容积节流调速回路
- 格式:doc
- 大小:19.00 KB
- 文档页数:1
2、下图所示液压系统是采用蓄能器实现快速运动的回路,试回答下列问题:(1)液控顺序阀3何时开启,何时关闭?(6分)(2)单向阀2的作用是什么?(4分)(3)分析活塞向右运动时的进油路线和回油路线。
(10分)答:1)当蓄能器内的油压达到液控顺序阀3的调定压力时,阀3被打开,使液压泵卸荷。
当蓄能器内的油压低于液控顺序阀3的调定压力时,阀3关闭。
(6分)2)单向阀2的作用是防止液压泵卸荷时蓄能器内的油液向液压泵倒流。
(4分)3)活塞向右运动时:进油路线为:液压泵1 →单向阀2 → 换向阀5左位→油缸无杆腔。
(6分)蓄能器→ 换向阀5左位→油缸无杆腔。
回油路线为:油缸有杆腔→换向阀5左位→油箱。
(4分)11、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。
(12分)(1)指出液压元件1~4的名称。
(2)试列出电磁铁动作表(通电“+”,失电“-”)。
4 Mpa,阀PJ的调定压力为2 Mpa,回答下列问题:(12分)(1)阀PY是()阀,阀PJ是()阀;(2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为();(3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。
解:(1)溢流阀(2分)、减压阀(2分);(2)活塞运动期时p A=0 (2分);p B=0 (2分)(3)工件夹紧后,负载趋近于无穷大:p A=4MPa(2分);p B=2MPa(2分)。
21、如图所示液压系统,完成如下动作循环:快进—工进—快退—停止、卸荷。
试写出动作循环表,并评述系统的特点。
解:电磁铁动作循环表1Y A 2Y A 3YA 4YA快进+———工进+—+—快退—+——停止、卸荷———+特点:先导型溢流阀卸荷回路卸荷压力小冲击小,回油节流调速回路速度平稳性好,发热、泄漏节流调速影响小,用电磁换向阀易实现自动控制。
23、如图所示液压系统可实现快进—工进—快退—原位停止工作循环,分析并回答以下问题:(1)写出元件2、3、4、7、8的名称及在系统中的作用?(2)列出电磁铁动作顺序表(通电“+”,断电“-”)?(3)分析系统由哪些液压基本回路组成?(4)写出快进时的油流路线?解:(1)2——35DY,使执行元件换向3——22C,快慢速换接4——调速阀,调节工作进给速度7——溢流阀,背压阀8——外控内泄顺序阀做卸荷阀(2)电磁铁动作顺序表(3)三位五通电电液换向阀的换向回路、进口调速阀节流调速回路20.单向行程调速阀的快、慢、快换速回路、差动连接快速回路、双泵供油快速回路图示为某一组合机床液压传动系统原理图。
《液压气动技术》课程形成性考核作业(三)第7章一、填空题1.节流调速回路是由_定量_泵、_溢流_阀、节流阀(或调速阀)和执行元件所组成。
2.用节流阀的进油路节流调速回路的功率损失有_溢流损失_和_节流损失_两部分。
3.在进油路节流调速回路中,确定溢流阀的_调定压力_时应考虑克服最大负载所需要的压力,正常工作时溢流阀口处于_打开_状态。
4.在旁油路节流调速回路中,溢流阀作_安全_阀用,其调定压力应大于克服最大负载所需要的压力,正常工作时,溢流阀处于_关闭_状态。
5.泵控马达容积调速的方式通常有_定量泵-变量马达_、_变量泵-定量马达_、_变量泵-变量马达_三种形式,其中_变量泵-定量马达_为恒转矩调速,_定量泵-变量马达_为恒功率调速。
