热电厂热力系统计算
- 格式:doc
- 大小:550.07 KB
- 文档页数:14
具有工业及采暖抽汽供热式汽轮机的热电厂原则性热力系统计算热电厂原则性热力系统附图所示,求在计算的供热工况和汽轮机耗汽量0D '下的发电量和全厂各项热经济指标。
已知:1、 汽轮机、锅炉主要特征 (1) 汽轮机机组型式 前苏联 ∏T —135/165-12.75/1.27型 新汽参数 0p =12.75 M a p (130ata), 0t =565℃ 终参数c p =3.4×310- M a p抽汽 七级抽汽,其中第3、6、7为调节抽汽,第3级为工业抽汽。
第6、7级为采暖抽汽功率 额定功率135MW ,最大功率165MW (2) 锅炉型式 自然循环汽包炉 参数b p =13.83 M a p , b t =570℃锅炉效率 b η=0.92 2、 供热抽汽及供热系统第3级工业抽汽调压范围为0.785~1.27 M a p (8~13ata)。
直接向热用户供汽,回水率50%,回至补充水除氧气MD 。
第6、7级采暖汽调压范围分别为0.0588~0.45 Ma p (0.6~2.5ata),0.0392~0.11M a p (0.4~1.2ata)。
经由基载热网加热器(BH1、BH2)和热水锅炉(WB )通过水网热用户供暖。
在凝汽器内装有部分管束,用以预热采暖热网返回水。
网水设计送水温度dsn t =150℃。
3、回热抽汽及回热系统七级回热抽汽分别供三个高压加热器、一个前置式定压给水除氧器HD 和四个低压加热器用汽。
另外还专门设置了大气式补水除氧器MD ,以及保证MD 正常运行设立的补水预热器SW 。
在计算工况下各级抽汽压力、抽汽温度如表所示。
给水温度234℃,给水泵出口压力17.5 Ma p 。
给水在给水泵中理想泵功a puw =186kJ/kg ,给水泵效率pu η=0.8。
1、 计算工况工业热负荷供汽s D =302400kg/h ,3p =1.27 M a p ,回水温度ss t =90℃ ,相应回水焓ss w h ,近似为:90×4。
热电厂供热原理
热电厂供热是指利用热电厂余热进行供热的一种方式。
热电厂是指以燃煤、燃气、燃油等为燃料,通过燃烧产生高温高压蒸汽,再通过汽轮机发电,最后利用发电过程中产生的余热进行供热。
热电厂供热原理主要包括余热回收、余热利用和供热系统三个方面。
首先,热电厂供热原理的核心是余热回收。
在热电厂的发电过程中,燃料燃烧
产生高温高压蒸汽驱动汽轮机发电,同时也会产生大量的余热。
这些余热如果不加以利用就会白白浪费。
因此,热电厂在设计之初就会考虑如何有效地回收这些余热,以提高能源利用效率。
其次,余热利用是热电厂供热原理的关键环节。
热电厂通过余热锅炉、余热汽
轮机等设备,将发电过程中产生的余热进行回收和利用,将余热转化为热水、蒸汽等形式,然后通过管道输送到供热区域,为居民、工业和商业提供热能。
这种方式既充分利用了余热资源,又实现了能源的多元化利用,具有显著的经济和环保效益。
最后,供热系统是热电厂供热原理的重要组成部分。
供热系统包括余热管道、
换热设备、热力站等,通过这些设备将热能从热电厂输送到用户端,实现供热目的。
供热系统的设计和运行直接关系到供热效果和能源利用效率,因此在热电厂供热原理中占据着重要地位。
总的来说,热电厂供热原理是一种高效、环保的供热方式,通过余热回收、余
热利用和供热系统的有机组合,实现了能源的高效利用和供热的可持续发展。
随着我国能源结构的不断优化和清洁能源的不断发展,热电厂供热原理将在未来得到更广泛的应用和推广,为人们的生活和生产提供更加清洁、便捷的热能供应。
热电厂热力过程及效率分析第一部分:热力学基础热电厂是以蒸汽为工质的一个热力系统,因此,对热电厂的分析必须建立在热力学定律及理想热力循环的基础上。
一、热力学的基本概念:1.热力系:在分析热力过程或现象时,常从若干物体中取出需要研究的对象,这被取出的研究对象称为热力系。
热力系可以是元件或设备,也可以是系统或空间。
在同一个大的热力系统中,因研究问题的不同所选择的热力系也不同。
以热电厂为例,可以把锅炉、汽轮机或单独一部分蒸汽管道作为一个热力系研究锅炉运行、汽轮机运行或管道损失问题,也可以把锅炉、管道及汽轮机共同作为一个热力系研究发电供汽过程存在的问题。
外界:热力系以外的物质世界统称为外界或环境;边界:热力系与外界的分界面称为边界;因此热力系即为由界面包围的作为研究对象的物体的总和。
按热力系与外界进行物质、能量交换的情况不同,热力系主要有:闭口系:热力系与外界无物质交换;开口系:热力系与外界之间有物资交换,或者说有物质穿过边界。
按热力系绝热系:热力系与外界无热量交换;孤立系:热力系与外界既无能量交换又无物质交换;2.热力过程与热力循环:2.1概念:热力系状态连续变化的过程称为热力过程。
热力系统过程,称为热力循环。
2.2工程中常见的两类热力循环:P热能动力和制冷装置热机的经济性用热效率衡量,等于净功2 2的热量比,η=W/Q43T热力循环WW热能动力装置 制冷装置二、热力学第一定律:1.第一定律的实质:热力学第一定律是能量守恒与能量转换定律在热力学中的具体体现。
