现代密码学-分组密码DES
- 格式:ppt
- 大小:310.00 KB
- 文档页数:30
第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
课程名称现代密码学实验实验项目名称 DES算法【实验目的】1.理解对称加密算法的原理和特点。
2.理解DES算法的加密原理。
【实验环境】1.实验人数:每组2人2.系统环境:Windows3.网络环境:交换网络结构4.实验工具:VC++6.0、密码工具【实验原理】一.对称密钥加密机制对称密钥加密机制即对称密码体系,也称为单钥密码体系和传统密码体系。
对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。
对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。
同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。
发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。
图1描述了对称密码(传统密码)系统原理框架,其中M表示明文;C表示密文;E表示加密算法;D表示解密算法;K表示密钥;I表示密码分析员进行密码分析时掌握的相关信息;B表示密码分析员对明文M的分析和猜测。
图1 传统密码系统原理框架图对称密码体系的优点:●加密效率高,硬件实现可达每秒数百兆字节(软件实现略慢一些)。
●密钥相对比较短。
●可以用来构造各种密码机制。
●可以用来建造安全性更强的密码。
对称密码体系的缺点:●通信双方都要保持密钥的秘密性。
●在大型网络中,每个人需持有许多密钥。
●为了安全,需要经常更换密钥。
二.DES加密算法简介1973年5月15日,美国国家标准局在联邦注册报上发表一则启事,公开征集用来保护传输和静止存储的计算机数据的密码算法,这一举措最终导致了数据加密标准DES的出现。
DES采用分组乘积密码体制,它是由IBM开发的,是对早期Lucifer密码体制的改进。
DES 在1975年3月17日首次在联邦记录中公布,而且声明对此算法征求意见。
到1977年2月15日拟议中的DES被采纳为“非密级”应用的一个联邦标准。
现代密码的主要分类密码是信息安全领域中最基本的保护手段之一。
在现代密码学中,密码被分为多个分类,每种分类都具有不同的特点和应用场景。
下面将介绍现代密码的主要分类。
1. 对称密码对称密码也被称为私钥密码,是最常见的密码类型之一。
在对称密码中,加密和解密使用相同的密钥。
这意味着发送方和接收方需要共享同一个密钥,才能进行加密和解密操作。
对称密码的优势在于加密解密速度快,但其密钥管理与分发会带来一定的安全风险。
常见的对称密码算法有DES、AES和3DES等。
2. 公钥密码公钥密码也被称为非对称密码,是另一种常见的密码类型。
在公钥密码系统中,加密和解密使用不同的密钥。
发送方使用接收方的公钥进行加密,而接收方使用自己的私钥进行解密。
公钥密码的优势在于密钥管理方便,不需要事先共享密钥。
常见的公钥密码算法有RSA、ElGamal和ECC等。
3. 哈希算法哈希算法是一种将任意长度的数据转换为固定长度摘要的密码技术。
它常被用于验证数据的完整性和一致性。
哈希算法的特点是不可逆,即无法通过摘要反推原始数据。
常见的哈希算法有MD5、SHA-1和SHA-256等。
4. 消息认证码(MAC)消息认证码是一种基于密钥的密码操作,用于验证消息的完整性和来源。
它通过对消息进行加密和生成消息验证码来实现身份验证和防篡改功能。
常见的消息认证码算法有HMAC和CMAC等。
5. 数字签名数字签名是一种通过非对称密码算法,为文档或数据附加一个唯一的标记来验证发送方身份和消息完整性的技术。
数字签名可以防止篡改和抵赖,并且不需要发送方和接收方共享密钥。
常见的数字签名算法有RSA和DSA等。
6. 流加密和分组加密流加密和分组加密是对称密码算法的两种不同方式。
在流加密中,数据按位或按字节加密。
流加密的特点在于加密和解密速度快,适用于实时数据传输。
而分组加密将数据分成固定长度的块进行加密处理。
常见的分组加密算法有DES和AES 等。
7. 转身密码置换密码是一种基于置换的加密技术,通过改变数据中的位置或次序来加密数据。
DES算法的详细分析DES(Data Encryption Standard)是一种对称加密算法,是美国联邦政府使用的加密标准。
它采用了分组密码的方式对数据进行加密和解密处理。
本文将对DES算法进行详细分析,涵盖算法原理、加密过程、密钥生成、弱点以及DES的安全性评估等方面。
1.算法原理:-将明文数据分成64位的分组,使用64位密钥进行加密。
-密钥通过密钥生成算法进行处理,生成16个48位的子密钥。
-明文分为左右两半部分,每轮加密时,右半部分与子密钥进行逻辑运算,并与左半部分进行异或操作。
-运算结果作为下一轮的右半部分,左半部分不变。
循环16轮后得到密文。
2.加密过程:-初始置换(IP):将64位明文按照预定的规则进行位重排。
-分为左右两半部分L0,R0。
-通过16轮的迭代过程,每轮使用不同的48位子密钥对右半部分进行扩展置换(E盒扩展),与子密钥进行异或操作,再通过S盒代换和P 盒置换输出。
-将经过迭代的左右两半部分进行交换。
-最后经过逆初始置换(IP^-1)后输出64位密文。
3.密钥生成:-密钥生成算法从初始64位密钥中减小奇偶校验位,然后使用置换选择1(PC-1)表对密钥进行位重排,得到56位密钥。
-将56位密钥分为两部分,每部分28位,并进行循环左移操作,得到16个48位的子密钥。
