主蒸汽参数变化
- 格式:pdf
- 大小:490.18 KB
- 文档页数:5
事故预想方案及处理国能固镇生物发电有限公司汽轮机专业事故处理预想及处理方案批准审核编写:宋民生产部二零一零年十二月十号国能固镇生物发电有限公司汽轮机专业事故预想及处理方案一、油系统着火油系统在运行时有漏油现象,漏油接触热体,透平油燃点约在240℃,当其接触表面温度高于240℃的热体时,就有可能引起火灾;应加强监视,及时处理,并汇报值长,漏出的油应及时擦干净,如无法处理而可能引起着火时,应紧急报告值长,采取果断措施。
1.汽轮机在运行时发现油系统着火时,应根据不同起火点,使用泡沫灭火器,或二氧化碳灭火器,或1211灭火器进行灭火,高温部件不宜使用二氧化碳或1211灭火器。
如火势不能立即扑灭,危及安全运行,应按第一类故障紧急停机。
2.注意不使火势蔓延(如电缆失火),必要时应将设备周围附以沾湿的雨布,照顾机组的转动部分,用一切方法保护机组不受损坏。
3.油系统着火应紧急停机,应按下列步骤1)按照紧急故障停机的操作进行停机。
2)解除电动油泵联锁开关。
3)启动直流电动油泵,维持油压在低限值。
4)采取灭火措施并向上级汇报。
根据下列情况,开足事故放油门。
1)火势危急油箱。
2) 机头及机头平台起火。
3)回油管中着火。
4)注:油系统着火应通知消防队。
4.失火时,汽机主值必须做到1不得擅自离开岗位。
2加强监视运行中的机组。
3准备按照值长命令进行停机操作。
5.汽机运行值班人员应该知道在各种情况下的灭火方法。
1)未浸机油,汽油和其它油类的抹布及木制材料燃烧时可以用水、泡沫灭火和砂子灭火。
2)浸有机油、汽油和其他油类的抹布及木制材料燃烧时,应用泡沫灭火器和砂子灭火。
3)油箱和其它容器中的油着火时,应用灭火剂扑灭,或将油从事故排油管排走。
4)带电的电动机线圈和电缆失火时,应在切断电源后进行灭火,电动机着火时不得使用砂子灭火器,如果电动机冒烟时应迅速停用。
6.预防油系统着火的主要措施1、车间及设备周围应保持整齐清洁,不存放易燃物品;2、设备检修后,渗漏在地面上的油及油棉纱等应及时处理干净,渗油严重的保温层应及时更换;3、靠近蒸汽管道或其他高温设备的高压油管法兰应装设铁皮罩盒。
发电厂汽轮机正常运行的监视探讨[摘要]本文主要对负荷与主蒸汽流量的监视、主蒸汽参数的变化、再热蒸汽参数的监视、真空的监视、胀差的监视等汽轮机运行中的监视进行了探讨。
[关键词]发电厂;汽轮机;运行;监视中图分类号:td152 文献标识码:a 文章编号:1009-914x(2013)10-0055-01汽轮机的运行中要在保证汽轮机正常的条件下,经济安全运行要求的主蒸汽参数。
在电网功率变化时,要确保汽轮机适应电网的最大负荷和最小负荷要采取的技术措施。
在出现异常时,要进行判断处理,对单元机组应作好汽机和锅炉的协调一致。
同时,运行技术人员需对各运行参数实施监视,分析发生变化的原因,及时进行调整,防止超限,力求在经济运行的工况之下;同时,还要通过对设备的定期巡查,把握运行设备的健康状况,发现隐患,做好事故预防,杜绝设备损坏。
若参数出现变化,要检查与其相关的参数变化有无异常,判定此参数的变化本身是否属正常变化,及该项参数变化造成的连锁反应是不是正常。
对汽轮机组的运行中发生的各种报警信号,运行人员要尤其重视采取相应行动。