热力学第一定律:在任何发生能量传递和转换的热力过程中,传递和转换的能量的总量保持恒定不变。
“永动机是不可能制造成功的”。
2.热力过程的两种能量传递方式:热力系与外界传递能量的方式有两种:作功和传热。
2.1功:力学中功的定义为物体所受的力与沿力的方向所产生的位移之积。
δW=F.dx在热力学中功的定义为:功是物系间相互作用而传递的能量,当系统完成作功时,其对外界的作用可用在外界举起重物的单一效果来代替。
热电厂火力发电系统热力学特性仿真及优化一、前言热电厂是以燃煤、燃气、核电等作为热源,通过内燃机、蒸汽机等发电机与发电机耦合形成的发电系统。
在热力学方面,热电厂是典型的工程热动力系统。
为了提高热电厂的效率和经济性,必须对其热力学特性进行仿真及优化研究。
二、火力发电系统的热力学特性1.基本概述火力发电系统由燃烧室、锅炉、汽轮机、发电机、冷却塔等组成。
燃烧室负责燃料的燃烧,锅炉负责锅炉炉膛内水的加热,汽轮机负责将锅炉产生的水蒸气驱动转子转动,发电机将转动的机械能转换为电能输出,冷却塔负责将排出的排烟气体和蒸汽冷却。
2.燃料燃烧过程的热力学特性燃料的燃烧是热电厂发电过程中最基本的环节,燃料的燃烧过程产生的热将直接影响锅炉的水蒸气产生和汽轮机的运转。
燃料燃烧过程的热力学特性主要包括燃烧温度、燃烧速率、燃烧效率等。
3.锅炉的热力学特性锅炉是将热能转化为水蒸气的关键设备,其热力学特性主要包括锅炉效率、出口蒸汽压力、蒸汽温度、水的加热速率等。
4.汽轮机的热力学特性汽轮机是将锅炉产生的蒸汽驱动发电机转动的关键设备,其热力学特性主要包括机组效率、汽轮机进汽压力、出汽压力、汽轮机转速等。
5.冷却塔的热力学特性冷却塔是将排放的烟气和水蒸汽冷却的设备,其热力学特性主要包括冷却效率、水的流量、风扇功率等。
三、热电厂系统的仿真及优化1.仿真方法热电厂系统的仿真分为静态仿真和动态仿真。
静态仿真主要用于热电厂的设计阶段,通过计算获得热电厂中各部件的热动力学参数,帮助设计师进行优化设计。
动态仿真主要用于热电厂的运行过程中,可以实时显示热电厂各部件的工作状态和热动力学参数,及时发现和处理异常状况。
2.优化方法热电厂系统的优化主要针对燃烧室、锅炉、汽轮机等部件进行,其优化方法主要包括改善燃烧条件、提高锅炉热效率、改进汽轮机叶轮叶片设计等。
四、优化实例以XX热电厂为例,通过仿真和优化计算,得到了以下的优化结果:1.改善燃烧条件,提高热值利用效率,燃料消耗量降低30%。
一、热电厂能耗计算公式符号说明单位供电标煤耗单位发电标煤耗单位供热标煤耗bg=bd/[1-(ed/100)]bd=(Bd/E)*102Bd=B(1-α)br=(Br/Qr)*103Br=Bαg/kwhg/kwhTKg/GJT4 R热电比R=(Qr/36Eg)*1025η0热效率η0=[(Qr+36Eg)/29.3B]*102(%)二、能耗热值单位换算千焦(KJ)大卡(kcal)1千瓦时(kwh)= 3600kj备注1、吉焦、千卡、千瓦时(GJ、kcal、kwh)1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ1kwh=3600KJ=3.6MJ=3.6×10-3GJ2、标准煤、原煤与低位热值:1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。
Qy=5000kcal/kg=20934KJ/kg1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤:br=B/Q=1/Qyη=1/0.0293η=34.12/η其中:η=ηW×ηg=锅炉效率×管道效率当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ二、热电厂热电比和总热效率计算一、热电比(R):1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。
R=供热量/供电量×100%2、根据热、能单位换算表:1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦)3、统一计量单位后的热电比计算公式为:R=(Qr/Eg×36)×100%式中: Qr——供热量GJ Eg——供电量万kwh4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为:R=(16×104/634×36)×100%=701%二、综合热效率(η0)1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比”η0=(供热量+供电量)/(供热标煤量+供电标煤量)2、根据热、能单位换算表1万kwh=36GJ1kcal=4.1868KJ1kg标煤热值=7000kcal1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ3、统一计量单位后的综合热效率计算公式为η0=[(Qr+36Eg)/(B×29.3)]×100%式中:Qr——供热量GJEg——供电量万kwhB——总标煤耗量t4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为:η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%1. 凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差.2.处于高度真空状态下的凝汽器,无论采用何种方法,总有一些不凝结的气体存在。