6.液压缸无杆腔面积A=50cm2,负载F=10000N,各阀的调定压力如图所示,试回答下列问题:(1)活塞运动时,A点的压力值为_2MPa_、B点的压力值为_2MPa _;(2)活塞运动到终点停止时,A点的压力值为_5MPa_、B点的压力值为_3MPa_。
二、判断题1.利用远程调压阀的远程调压回路中,只有当溢流阀的调定压力高于远程调压阀的调定压力时,远程调压阀才能起调压作用。
(√)2.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。
(√)3.压力控制的顺序动作回路中,顺序阀和压力继电器的调定压力应为执行元件前一动作的最高压力。
(×)4.平衡回路的作用在于使回路平衡、保持速度、压力稳定。
(×)5.在采用节流阀的进油路节流调速回路中,其速度刚度与节流阀流通面积A及负载F L 的大小有关,而与油泵出口压力无关。
(×)6.在采用节流阀的回油路节流调速回路中,回油腔压力p2将随负载F L减小而增大,但不会高于液压泵的出口压力。
(×)7.容积调速回路没有节流损失和溢流损失,适用于大功率系统。
(√)8.由限压式变量泵与调速阀(置于进油路)组成的容积节流调速回路中,液压缸进油压力越高,节流损失也越大,则回路效率越低。
第7章液压基本回路•液压基本回路是为了实现特定的功能把有关的液压元件组合起来的典型油路结构;•液压基本回路是组成液压系统的基础。
液压基本回路包括:*压力控制回路*速度控制回路*方向控制回路*多执行元件回路7.1 压力控制回路功能:控制液压系统整体或局部的压力,主要包括:▪调压回路▪减压回路▪增压回路▪卸荷回路▪平衡回路▪保压回路1、调压回路•功能:调定和限制液压系统的压力恒定或不超过某个数值。
•一般用溢流阀来实现这一功能。
•调压回路的分类:•单级调压回路•多级调压回路•无级调压回路先导式溢流阀电液比例溢流阀2、减压回路•功能:使液压系统中某一部分油路的压力低于主油路的压力设定值。
•一般用减压阀来实现这一功能。
•减压回路的分类:•单级减压回路•多级减压回路•无级减压回路3、增压回路•功能:提高系统中局部油路中的压力,使局部压力远高于系统油源的压力。
•单作用增压回路:只能间歇增压。
4、卸荷回路•功能:在执行元件短时间不工作时,不需要频繁启、停原动机,而是使泵源在很小的输出功率下运转。
•卸荷的实质:使液压泵的输出流量或者压力接近于零,分别称为流量卸荷与压力卸荷。
•卸荷方式:•用换向阀中位机能的卸荷回路(压力卸荷)•用先导型溢流阀的卸荷回路(压力卸荷)•限压式变量泵的卸荷回路(流量卸荷)•采用蓄能器的保压卸荷回路换向阀M、H、K型中位机能均可实现压力卸荷限压式变量泵可实现保压卸荷用先导型溢流阀实现的压力卸荷卸荷时采用蓄能器补充泄漏保持液压缸大腔的压力限压式变量泵工作原理及特性曲线5、平衡回路•功能:使承受重力作用的执行元件的回油路保持一定背压,以防止运动部件在悬空停止期间因自重而自行下落,或因自重而超速失控。
采用单向顺序阀不可长时间定位采用液控单向阀定位可靠单向节流阀用于平稳下行6、保压回路•功能:使系统在执行元件不动或仅有微小位移的工况下保持稳定的压力。
•保压性能有两个指标:保压时间和压力稳定性。
电接触式压力表4监视预设压力的上下限值,控制换向阀2动作,液控单向阀3实现保压蓄能器保压卸荷回路7.2 速度控制回路控制与调节液压执行元件的速度。
11.1.3进气节流调速回路与排气节流调速回路特性速度控制是指通过对流量阀的调节,达到对执行元件运动速度的控制。