有时机组的某个项目会发生误报警,对这种缺陷要及时消除,不可轻易把报警停用。
运行技术人员在定期巡回检查中通过眼看、手摸、耳听、鼻嗅等方式检查设备运行状况。
运行技术人员要根据规定的路线和内容进行检查,做到认真细致不漏项。
现代机组的仪表保护装置尽管有了较大的发展,但还不能完全代替现场检查。
不可在违反安全工作规程的条件下进行检查。
1、负荷与主蒸汽流量的监视机组负荷变化的原因:首先,按负荷曲线或调度要求由技术员或调度主动操作;其次,电网频率变化或调节系统故障等造成的。
若负荷变化与主蒸汽流量变化不对应,通常是由主蒸汽参数、真空、抽汽量等变化造成的。
遇到对外供给抽汽量增大较多时,要注意此段抽汽与上一段抽汽的压差是不是太大,防止隔板应力超限、隔板挠度增大,导致动静部件相碰故障。
在机组负荷变化时,对给水箱水位和凝汽器水位要及时检查调整。
主汽温度随主汽压力变化的因果分析摘要:本文从主汽压力变化对总蒸发热量和蒸汽过热热的影响进行分析并通过现场实际运行数据验证,发现在不同的压力阶段中,主汽压力变化对温度的影响是不同的,两者之间存在因果关系。
由于外扰和内扰引起的压力变化压力和温度之间没有因果关系,即此时的温度变化并不完全是压力变化引起的。
通过分析因果关系得出的结论,对采取不同运行方式下的现场机组的汽温精确控制具有指导意义。
关键词:汽压;汽温;总蒸发热;过热热;内扰;外扰。
1 不同压力阶段水蒸气性质的讨论1.1 关于中低压阶段的讨论(P≤3.4MPa)压力在0.2—3.4 MPa范围内不同压力下的汽化热r、总蒸发热qd、过热热qgr,来说明压力变化对三个阶段所需热量变化的影响。
设给水温度20℃,主汽温度为540℃。
每千克20℃的给水定压下加热到干饱和蒸汽,在0.2-3.4MPa压力阶段,随着压力升高,其所需总蒸发热qd是不断增加的,即由0.2MPa时的2623 kJ/kg,增加到3.4MPa时的2718.4 kJ/kg。
每千克干饱和蒸汽定压下加热到540℃,在0.2-3.4MPa压力阶段,随着压力升高,其所需过热热qgr是不断减少的,即由0.2MPa时的867kJ/kg,减少到3.4MPa时的736.4 kJ/kg。
当锅炉压力变化时,汽温有相反的趋势变化,由于压力升高,过热热qgr减少,所以过热蒸汽温度随之上升。
过热汽温变化与压力变化有因果关系。
在此压力阶段,随着锅炉压力升高,因所需总蒸发热qd增加,若要保持蒸发量D不变,必须增加燃料量B,则每千克蒸汽对应的燃料量B/D增加了,致使过热汽温度上升。
当主汽压力上升,若保持燃料量B不变,因所需总蒸发热qd增加,则蒸发量D下降,每千克蒸汽对应的燃料量B/D增加了,致使主汽温度上升。
以上讨论中,B/D的变化是由主汽压力变化引起的,由水蒸气的性质决定的。
综上所述,对于中、低压阶段(P≤3.4MPa),当主汽压力上升时,无论是保持蒸发量D不变或者是保持燃料量B不变,主汽温度都是上升的。
浅谈蒸汽参数对汽轮机运行影响摘要:汽轮机运行时,蒸汽参数在一定范围内波动,在运行上不仅是允许的而且实际上也是难以避免的。
这种波动在允许范围内变化时,只影响汽轮机的经济性,不影响汽轮机机组的安全性,但当这种波动超过偏差允许的范围时,不但会引起汽轮机功率及各项经济指标的变化,还可能使汽轮机通流部分某些零部件的受力状况发生变化,危及汽轮机的安全性。