660MW凝汽式机组全厂原则性热力系统计算(设计计算)一、计算任务书(一)计算题目国产660MW凝汽式机组全厂原则性热力系统计算(设计计算)(二)计算任务1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数,并在h-s图上绘出蒸汽的气态膨胀线;2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j;3.计算机组的和全厂的热经济性指标;4.绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。
(三)计算类型定功率计算(四)热力系统简介某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。
其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。
全厂的原则性热力系统如图5-1所示。
该系统共有八级不调节抽汽。
其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。
第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为-1.7℃、0℃、-1.7℃。
第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5℃。
气轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。
然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到274.8℃,进入锅炉。
三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。
凝汽器为双压式凝汽器,气轮机排气压力 4.4/5.38kPa。
给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排汽亦进入凝汽器,设计排汽压力为6.34kPa。
锅炉的排污水经一级连续排污利用系统加以回收。
扩容器工作压力1.55Mpa,扩容器的疏水引入排污水冷却器,加热补充水后排入地沟。
热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
(11)进入凝汽器的蒸汽干度,取0.88~0.95。
(12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。
2、原则性热力系统2.1设计热负荷和年持续热负荷曲线根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。
一、热电厂能耗计算公式符号说明单位供电标煤耗单位发电标煤耗单位供热标煤耗bg=bd/[1-(ed/100)]bd=(Bd/E)*102Bd=B(1-α)br=(Br/Qr)*103Br=Bαg/kwhg/kwhTKg/GJT4 R热电比R=(Qr/36Eg)*1025η0热效率η0=[(Qr+36Eg)/29.3B]*102(%)二、能耗热值单位换算千焦(KJ)大卡(kcal)1千瓦时(kwh)= 3600kj备注1、吉焦、千卡、千瓦时(GJ、kcal、kwh)1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ1kwh=3600KJ=3.6MJ=3.6×10-3GJ2、标准煤、原煤与低位热值:1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。
Qy=5000kcal/kg=20934KJ/kg1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤:br=B/Q=1/Qyη=1/0.0293η=34.12/η其中:η=ηW×ηg=锅炉效率×管道效率当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ二、热电厂热电比和总热效率计算一、热电比(R):1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。
