例分析第一节液压系统的型式及其评价一、液压系统的型式通常可以把液压系统分成以下几种不同的型式。
1.按油液循环方式的不同分按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。
(1)开式系统如图4.1所示,开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。
在泵出口处装溢流阀4。
这种系统结构较为简单。
由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。
但因油液常与空气接触,使空气易于渗入系统,导致工作机构运动的不平稳及其它不良后果。
为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。
在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。
工作机构的换向则借助于换向阀。
换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。
图4.1 开式系统但由于开式系统结构简单,因此仍为大多数工程机械所采用。
(2)闭式系统如图4.2所示。
在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。
闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。
工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。
但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。
为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。
一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。
单元七典型液压系统学习目标:1.掌握读懂液压系统图的阅读和分析方法2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点3.掌握YB32-200型压力机液压系统的组成、工作原理和特点4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点5.能绘制电磁铁动作循环表?重点与难点:典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。
本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。
对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。
因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。
1.分析液压系统工作原理图的步骤和方法对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。
2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。
此系统是对单缸执行元件,以速度与负载的变换为主要特点。
要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。
具有快进运动时速度高负载小与工进运动时速度低负载大的特点。
系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。
该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。
3.YB32—200型压力机的液压系统属于锻压机械液压系统的代表,此系统以压力变换为主、功率比大、压力高,属于高压或超高压系统。
压力机工作时要求带动上滑块的液压缸活塞能够自动实现“快速下行—慢速加压一保压延时一泄压—快速回程—原位停止”的动作循环,空程时速度大,加压时推力大;下滑块液压缸要求实现“顶出一退回”的动作循环,有时还需要实现“浮动”功能。
该系统采用高压大流量恒功率变量泵供油,利用活塞自重充液的快速运动回路实现主缸的快速下行,系统的效率高;采用背压阀与液控单向阀组成的平衡回路控制主缸的回油压力,既满足了主缸上滑块的中位平衡要求,又能满足油缸的加压力与变速的需要;采用单向阀的保压回路和用顺序阀的泄压回路保证了主缸回程时压力变化的平稳过渡;采用辅助泵单独为控制路供油,控制油路的油压不受主油路压力变化的影响,从而提高了系统的可靠性;主油缸油路与顶出缸油路串连的设计,使主油缸的动作与顶出缸运动的顺序得到可靠的控制,提高了设备的安全性。
第一节?组合机床动力滑台液压系统液压系统图的阅读和分析方法一、液压系统图的阅读要能正确而又迅速地阅读液压系统图,首先必须掌握液压元件的结构、工作原理、特点和各种基本回路的应用,了解液压系统的控制方式、职能符号及其相关标准。
阅读液压系统图一般可按以下步骤进行:1)全面了解设备的功能、工作循环和对液压系统提出的各种要求。
例如组合机床液压系统图,它是以速度转换为主的液压系统,除了能实现液压滑台的快进→工进→快退的基本循环外,还要特别注意速度转换的平稳性等指标。
同时,要了解控制信号的转换以及电磁铁动作表等,这有助于我们能够有针对性的进行阅读。
2)仔细研究液压系统中所有液压元件及他们之间的联系,弄清各个液压元件的类型、原理、性能和功用。
对一些用半结构图表示的专用元件,要特别注意它们的工作原理,要读懂各种控制装置及变量机构。
3)仔细分析并写出各执行元件的工作循环和相应的油液所经过的路线。