关键词:蒸汽参数汽轮机运行影响一、主蒸汽温度对汽轮机运行的影晌1、机组运行中,主蒸汽温度降低对汽轮机安全与经济性都是不利的。
一方面由于汽温降低蒸汽的理想熔降减小,排汽湿度增大,效率降低;另一方面,温度降低时若维持额定负荷,则蒸汽的理想流量的增加对末级叶片极为不利。
汽温降低还会使汽轮机各级反动度增加、轴向推力增大。
具体说来:主蒸汽温度下降,可使蒸汽在汽轮机中的熔降减少,要维持原出力会使蒸汽流量增大,汽耗增大,经济性下降。
主蒸汽温度急剧下降,使汽轮机末级的蒸汽湿度增加,加剧了本几级叶片的冲蚀,缩短了叶片的使用寿命。
主蒸汽温度急剧下降,会引起汽轮机各金属部件温差增大,热应力和热变形也随粉增加,且胀差会向负的方向变化,因此机组振动加剧,严重时会发生动、静摩擦。
主蒸汽温度骤降,往往是发生水冲击事故的预兆,会引起轮子轴向推力增加,一旦导致水冲击,则机组就要受到损害.后果极其严重。
2、措施在运行规程中严格地规定了主蒸汽温度允许升高的极限值。
一般允许汽温变化+5℃一-10℃。
当汽温超过规定值时,应及时联系锅炉进行调整,汽机值班入员应加强监视,同时配合做好各项工作。
若调整无效,汽温升高超过规定的最大允许值,应按规程规定紧急停机。
二、主蒸汽压力对汽轮机运行的影响1、主蒸汽压力是单元机组在运行中必须监视和调节的主要参数之一。
汽压的不正常波动对机组的安全、经济性都有很大影响。
主气温度不变,主蒸汽压力升高,机组的末几级的蒸汽湿度增大,使末几级动叶的工作条件恶化,水冲刷加重。
对于高温、高压机组来说,主蒸汽压力升高0.5MP,气湿度增加2%。
一、概述蒸汽减压阀是工业中常见的一种用于调节蒸汽压力的设备,它能够通过减小蒸汽压力来保护工艺设备和管道系统。
而在蒸汽减压阀操作过程中,其前后蒸汽温度的变化是一个重要的参数,对于工程师和操作人员来说,了解这个变化对于设备的安全运行和能效提高至关重要。
本文将探讨蒸汽减压阀前后蒸汽温度的变化计算公式,帮助读者更好地理解和应用这一参数。
二、蒸汽减压阀的基本原理1. 蒸汽减压阀的作用蒸汽减压阀主要用于控制蒸汽的压力,防止蒸汽在管道系统中造成过高的压力,从而保护设备和管道不受过大的压力影响。
2. 蒸汽减压阀的结构蒸汽减压阀主要由阀体、阀芯、弹簧等部件组成,其结构简单紧凑,操作方便。
三、蒸汽减压阀前后蒸汽温度的变化计算公式1. 温度变化原理蒸汽减压阀在减压的过程中会伴随着一定程度的蒸汽冷却,因为过程中蒸汽的压力减小,而温度与压力成正比关系。
在蒸汽减压阀前后蒸汽温度的变化计算中需要考虑这一冷却现象。
2. 蒸汽温度变化的计算公式蒸汽减压阀前后蒸汽温度的变化可以通过以下公式进行计算:ΔT = T1 - T2其中,ΔT为蒸汽温度的变化,T1为蒸汽减压阀前的温度,T2为蒸汽减压阀后的温度。
T1和T2可以通过蒸汽的压力-温度关系表或蒸汽表来查询得到。
3. 蒸汽表的使用蒸汽表是工程师和操作人员在工程实践中常用的资料,它通过记录蒸汽的温度、压力等参数,为工程师提供了便利的查询工具。
通过蒸汽表可以快速准确地找到蒸汽的压力-温度关系,从而计算蒸汽减压阀前后蒸汽温度的变化。
四、案例分析以某工业生产过程为例,假设蒸汽减压阀前的蒸汽温度为180℃,经过蒸汽减压阀后,压力降低,需要计算蒸汽减压阀后的蒸汽温度。