R=供热量/供电量×100%2、根据热、能单位换算表:1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦)3、统一计量单位后的热电比计算公式为:R=(Qr/Eg×36)×100%式中: Qr——供热量GJ Eg——供电量万kwh4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为:R=(16×104/634×36)×100%=701%二、综合热效率(η0)1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比”η0=(供热量+供电量)/(供热标煤量+供电标煤量)2、根据热、能单位换算表1万kwh=36GJ1kcal=4.1868KJ1kg标煤热值=7000kcal1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ3、统一计量单位后的综合热效率计算公式为η0=[(Qr+36Eg)/(B×29.3)]×100%式中:Qr——供热量GJEg——供电量万kwhB——总标煤耗量t4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为:η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%1. 凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差.2.3. 2.处于高度真空状态下的凝汽器,无论采用何种方法,总有一些不凝结的气体存在。
发电⼚原则性热⼒系统计算发电⼚原则性热⼒系统计算: 已知条件1. 汽轮机形式和参数制造⼚家:哈尔滨汽轮机⼚型号:N300—16.7/538/538型型式:亚临界、⼀次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮机额定功率: 300MW 最⼤功率: 330MW 初蒸汽参数:=0p 16.67MP a,=0t 538C再热蒸汽参数:冷段压⼒==inrh p p 2 3.653MPa ,冷段温度=in rh t 320.6C 热段压⼒=out rh p 3.288MP a,热段温度=outrh t 538C低压缸排汽参数:=c p 0.0299M Pa ,=ct 32.1C , =c h 2329.8kJ/kg给⽔泵⼩汽轮机耗汽份额:=st α0.0432机组发电机实际发出功率:='e P 300MW给⽔泵出⼝压⼒:=pu p 20.81M Pa凝结⽔泵出⼝压⼒:1.78MPa 机组机电效率: ==g m mgηηη0.98加热器效率: =hη0.99额定排汽量: 543.8t/h给⽔温度:273.6℃冷却⽔温度: 20℃最⾼冷却⽔温度: 34℃额定⼯况时热耗率: (计算)7936.2Kj /KW .h (保证)7955Kj/K W.h 额定⼯况时汽耗率 3.043K g/KW .h 主蒸汽最⼤进汽量: 1025t/h⼯作转速: 3000r/min旋转⽅向:顺时针(从汽轮机向发电机看)最⼤允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/m in噪⾳⽔平: 90db 通流级数: 36级表(1)机组回热加热器参数2. 锅炉形式和参数型号: HG —1025/18.2—Y M11型型式亚临界、⾃然循环、中间⼀次再热、燃煤汽包锅炉、单炉膛紧闭。
最⼤连续蒸发量: =bD 1025t/h过热蒸汽出⼝参数:=b p 18.2M Pa ,=b t 541C再热蒸汽进⼝参数: =in b rh p )(3.92MPa,=inb rh t )(320C再热蒸汽出⼝参数: =o b rh p )( 3.72MP a,=o b rh t )(541C省煤器进⼝给⽔参数: ='fw p 27.5MP a ,='fw t 278.9C ,='fw h 1234.00KJ /kg1D ,1b D ,d D 按《电⼒技术管理法规(试⾏)》的规格选取,即b D D %)5.3~%5.1(1=,b b D D %)5~%1(1=,0%)3~%1(D D d =相应选取结果如下:锅炉连续排污量:bb D D 02.01= 全⼚汽⽔损失:b D D 03.01=⾄锅炉减温⽔量:0015.0D D d =,kg kJ h d /594=解:1. 整理原始数据的计算点汽⽔焓值机组发电机功率='e p 300MW表(2)机组回热系统计算点汽⽔参数根据p ,t 查⽔蒸汽表得新蒸汽焓值kgkJ h /75.33960=,排汽焓值kg kJ h c /8.2329=,kg kJ h in rh/55.3025=,kg kJ h out rh /10.3537= kg kJ h h q inrh out rh rh /55.51155.302510.3537=-=-=2,全⼚物质平衡汽轮机总耗⽓量 0'0DD =锅炉蒸发量b b D D D D D 03.001'0+=+=0030928.1D D b =锅炉给⽔量01051547.102.102.0D D D D D D D b b b b b fw ==+=+=锅炉连续排污量01020619.002.0D D D b b ==未回收排污⽔量 01'1020619.0D D D b b ==补充⽔量11'11051547.005.002.003.003.0D D D D D D D D D b b b b b b ma ==+=+=+= 3,计算回热抽汽系数与凝汽系数(1)⾼压加热器H1: 由H1热平衡式求1α()21111w w h dw h h h h -=?