为了便于阅读,最好先将液压系统中的各条油路分别进行编码,然后按执行元件划分读图单元,每个读图单元先看动作循环,再看控制回路、主油路。
要特别注意系统从一种工作状态转换到另一种工作状态时,是由哪些元件发出的信号,又是使哪些控制元件动作并实现的。
二、液压系统图的分析在读懂液压系统图的基础上,还必须进一步对该系统进行一些分析,这样才能评价液压系统优缺点,使设计的液压系统性能不断完善。
液压系统图的分析可考虑以下几个方面:1)液压基本回路的确定是否符合主机的动作要求;2)各主油路之间、主油路与控制油路之间有无矛盾和干涉现象;3)液压元件的代用、变换和合并是否合理、可行;4)液压系统性能的改进方向。
?YT4543型液压动力滑台液压系统一、概述组合机床是一种高效率的专用机床,它由通用部件和部分专业部件组成,其工艺范围广,自动化程度高,在成批和大量生产中得到了广泛的应用。
液压动力滑台是组合机床上的一种通用部件,根据加工要求,滑台台面上可设置动力箱、多油箱或各种用途的切削头等工作部件,以完成钻、扩、铰、镗、刮端面、倒角、铣削及攻丝等工序。
为了缩短加工的辅助时间,满足各种工序的进给速度要求,动力滑台的液压系统必须具有良好的速度换接性能与调速特性。
对组合机床动力滑台液压系统的要求如下:1)在电气和机械装在的配合下,可以根据不同的加工要求,实现多种工作循环,如“快进→工进→快退→原位”或者“快进→工进→二工进→快退→原位”等工作寻呼机。
2)能实现快进和快退,YT4543型的快速运动速度为6.5m/min.3)有较大的工进调速范围,以适应不同工序的工艺要求。
YT4543型的进给范围为6.6-600mm/min。
在变负载或断续负载下,能保证动力滑台进给速度的稳定。
4)进给行程终点的重复位置精度要求较高。
根据不同工艺要求,可选择相应的行程终点控制方法。
5)合理解决快进和工进速度相差悬殊的问题,提高系统效率,减少发热。
6)有足够的承载能力。
YT4543型的最大进给力为45kN。
二、YT4543型动力滑台液压系统工作原理图7-1为YT4543型动力滑台液压系统图。
下面以实现二次工作进给的自动循环为例,说明其工作原理。
1.快进按下启动按钮,电磁铁1YA通电,电液换向阀7的先导阀A位工作,液动换向阀B在控制压力油下将左位接入系统。
进油路:油箱→滤油器1→泵2→单向阀3→阀7→阀11液压缸左腔。
回油路:液压缸右腔→阀7→阀6→阀11→液压缸左腔。
液压缸两腔连通,实现差动快进。
由于快进阻力小,系统压力低,变量泵输出最大流量。
2.第一次工作进给当滑台快进到预定位置时,挡块压下行程阀11,切断快进通道,这时压力油经调速阀8、电磁阀12进入液压缸左腔。
由于液压泵供油压力高,顺序阀5已被打开。
进油路:油箱→滤油器1→泵2→阀3→阀7→阀8→阀12→液压缸左腔。
回油路:液压缸右腔→阀7→阀5→阀4→油箱。
工进时系统压力升高,变量泵自动减小其输出流量,且与一工进调速阀8的开口相适应。
3.第二次工作进给一工进终了时,挡块压下行程开关使3YA通电,这时压力油经调速阀8和9进入液压缸的左腔。
液压缸右腔的回油路线与一工进时相同。
此时,变量泵输出的流量自动与二工进调速阀9的开口相适应。
4.死挡铁停留在滑台以二工进速度行进碰到死挡铁时,滑台即停留在死挡铁处,此时液压缸左腔压力升高,使压力继电器13动作,发出电信号给时间继电器。
停留时间由时间继电器调定。
5.快退停留结束后,时间继电器发出信号,使电磁铁1YA、3YA断电,2YA通电,这时电液方向阀7的先导阀A右位工作,液动换向阀B在控制压力油作用下将右位接入系统。
进油路:泵2→阀3→阀7→液压缸右腔。
回油路:液压缸左腔→阀10→阀7→油箱。
滑台返回时负载小,系统压力下降,变量泵流量自动恢复到最大,且液压缸右腔的有效作用面积较小,故滑台快速退回。
6.原位停止当滑台快退到原位时,挡块压下终点行程开关,使电磁铁2YA断电,电磁阀A和液动换向阀B都处于中位,液压缸两腔油路封闭,滑台停止运动。
这时泵输出的油液经阀3和阀7排回油箱,泵在低压下卸荷。
三、YT4543型动力滑台液压系统的特点1)采用容积节流调速回路,无溢流功率损失,系统效率较高,且能保证稳定的低速运动,较好的速度刚性和较大的调速范围。
在回油路上设置背压阀,提高了滑台运动的平稳性。
把调速阀设置在进油路上,具有启动冲击小、便于压力继电器发讯控制、容易获得较低速度等优点。
2)限压式变量泵加上差动连接的快速回路,既解决了快慢速度相差就悬殊的难题,又使能量利用经济合理。
3)采用行程阀实现快慢速换接,其动作的可靠性、转换精度和平稳性都较高。
一工进和二工进之间的转换,由于通过调速阀8的流量很小,采用电磁阀式换接已能保证所需的转换精度。
4)限压式变量泵本身就能按预先调定的压力限制其最大工作压力,故在采用限压式变量泵的系统中,一般不需要另外设置安全阀。
5)采用换向阀式低压卸荷回路,可以减少能量损耗,结构也比较简单。
6)采用三位五通电液换向阀,具有换向性能好、滑台可在任意位置停止、快进时构成差动连接等优点。
第二节?YB32-200型压力机液压系统一、概述液压机是工业部门广泛使用的压力加工设备,其中那个四柱式液压机最为典型,常用于可塑性材料的压制工艺,如冲压、弯曲、翻边、薄板拉伸等,也可进行校正、压装及粉末制品的压制成形工艺。
对压力机液压系统的基本要求是:1、为完成一般的压制工艺,要求主缸(上液压缸)驱动上滑块实现“快速下行→慢速加压保压延时→快速返回→原位停止“的工作循环;要求顶出缸(下液压缸)驱动下滑块实现”向上顶出→向下退回→原位停止“的工作循环图7-2所示。
2、液压系统中的压力要经常变换和调节,为了产生较大的压制力以满足工作要求,系统的压力较高,一般工作压力范围为10-40Mpa.3、液压系统功率大,空行程和加压行程的速度差异大,因此要求功率利用合理。
4、液压机为高压大流量系统,对工作平稳性和安全性要求较高。