根据蒸汽表查询,蒸汽压力从6MPa降至3MPa时,温度由180℃降至155℃,则根据前文公式:ΔT = T1 - T2ΔT = 180℃ - 155℃ = 25℃蒸汽减压阀后的蒸汽温度为155℃。
五、结论蒸汽减压阀是工业生产中常见的重要设备,了解蒸汽减压阀前后蒸汽温度的变化对于设备的安全运行和能效提高至关重要。
蒸汽的焓值与温度对照表蒸汽是一种非常重要的物质,广泛应用于工业生产、能源转换、热力学实验等领域。
在蒸汽的研究中,焓值与温度是两个非常重要的参数。
本文将介绍蒸汽的焓值与温度对照表,以及它们在各种应用中的重要性。
一、蒸汽的焓值焓值是指单位质量物质在恒定压力下发生一定变化时所吸收或放出的热量。
蒸汽的焓值可以通过实验测量或计算得到。
在实验测量中,可以通过加热水来产生蒸汽,并测量加热水和蒸汽之间的温度差,从而计算出蒸汽的焓值。
在计算中,可以利用热力学公式和蒸汽的物理性质来计算蒸汽的焓值。
下表是蒸汽的焓值与温度对照表:温度(℃)t焓值(kJ/kg)-100t-259.5-80t-246.5-60t-233.5-40t-220.5-20t-207.50t-194.720t-181.940t-169.060t-156.180t-143.1 100t-130.2 120t-117.3 140t-104.4 160t-91.4 180t-78.5 200t-65.6 220t-52.6 240t-39.7 260t-26.8 280t-13.8 300t0.0320t13.1 340t26.0 360t39.0 380t52.0 400t64.9 420t77.9 440t90.9 460t103.9 480t116.9 500t129.9从上表可以看出,蒸汽的焓值随着温度的升高而增加,这是因为蒸汽的分子活动度增强,吸收的热量也增加。
蒸汽的焓值是蒸汽热力学性质的重要参数,它在工业生产和能源转换中有着重要的应用。
二、蒸汽的温度蒸汽的温度是指蒸汽分子的平均动能,它是蒸汽的物理性质之一。
蒸汽的温度可以通过实验测量或计算得到。
在实验测量中,可以利用温度计或热电偶等仪器来测量蒸汽的温度。
在计算中,可以利用蒸汽的物理性质和热力学公式来计算蒸汽的温度。
蒸汽的温度与其压力密切相关,下表是蒸汽的温度与压力对照表:压力(MPa)t温度(℃)0.01t-40.10.02t-23.60.03t-12.00.04t-2.70.05t6.00.06t13.40.07t20.10.08t26.30.09t32.00.10t37.30.11t42.30.12t46.90.14t55.5 0.15t59.5 0.16t63.3 0.17t66.9 0.18t70.4 0.19t73.7 0.20t76.9 0.25t90.4 0.30t104.4 0.35t118.9 0.40t133.9 0.45t149.4 0.50t165.4 0.55t181.9 0.60t198.9 0.65t216.4 0.70t234.4 0.75t252.9 0.80t271.9 0.85t291.4 0.90t311.41.00t353.1从上表可以看出,蒸汽的温度随着压力的升高而升高,这是因为蒸汽的分子动能增加,温度也随之升高。
直流锅炉主蒸汽温度、压力控制肖斌[国电福州发电有限公司]摘要:随着近年来火电机组单机容量不断增大,参数不断增高,如何控制主蒸汽温度和压力成为影响机组安全经济运行的首要问题。