-ηα()()071297.057.109107.313899.092.105437.119911211=--=--=dw h w w h h h h ηαH1的疏⽔系数071297.011==ααd(2)⾼压加热器H2:()()[]32211222w w h d w d w d d w h h h h h h-=?-+-ηαα()()dw d w d w d h w w h h h h h h 22211322----=αηα()()082487.077.89655.302577.89657.1091071297.099.033.86792.1054=--?--=H2的疏⽔系数 153784.0082487.0071297.0212=+=+=αααd d再热蒸汽系数rh α 846216.0153784.01121=-=--=αααrh(3)⾼压加热器H3先计算给⽔泵焓升puw h ?。
热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
(11)进入凝汽器的蒸汽干度,取0.88~0.95。
(12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。
2、原则性热力系统2.1设计热负荷和年持续热负荷曲线根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。
用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。
表2-1 热负荷汇总表折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。
根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。
表2-2 热电厂设计热负荷图2-1 采暖热负荷持续曲线图图2-2 年热负荷持续曲线图2.2装机方案的拟定根据热电厂设计热负荷和建厂条件,热电厂最终规模是50MW以下,由于采暖热负荷占整个热负荷比重一般,所以不建热水网。
采暖用汽和工业用汽同管输送,因此拟定以下装机方案:(见图2-3)2×CC12-4.9/0.98/0.17型双抽汽供热式次高压汽轮机发电机组;1×B12-4.9/0.98型背压供热式次高压汽轮机发电机组;3×75 t/h次高压循环流化床锅炉。
本方案设有三台锅炉,三台汽轮机,主蒸汽系统采用母管制。
背压机组(B12机组)的排汽,一部分作为1号高加的加热用汽,另一部分作为供热汽源。
抽汽机组CC12有3级非调整抽汽和2级调整抽汽,其中第1级调整抽汽和第1级非调整抽汽共用一个抽汽口,第2级调整抽汽和第2级非调整抽汽共用一个抽汽口,第1级调整抽汽做为供热抽汽,第2级调整抽汽做为补充水加热蒸汽。
除氧器加热用汽量是第2级非调整抽汽,除氧器定压运行。
该系统配置减温减压器,保留或新建调峰锅炉,机组供热不足部分先由锅炉的新蒸汽减温减压后提供,再由尖峰锅炉提供。
减温减压器所用的减温水来自给水泵出口。
系统设连排扩容器,扩容蒸汽进入除氧器。
功热蒸汽的凝结水不回收,补充水(生水)由CC12机组的第2级调整抽汽加热后,去化水车间,再去除氧器。
5.4p 450t 3312.9hD b =390189.69D oj =17.80.0D b l =7.83.79图2-3 B12-4.9/0.98 + 2×CC12-4.9/0.98/0.17 + 3×75 t/h 全厂原则性热力系统图2.3汽轮机热力特性资料与原则性热力系统拟定及其计算(一)机组热力特性资料我国常见供热机组的热力特性参见《中小型热电联产工程设计手册》。
本方案CC12额定进气量92 t/h,最大进气量104.4 t/h,第一级调整抽汽量30 ~ 50 t/h,第二级调整抽汽量30 t/h。
本方案的计算原则是,让B12尽量多供热负荷,CC12汽机第二级调整抽汽作热电厂补水加热用汽。
(二)原则性热力系统本方案原则性热力系统见图2-3。
(三)原则性热力系统计算1. 参数级符号说明见表2-3表2-3 参数及符号2. 计算条件计算工况:采暖期最大热负荷工况,此时对应汽轮机最大进气量和最大调整供热抽汽量;设锅炉排污量:D bl = 0.02 D b ;汽水损失量:D 1 = 0.03 D b ;ηh = η'h=0.98。
各效率取值见表2-4。