因气动系统使用功率不大,故调速方法主要有节流调速,常常使用排气节流调速。
一、进气节流调速回路进气节流调速回路:把节流阀放在空气压缩机与气缸之间,通过改变进气量大小来实现调速,实际回路如下图。
图1 进气节流调速回路图1为进气节流调速回路。
在图示位置时,当气控换向阀不换向时,进入气缸A腔的气流流经节流阀,B腔排出的气体直接经换向阀快排。
该回路通过调节节流阀口的开度来实现进气量的变化,以调节气缸运动速度,当节流阀开度较小时,由于进入A腔的流量较小,压力上升缓慢。
当气压达到能克服负载时,活塞前进,此时A腔容积增大,结果使压缩空气膨胀,压力下降,使作用在活塞上的力小于负载,因而活塞就停止前进。
待压力再次上升时,活塞才再次前进。
这种由于负载及供气的原因使活塞忽走忽停的现象,叫气缸的“爬行”。
节流供气多用于垂直安装的气缸的供气回路中。
二、排气节流调速回路排气节流调速回路:把节流阀放在气缸出口处,通过改变排气量的大小来实现调速。
排气节流调速回路因为有一定的背压,所以运动相对平稳,但是启动时有前冲现象。
图2 排气节流调速回路图2为排气节流调速回路,在图示位置时,当气控换向阀不换向时,气流直接进入气缸A腔,B腔排出的气体经节流阀回到换向阀,该回路通过调节节流阀口的开度来实现排气量的变化,同时给气缸排气口有一个背压,以调节气缸运动速度。
排气节流调速回路具有下述特点:1. 气缸速度随负载变化较小,运动较平稳;2. 能承受与活塞运动方向相同的负载(反向负载)。
三、两种调速回路选用原则进气节流调速回路选用原则:由于进气节流调速回路主要靠压缩空气的膨胀使活塞前进,故这种节流方式很难控制气缸的速度达到稳定。
一般用于单作用气缸、夹紧缸和低摩擦力气缸等速度控制。
排气节流调速回路选用原则:由于排气节流调速回路可以使气缸活塞运行稳定,是最常用的回路,故排气节流应该用于双作用气缸。
(完整版)液压原理基本知识液压基本回路本章提要:本章主要介绍前⾯讲述的换向回路、锁紧回路、调压回路、减压回路等以外的液压基本回路,这些回路主要包括:快速运动回路(差动液压缸连接的快速运动回路,双泵供油的快速运动回路);调速回路,包括节流调速回路(进油路节流调速,回油路节流调速,旁路节流调速)和容积调速回路(变量泵-定量马达,定量泵-变量马达,变量泵-变量马达);同步回路(机械连接的同步回路,调速阀的同步回路,串联液压缸、串联液压马达的同步回路);顺序回路(⾏程控制的顺序回路,压⼒控制的顺序回路);平衡回路和卸荷回路等。
教学内容:本章介绍了液压系统的基本回路:快速运动回路、调速回路(节流调速和容积调速回路)、同步回路、顺序回路、平衡回路和卸荷回路等。
教学重点:1.液压基本回路;2.节流调速回路⼯作原理和主要参数计算;3.容积调速回路的⼯作原理和主要参数计算。
教学难点:1.节流调速回路⼯作原理和主要参数计算;2.容积调速回路的⼯作原理和主要参数计算。
教学⽅法:课堂教学为主,充分利⽤⽹络课程中的多媒体素材来表⽰抽象概念,利⽤实验,连接元件,组成系统,了解液压系统基本回路⼯作原理。
教学要求:掌握液压基本回路;了解节流调速回路、容积调速回路的⼯作原理和主要参数计算。
任何⼀个液压系统,⽆论它所要完成的动作有多么复杂,总是由⼀些基本回路组成的。
所谓基本回路,就是由⼀些液压元件组成的,⽤来完成特定功能的油路结构。
例如第五章讲到的换向回路是⽤来控制液压执⾏元件运动⽅向的,锁紧回路是实现执⾏元件锁住不动的;第六章讲到的调压回路是对整个液压系统或局部的压⼒实现控制和调节;减压回路是为了使系统的某⼀个⽀路得到⽐主油路低的稳定压⼒等等。