本文从火电厂运行值班员角度分析了主蒸汽温度、压力变化的原因以及控制手段,具有一定的实践指导意义。
关键词:直流锅炉;主蒸汽温度;主蒸汽压力;控制对于直流锅炉而言,主蒸汽温度和主蒸汽压力是其燃烧控制的主要参数,也是影响朗肯循环效率的重要参数,控制好主蒸汽温度和主蒸汽压力对火电机组的安全、经济运行有着十分重要的意义。
一.主蒸汽温度控制主蒸汽温度是锅炉燃烧控制的一项主要参数,温度超温,损坏过热器受热面,影响汽轮机组的寿命及安全性;主蒸汽温度过低,易形成蒸汽带水,对汽轮机组的安全运行造成巨大威胁。
1.燃水比直流炉主蒸汽温度的控制主要依靠控制锅炉的燃水比来实现,燃水比控制是否合适是通过中间点温度来反映的,即我们通常所说的分离器出口温度,在机组控制中通过“过热度”这一参数直观的反映中间点温度,这里的“过热度”是指分离器出口蒸汽温度与分离器压力对应下的蒸汽饱和温度的差值。
维持足够的过热度是保证主蒸汽温度稳定的重要前提,机组正常运行中该过热度一般控制在12-16℃之间。
过热度的调整通过设定偏置值来实现我们期望达到的分离器出口温度,但由于给水系统的响应需要时间,锅炉自动控制系统不能立即调整至设定值,这时候需要运行人员的人为干预进行快速调整和预判调整。
①快速调整主要是通过设定给水流量偏置,以使给水流量快速响应,在短时间内改变给水流量,达到调整燃水比的目的。
此手段较为快捷,对燃水比调节系统的后续扰动也较大,一般作为紧急情况下的干预手段。
②预判调整是指值班员通过调整BTU(热值校正系数)、过热度偏置设定值等手段提前改变燃水比,实现分离器出口温度的稳定,预判的依据是实际入炉燃料量及热值。
当实际入炉燃料量或热值增大或者即将增大时,我们通过上调BTU数值或者减小过热度偏置设定值来减小燃水比,反之亦然。
主汽温大幅下降的原因
主汽温大幅下降的原因可能有多种,以下是一些可能的原因及其简要解释:
1. 锅炉吹灰:在锅炉吹灰的过程中,特别是吹水冷壁时,水冷壁的吸热量增加,导致分离器出口的过热度增加。
为了维持过热度,自动调节系统会增加水,从而增大了水煤比。
这会导致产汽量增加,而给煤量没有变化,使得炉膛的吸热量增加,导致炉膛出口温度降低,烟气温度也随之降低。
由于蒸汽量的增加,对于对流换热来说,出口温度降低,最终过热汽温降低。
2. 一次风机出力不正常或跳闸:一次风机如果出现失速、喘振甚至跳闸的情况,会导致一次风压大幅下降,从而使得磨煤机的出力降低,主汽温度也会大幅走低。
3. 蒸汽压力异常:蒸汽压力过低会导致蒸汽中的热量散失,从而使主蒸汽的温度下降。
蒸汽压力的异常可能是由于蒸汽发生器故障、蒸汽管道泄漏、阀门失效等原因引起的。
4. 燃料供应异常:燃料供应异常也可能导致主蒸汽温度的急剧下降。
例如,当燃料供应不足或中断时,燃烧过程会受到影响,导致主蒸汽温度下降。
5. 进汽量变化:进汽量的突然变化也可能导致汽轮机主蒸汽温度下降。
这可能是由于过热器受到污染或堵塞、锅炉水位突然上升、安全阀突然泄放或调节阀调节不当等原因引起的。
为了应对主汽温大幅下降的情况,可以采取一些处理措施,如调整锅炉的运行参数、检查并修复设备故障、优化燃料供应等。
具体的处理措施需要根据实际情况来确定。
蒸汽在节流过程前后的焓值蒸汽是一种非常重要的工程介质,广泛应用于各个工业领域。