4.弱点:-DES算法的密钥长度较短,只有56位有效位,容易受到穷举攻击。
-由于DES算法设计时的数据量较小,运算速度较快,使得密码破解更加容易。
-DES算法对明文的局部统计特性没有进行充分的打乱,可能导致部分明文模式的加密结果不够随机。
5.DES的安全性评估:-DES算法的弱点导致了它在现代密码学中的安全性问题,已经不再适用于高强度加密要求的场景。
- 美国国家标准与技术研究所(NIST)发布了Advanced Encryption Standard(AES)来替代DES作为加密标准。
-DES算法可以用于低安全性需求的领域,或作为加密算法的组成部分。
分组密码和对称密码
分组密码和对称密码是密码学中两个重要的概念。
它们用于保护数据的机密性和完整性,广泛应用于各个领域,如通信、电子商务和数据存储等。
分组密码是一种基于分组加密算法的密码系统。
它将明文分成固定长度的块,并通过应用密钥来加密每个块。
典型的分组密码算法包括DES(数据加密标准)和AES(高级加密标准)。
DES采用64位块长度,AES则支持128位、192位和256位的块长度。
分组密码的加密过程包括初始置换、轮数迭代、逆初始置换等步骤,通过多轮的迭代加密,实现了更高的安全性。
对称密码,又称为单密钥密码或共享密钥密码。
它使用相同的密钥进行加密和解密操作。
在对称密码中,加密和解密的算法是对称的,因此也被称为对称密码算法。
常见的对称密码算法有DES、AES、RC4等。
对称密码的加密速度较快,适用于大规模数据的加密和解密。
然而,由于密钥的共享性,对称密码在密钥管理和分发方面存在一些挑战。
分组密码和对称密码在保护数据安全方面发挥着重要作用。
它们通过加密明文数据,使得未经授权的用户无法获得明文信息。
同时,分组密码和对称密码还可以保护数据的完整性,通过加密算法生成的摘要信息,可以验证数据在传输和存储过程中是否发生了篡改。
总之,分组密码和对称密码是密码学中常用的加密算法,它们通过应用不同的加密方式和算法,保护了数据的机密性和完整性。
在实际应用中,我们需要根据具体的需求和安全级别选择合适的密码算法,以确保数据的安全性。
1973年5月15日,美国国家标准局(现在美国国家标准技术研究所(NIST)在联邦注册报上发表一则启事,公开征集用来保护传输和静止存储中的计算机数据的密码算法,这一举措最终导致了数据加密标准DES的出现。
DES采用分组乘积密码体制,它是由IBM开发,是对早期被称为Lucifer 密码体制的改进。
DES在1975年3月17日首次在联邦记录中公布,而且声明对比算法征求意见。
到1977年2月15日拟议中的DES被采纳为“非密级”应用的一个联邦标准。
最初预期DES作为一个标准只能使用10~15年,然而,出于种种原因,可能是DES还没有受到严重的威胁,事实证明了DES要长寿得多。
在其被采用后,大约每隔5年被评审一次。
DES的最后一次评审是在1999年1月。
但是,随着计算机计算能力的提高,由于DES的密钥过短,仅有56位,对DES的成功攻击也屡见报端。
例如:1999年1月,RSA数据安全公司宣布:该公司所发起的对56位DES的攻击已经由一个称为电子边境基金(EFF)的组织,通过互联网上的100000台计算机合作在22小时15分钟内完成。
在这种情况下,对于替代DES的要求日益增多。
最终,NIST于1997年发布公告,征集新的数据加密标准作为联邦信息处理标准以代替DES。
新的数据加密标准称为AES,关于AES的讨论将放在后面的4.5节。
尽管如此,DES的出现是现代密码学历史上非常重要的事件。
它对于我们分析掌握分组密码的基本理论与设计原理仍然具有重要的意义。
4.1.1DES算法描述DES是一个16轮的Feistel型结构密码,它的分组长度为64比特,用一个56比特的密钥来加密一个64比特的明文串,输出一个64比特的密文串。
其中,使用密钥为64比特,实用56比特,另8位用作奇偶校验。
加密的过程是先对64位明文分组进行初始置换,然后分左、右两部分分别经过16轮迭代,然后再进行循环移位与变换,最后进行逆变换得出密文。
加密与解密使用相同的密钥,因而它属于对称密码体制。
des算法密文长度
DES算法是一种对称密钥密码算法,其密文长度为标题。
DES算法是一种经典的加密算法,广泛应用于网络安全和数据保护领域。
DES算法采用了分组密码的方式,将明文分成固定长度的块,然后对每个块进行加密。
DES算法的核心是轮函数,通过重复应用轮函数来实现加密和解密的过程。
在DES算法中,密钥长度为56位,但实际上只有48位用于加密过程中的轮函数。
DES算法的加密过程包括初始置换、16轮迭代和最终置换。
初始置换将明文块进行重排,最终置换将加密后的数据重新排列。
DES算法的安全性来自于其密钥长度和迭代次数。
由于DES算法的密钥长度较短,因此可以通过枚举所有可能的密钥来进行破解。
为了增强DES算法的安全性,通常会采用三重DES算法(3DES),即对明文进行三次加密。
然而,随着计算机技术的发展,DES算法的密钥长度逐渐变得不安全。
为了应对这一问题,人们逐渐采用了更安全的加密算法,如AES算法。
AES算法是DES算法的继任者,其密钥长度可以是128位、192位或256位,迭代次数也更多。
相比之下,AES算法更加安全可靠,被广泛应用于各个领域。
除了AES算法外,还有其他一些加密算法,如RSA算法、椭圆曲线密码算法等。
这些算法在不同的应用场景下具有不同的优势和特点。
DES算法是一种经典的加密算法,虽然在现代密码学中已经不再安全,但其仍然具有重要的历史意义。
通过了解DES算法,我们可以更好地理解密码学的发展和演变过程,为网络安全提供更好的保护。