表2-4 主要效率取值3. 锅炉减温减压供热系统热力计算公式 物质平衡方程 DD Tjwj=+D 0 (a )能量平衡方程03282.85D 518.842907jwTjD D+= (b ) 把(a )式带入(b )式得03282.85D 518.842907jwTjD D+=解得 01.168Tjj DD =(3-62)001.168Tj Tj j j D D D D =-= (3-63) 4. 方案一的计算(1)锅炉汽水流量计算公式 1)锅炉蒸发量)(030928.1)03.01/()(000000D D D D D DD j B j B Cb++=-++=(3-64) 2)锅炉排污量)(020619.002.00001D D D D Dj B b b ++==(3-65) 3)锅炉给水量)(051546.10001D D D D D Dj B b b fw++=+=(3-66) 4) 锅炉扩容排污系统计算 物质平衡方程 DD psfb +=D 1(a )能量平衡方程111790.98D2693467.08b f ps D D =+⨯ (b )把(a )式带入(b )式得0000.0063757()DfB j D D D =++ (3-67)10000.0142428()D psb f B j D D D D D =-=++ (3-68)5)补充水量计算,若不考虑回水D D D D D Dps L Tj TB TC ma++++=)()(030928.103.0)(000D D D D D Dj B C Tj TB TC++⨯+++=0000.0142428()CB j DD D +++(3-69)000()0.0451707()TCTB Tj C B j DD D D D D =+++++(2)B12-4.9/0.98热力系统计算公式 1)B12机高加用汽量计算高加用汽量可分为两部分,一部分由B12汽轮机排气提供,为DB1,另一部分由CC12第一级抽汽提供,为DC1。
假定B12抽汽加热对应的给水量是DoB和CC12一级抽汽加热剩余的给水量,则高加能量平衡方程:100.98(2907711.76) 1.051546(719.67518.84)BB DD ⨯-=⨯-解得高加用汽 100.0981632BB DD =(3-70)2)B12机外供汽量 0100.901837TBB B B DD D D =-= (3-71)3)B12机发电功率(),003282.8529070.857/3.679.868e BB B PD D ⎡⎤=-⨯=⎣⎦(3-72) (3)CC12-4.9/0.98//0.17热力系统计算公式 1)CC12高加用汽量计算 高加能量平衡方程()()()1000.982907711.76719.67518.84 1.051546C CjD D D ⨯-=-⨯+解得高加用汽量 ()1000.098163CCjDD D =+(3-73)2)生水预热器用汽量计算生水预热器的热平衡:计算时考虑20%的化学水处理水量损失。
()()20.982744.69476.54 1.2167.4762.8s maD D ⨯-=⨯-()()20000.0565070.002553sTCTBTjCBjDD D D D D D =+++++(3-74)3)低压加热器用汽量计算公式低压热平衡: ()()()3=3c 0.982693433.07407.68128.65D D D --⨯+ 低加用汽量: D 3=0.144149D c (3-75) 4)除氧器用汽量计算公式 除氧器热平衡()()2bs 2s 113c f fw w 0.982744.69146.5476.54711.76407.682693.11=518.84C B D D D D D D D D ⨯+++++++(D +D )把式(3-69),(3-73),(3-70),(3-67),(3-74),(3-75)带入上式,并整理得()()2=000j 0j j c0.1675630.032406 0.0644760.173413C B TC TB T D D D D D D D D D +++-++-(3-76)5)CC12汽量平衡把式(3-73),式(3-74),式(3-75)带入上式,并整理得0000.7537800.1752440.309750 1.021937 0.008209()C B j TCTB Tj Dc D D D D D D =---++(3-77)6)CC12发电量计算公式()()()()(),12230.829[3282.852*******.852744.69 +3282.852693.94(3282.852308.47)]/3.6e C C TC s C P D D D D D D =⨯-++-+-+-(3-78)整理上式得(),00085.82585229.57784375.64124421.081845 0.987569225.867097e C TC C j B TB Tj cP D D D D D D D =+++-++(3-79)或0000.004427,0.1309520.0933370.379984 0.3348930.004372()C B TCj TB Tj Dc Pe C D D D D D D =----++0C 1C TC 22s 3c D =D +D +D +D +D +D(3-80)代入式(3-77),并整理得0C ,00D =0.0050040.0925780.028419 0.7255900.004337()e C B jTC TB Tj P D D D D D +-+-+(3-81)(4)方案一各部分实际用汽量计算上面推导出来汽机进汽量(D 0)、凝汽量(D c )与发电功率(P e )和供汽量(D T )之间的关系,现将有关数据代入,可计算出方案一在采暖期最大负荷下汽机、锅炉等各部分实际用汽量。