在工程中,蒸汽的热力性质是非常重要的参数之一,它的热力性质与工程过程的热力学计算密切相关。
在本文中,我们将重点讨论蒸汽在节流过程前后的焓值变化。
一、蒸汽的基本性质蒸汽是水在一定温度和压力下的气态形式。
蒸汽的物理性质与温度和压力密切相关。
在常见的工程过程中,蒸汽通常被用作传热介质、动力源和工艺介质等。
蒸汽的热量是其最重要的性质之一,它与蒸汽的温度和压力密切相关。
二、节流过程的热力学特性在工程中,节流过程是一种常见的热力学过程。
节流过程通常指的是在流体通过狭窄通道时,流速增加而压力降低的过程。
这种过程可以用来降低流体的压力,并产生一定的动能。
在节流过程中,流体的焓值会发生变化,这是由于流体的温度和压力发生了变化。
三、蒸汽在节流过程前后的焓值在蒸汽的节流过程中,蒸汽的焓值会发生变化。
蒸汽在节流过程中的焓值变化可以通过热力学计算来确定。
在节流过程前,蒸汽的焓值为H1,节流过程后,蒸汽的焓值为H2。
蒸汽在节流过程中的焓值变化可以表示为:△H = H2 - H1其中,△H表示蒸汽在节流过程中的焓值变化。
四、蒸汽节流过程的热力学计算蒸汽节流过程的热力学计算是一种复杂的计算过程,需要考虑多种因素。
在计算过程中,需要考虑蒸汽的温度、压力、流速等因素,同时还需要考虑节流口的形状和尺寸等因素。
在蒸汽节流过程的热力学计算中,最常用的方法是通过焓值守恒原理来计算蒸汽的焓值变化。
根据焓值守恒原理,蒸汽在节流过程中的焓值变化等于节流口前后的焓值差。
因此,可以通过测量节流口前后的蒸汽参数来计算蒸汽的焓值变化。
在蒸汽节流过程的热力学计算中,还需要考虑蒸汽的状态方程和热力学性质。
通常情况下,蒸汽的状态方程采用理想气体状态方程,蒸汽的热力学性质采用蒸汽表中的数据。
五、结论蒸汽在节流过程前后的焓值变化是一种重要的热力学现象,它与蒸汽的温度、压力和流速等因素密切相关。
直流锅炉的煤水控制与蒸汽参数调节600MW超临界机组的投产标志着我国火电机组的运行水平步入新境界,而直流锅炉也是大容量锅炉的发展方向之一。
众所周知,蒸汽温度过高可能导致受热面超温爆管,而蒸汽温度过低将使机组的经济性降低,严重时可能使汽轮机产生水冲击。
而这些现象在许多电厂均有发生,因此过热蒸汽温度与再热蒸汽温度直接影响到机组的安全性与经济性。
超临界直流锅炉的运行调节特性有别于汽包炉,煤水控制与汽温、汽压调节的配合更为密切。
下面针对襄樊电厂#5、#6机组所采用的SG1913/25.40-M957型号的锅炉,就机组启动至低负荷运行阶段,煤水控制与蒸汽参数调节浅谈一下自己的看法。
机组启动阶段:根据锅炉的型号不同,不同容量的锅炉其转干态直流运行的最低负荷有所不同,一般在25%~35% BMCR 之间,我厂为210MW左右负荷开始转干态,在湿态情况下,其运行方式与强制循环汽包炉是基本相同的。
汽水分离器及集水箱就相当于汽包,但是两者容积相差甚远,集水箱的水位变化速度也就更快。
由锅炉启动疏水泵将集水箱的水打至凝汽器,与给水共同构成最小循环流量。
其控制方式较之其它超临界直流锅炉有较大不同,控制更困难。
给水主要用于控制启动分离器水位,锅炉启动及负荷低于35%BMCR时,且分离器水位在6.2~7.2m之间时,由给水泵出口旁路调门和给水泵的转速共同来控制省煤器入口流量保证锅炉的最小循环流量574t/h,保证锅炉安全运行。