这些都是液压系统常见的基本回路。
本章所涉及到的基本回路包括速度控制回路、调压回路、同步回路、顺序回路、平衡回路、卸荷回路等。
熟悉和掌握这些基本回路的组成、⼯作原理及应⽤,是分析、设计和使⽤液压系统的基础。
《液压与气压传动》试题A考试形式:闭卷答题时间: 90 分钟本卷面成绩占课程成绩 100%(所有答案必须写在答题纸上、标清题号)一、填空题(每填对1空1分,共50分)1、液压系统由元件、元件、元件、元件和元件五部分组成。
液压系统中的压力取决于(),执行元件的运动速度取决于()。
动力执行控制辅助传动介质、负载、系统流量2.液流流经薄壁小孔的流量与的一次方成正比,与的1/2次方成正比。
通过小孔的流量对不敏感,因此薄壁小孔常用作可调节流阀。
通过固定平行平板缝隙的流量与()一次方成正比,与()的三次方成正比,这说明液压元件内的()的大小对其泄漏量的影响非常大。
(小孔通流面积;压力差;温度、压力差;缝隙值;间隙)3.液体在管道中流动时有两种流动状态,一种是,另一种是。
区分这两种流动状态的参数是。
理想液体是指假设既又的液体。
层流、紊流、雷诺数、无粘性、不可压缩4.由于流体具有(),液流在管道中流动需要损耗一部分能量,它由()损失和()损失两部分组成。
在液压系统中,当压力油流过节流口、喷嘴或管道中狭窄缝隙时,由于会急剧增加,该处将急剧降低,这时有可能产生气穴。
粘性、沿程压力损失、局部压力损失、流速、压力5.液压马达把能转换成能,输出的主要参数是和。
变量泵是指()可以改变的液压泵,常见的变量泵有( )、( )、( )其中()和()是通过改变转子和定子的偏心距来实现变量,()是通过改变斜盘倾角来实现变量。
液压、机械、压力、流量、流量、单作用叶片泵、径向柱塞泵、轴向柱塞泵;单作用叶片泵、径向柱塞泵;轴向柱塞泵6.液压泵的容积效率是该泵流量与流量的比值。
液压泵的实际流量比理论流量();而液压马达实际流量比理论流量()。
实际流量、理论流量,小,大7.液压缸的泄漏主要是由和造成的。
齿轮泵产生泄漏的间隙为()间隙和()间隙,此外还存在()间隙,其中()泄漏占总泄漏量的80%~85%。
外啮合齿轮泵中,最为严重的泄漏途径是。
压力差间隙、端面、径向;啮合;端面、轴向间隙。
液压与气压传动模拟卷 A一、画出下列图形符号1.单向顺序阀2.双作用卸荷式叶片泵3.气动三联件4.梭阀5.三位四通(M型中位机能)电磁换向阀二、名词解释1.液体的粘性:液体在外力作用下流动时,分子间内聚力的存在使其流动受到牵制,从而沿其界面产生摩擦力,这一特性称为液体的粘性。
2.恒定流动:如果空间上的运动参数压力P、速度V、密度 在不同的时间内有确定的值,即它们只随空间点坐标的变化而变化,不随时间t变化,对液体的这种运动称为恒定流动。
3.差动连接:单杆活塞缸在其左右两腔都接通高压油时称为“差动连接”4.中位机能:换向阀处于常态位置时,阀中各油口的连通方式,对三位阀即中间位置各油口的连通方式,称为中位机能。
5.困油现象:封闭腔容积的减小会使被困油液受挤压并从缝隙中挤出而产生很高的压力,油液发热,并使机件(如轴承等)受到额外的负载;而封闭腔容积的增大双会造成局部真空,使油液中溶解的气体分离,产生气穴现象。
这些都将使泵产生强烈的振动和噪声。
这就是齿轮泵的困油现象。
三、填空1.液压传动与气压传动系统是由能源装置,执行装置,控制调节装置,辅助装置,等组成的;其中能源装置,执行装置为能量转换装置。
2.液体的流动状态分为层流,湍流,用雷诺数来判断。
光滑金属管道其临界雷诺数为2000~2320 。