锅炉启动阶段汽温的调节主要依赖于燃烧主要控制,由旁路系统协助控制,通过投退油枪的数量及层次、调节炉前油压、减温水、高低旁的开度等手段来调节主再热蒸汽温度。
此阶段启动分离器水位控制已可投自动,但是大多数锅炉的水位控制逻辑还不够完善,只是单纯的控制一点水位,还没有投三冲量控制,当扰动较大时水位会产生较大的波动,甚至根本无法平衡。
此阶段要注意尽量避免太大的扰动,扰动过大及早解除自动,手动控制,以免造成顶棚过热器进入水。
主蒸汽温度过高或过低对汽机有什么危害!汽温、汽压异常对设备的危害在汽轮机运行中,初终汽压、汽温、主蒸汽流量等参数都等于设计参数时,这种运行工况称为设计工况,此时的效率最高,所以又称为经济工况。
运行中如果各种参数都等于额定值,则这种工况称为额定工况。
目前大型汽轮机组的热力计算工况多数都取额定工况,为此机组的设计工况和额定工况成为同一个工况。
在实际运行中,很难使参数严格地保持设计值,这种与设计工况不符合的运行工况,称为汽轮机的变工况。
这时进入汽轮机的蒸汽参数、流量和凝结器真空的变化,将引起各级的压力、温度、焓降、效率、反动度及轴向推力等发生变化。
这不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性。
所以在日常运行中,应该认真监督汽轮机初、终参数的变化。
1、主蒸汽压力升高当主蒸汽温度和凝结器真空不变,而主蒸汽压力升高时,蒸汽在汽轮机内的焓降增大,末级排汽湿度增加。
主蒸汽压力升高时,即使机组调速汽阀的总开度不变,主蒸汽流量也将增加,机组负荷则增大,这对运行的经济性有利。
但如果主蒸汽压力升高超出规定范围时,将会直接威胁机组的安全运行。
因此在机组运行规程中有明确规定,不允许在主蒸汽压力超过极限数值时运行。
主蒸汽压力过高有如下危害:(1)主蒸汽压力升高时,要维持负荷不变,需减小调速汽阀的总开度,但这只能通过关小全开的调速汽阀来实现。
在关小到第一调速汽阀全开,而第二调速汽阀将要开启时,蒸汽在调节级的焓降最大,会引起调节级动叶片过负荷,甚至可能被损伤。
(2)末级叶片可能过负荷。
主蒸汽压力升高后,由于蒸汽比容减小,即使调速汽阀开度不变,主蒸汽流量也要增加,再加上蒸汽的总焓降增大,将使末级叶片过负荷,所以,这时要注意控制机组负荷。
(3)主蒸汽温度不变,只是主蒸汽压力升高,将使末几级的蒸汽湿度变大,机组末几级的动叶片被水滴冲刷加重。
(4)承压部件和紧固部件的内应力会加大。
主蒸汽压力升高后,主蒸汽管道、自动主汽阀及调速汽阀室、汽缸、法兰、螺栓等部件的内应力都将增加,这会缩短其使用寿命,甚至造成这些部件受到损伤。
主题:电厂主蒸汽调节阀压力的调节方法随着工业发展的进步,电厂的建设和运行越来越重要。
在电厂中,主蒸汽调节阀是控制蒸汽进入涡轮机的关键设备之一。
它负责调节蒸汽的压力,保证涡轮机运行的稳定性和安全性。
掌握主蒸汽调节阀的压力调节方法对电厂的正常运行具有重要意义。
本文将介绍电厂主蒸汽调节阀压力的调节方法,以期为相关从业人员提供一些参考。
1.了解主蒸汽调节阀的结构和原理主蒸汽调节阀是一种用于控制蒸汽压力的阀门设备。
它通常由阀体、阀盖、阀瓣、阀座等部件组成。
在蒸汽压力升高时,阀瓣会向关闭方向移动,减小阀门流通面积,从而降低蒸汽的流量和压力。
相反,当蒸汽压力降低时,阀瓣会向打开方向移动,增大阀门流通面积,提高蒸汽的流量和压力。
了解主蒸汽调节阀的结构和工作原理,有助于根据实际情况进行调节。
2.依据运行实际情况进行调节对于电厂主蒸汽调节阀的压力调节,首先要根据电厂的运行实际情况进行调节。
在不同的负荷和工况下,蒸汽需求和压力要求都有所不同。
需要根据实际情况对主蒸汽调节阀进行相应的调节。
一般来说,可以通过改变阀门的开启度和阀座的位置来控制蒸汽的流量和压力。
3.定期检查和维护主蒸汽调节阀定期的检查和维护是保证主蒸汽调节阀正常工作的重要环节。
电厂工作环境复杂,蒸汽压力和流量变化大,这就要求主蒸汽调节阀具有较高的稳定性和可靠性。
定期对主蒸汽调节阀进行检查,清洁和润滑,及时发现并处理阀门漏气、卡阻、磨损等问题,确保主蒸汽调节阀的正常运行。
4.配合其他设备进行调节在电厂中,主蒸汽调节阀的压力调节不是孤立的,还需要与其他设备配合进行调节。
在蒸汽锅炉和涡轮机之间,还存在着其他调节设备和阀门,这些设备需要协调配合,以保证电厂系统的正常运行。
在进行主蒸汽调节阀的压力调节时,还需要考虑其他设备的影响和配合,做到整个系统的协调运行。
电厂主蒸汽调节阀的压力调节方法非常重要,它直接关系到电厂系统的安全稳定运行。
通过了解设备的结构和工作原理,根据实际情况进行定期的调节和维护,以及与其他设备的配合,才能保证主蒸汽调节阀的正常工作。
浅谈蒸汽参数对汽轮机运行的影响【摘要】当汽轮机运行的时候,蒸汽参数会在一定的范围内不断波动。
这一特点是被允许的,同时也是运动过程中不可避免的。
在运行中产生的这些变化,如果是在允许范围内,只会对汽轮机的经济性产生影响,不会对汽轮机的安全性产生影响。
假如在运行中产生的这种波动超出了允许的范围,不仅会让汽轮机的功率以及其他的经济指标产生较大的变化,也会让汽轮机一些部件的受力状态受到改变,甚至会让汽轮机的安全性受到危机。
【关键词】蒸汽参数影响汽轮机运行1 温度对运行的影响1.1 对汽轮机安全与经济性产生负面影响当机组在运行的时候,如果主蒸汽温度降低了,会对汽轮机安全与经济性产生负面影响。
具体表现在两个方面:第一,因为气温降低,蒸汽的理想熔降减小,从而导致排汽湿度增大,最终降低工作效率。
第二,气温降低的时候,假如要让额定负荷得到维持,那么蒸汽的理想流量增加,这样会对末级叶片产生负面影响。
同时,气温降低会增加汽轮机各级反动度,以及增大轴向推力。
也就是说,当主蒸汽温度下降的时候,会减少蒸汽在汽轮机中的熔降。
1.2 让叶片的使用寿命缩短由于主蒸汽温度快速下降,导致汽轮机末级的燕汽湿度不断增加,从而让叶片的使用寿命缩短。
同时因为主蒸汽温度快速下降,导致汽轮机各金属部件的温差不断增大,也会让热应力和热变形不断增加。
并且,因为产生的胀差会向负的方向变化,所以加剧机组的振动,在振动严重的时候会产生较大的动、静摩擦。
当主蒸汽温度快速下降时,通常预兆会发生水冲击事故,增加轮子轴向推力。
如果产生了水冲击,就会让机组受到较大的损害,产生非常严重的后果。
2 压力对运行的影响2.1 对机组的安全和经济性带来较大的负面影响单元机组在运行过程中,必须要注重主蒸汽压力,这些压力参数需要进行监视和调节。
如果气压不够正常,会对机组的安全和经济性带来较大的负面影响。
如果主汽温度恒定,会导致主蒸汽压力不断上升,那么机组的末几级的燕汽湿度增大。
从而将一种恶化的环境带给末几级动叶,加重水冲刷。