3溢流阀在液压系统中的作用是稳压,调压,限压,。
4.调速回路主要有节流调速回路,容积调速回路,容积节流调速回路。
5.容积式液压泵吸油时密闭容积由小变大,压油时由大变小;外啮合齿轮泵位于轮齿逐渐脱离啮合的一侧是吸油腔,进入啮合的一侧是压油腔。
6.液压泵的实际流量比理论流量小,液压马达实际流量比理论流量大。
7.在变量泵---变量马达调速回路中,为了在低速时获得较大的输出转矩,高速时获得较大功率,往往在低速段,先将变量马达调至最大,用变量泵调速;而在高速段,将变量泵调至最大,用变量马达调速;四、选择题1.流量流量连续性方程是( C )在流体力学中的表达形式,而伯努利方程是( A )在流体力学中的表达形式。
《设备控制基础》课程教案学习单元2 液压基本回路认识及典型设备液压系统分析2.1 液压基本回路认识授课内容:1. 理解分析压力控制回路的构成和运行原理2. 理解分析速度控制回路的构成和运行原理3. 理解分析方向控制回路的构成和运行原理1压力控制回路引导问题:请同学们通过对压力控制回路的学习并查阅相关资料以及教师讲解,分析以下问题:1.压力控制回路是如何进行分类的?其主要功能有哪些?2.调压回路的构成和工作原理是怎样的?3.卸荷回路的构成和工作原理是怎样的?4.增压回路的构成和工作原理是怎样的?5保压回路的构成工作原理是怎样的?6平衡回路的构成和工作原理是怎样的?1.1单级和多级调压回路的构成和运行原理当液压系统工作时,液压泵应向系统提供所需压力的液压油,同时,又能节省能源,减少油液发热,提高执行元件运动的平稳性,所以,应设置调压或限压回路。
当液压泵一直工作在系统的调定压力时,就要通过溢流阀调节并稳定液压泵的工作压力。
在变量泵系统中或旁路节流调速系统中用溢流阀(当安全阀用)限制系统的最高安全压力。
当系统在不同的工作时间内需要有不同的工作压力,可采用二级或多级调压回路。
1.单级调压回路通过调节溢流阀的压力,可以改变泵的输出压力。
当溢流阀的调定压力确定后,液压泵就在溢流阀的调定压力下工作。
从而实现了对液压系统进行调压和稳压控制。
2.二级调压回路3.多级调压回路1.2单级和多级减压回路的构成和运行原理当泵的输出压力是高压而局部回路或支路要求低压时,可以采用减压回路,最常见的减压回路为通过定值减压阀与主油路相连。
1.3增压回路的构成和运行原理如果系统或系统的某一支油路需要压力较高但流量又不大的压力油,而采用高压泵又不经济,或者根本就没有必要增设高压力的液压泵时,就常采用增压回路,这样不仅易于选择液压泵,而且系统工作较可靠,噪声小。
增压回路中提高压力的主要元件是增压缸或增压器。
1.4卸荷回路的构成和运行原理液压泵的卸荷有流量卸荷和压力卸荷两种,前者主要是使用变量泵,使变量泵仅为补偿泄漏而以最小流量运转,此方法比较简单,但泵仍处在高压状态下运行,磨损比较严重;压力卸荷的方法是使泵在接近零压下运转。
回路用变量液压泵供油,用调速阀或节流阀改变进入液压缸的流量,以实现工作速度的
调节,并使液压泵的供油量与液压缸所需的流量相适应,这种回路叫容积节流调速回路。调
节调速阀的节流口,使之通过Q1的流量,这时如果变量泵的输出流量Q大于Q1,则调速阀
的入口压力就会升高。由限压式变量泵的流量——压力特性曲线可知,当压力超过p限值后,
液压泵的流量就会自动变小,直至Q=Q1为止,即液压泵的输出流量与系统所需流量相适应,
因此工作部件的运动速度可由调速阀调节。
这种回路的特点是:
(1)由于没有多余的油液溢回油箱,所以它的效率比定量泵节流调速效率高,发热少。
(2)由于采用了调速阀,其速度稳定性比容积调速回路好。