4-2 制动时车轮受力解析
- 格式:ppt
- 大小:1.41 MB
- 文档页数:33
第四章 汽车制动性第二节 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j F F F F F b ++-=(4-1)式中:b F 为汽车地面制动力。
由制动性的定义可知,滚动阻力0f ≈F ;制动时车速较低且迅速降低,即0w ≈F ;坡道阻力0i =F 。
所以,汽车行驶方程式可近似表达为jF F b =(4-2)一、地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。
图4-1 制动时车轮受力条件制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。
其大小为rT F /μμ=(4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。
制动器制动力μF 是由制动器结构参数所决定的。
它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。
从力矩平衡可得地面制动力b F 为rT F /μb =(4-4)地面制动力b F 是使汽车减速的外力。
它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。
图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。
当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。
开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。
此时,μb F F =,且随踏ϕFμxb =板力增加成线性增加。
但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力bmax F ,即⎩⎨⎧==≤zz F F F F F ϕϕϕmax b b (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F =max b ,车轮开始抱死不转而出现拖滑现象。
随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力b F 不再增加。
汽车制动时受力分析1.摩擦阻力的因素汽车在制动过程中,有两个地方会产生摩擦阻力。
一个是车轮制动器产生的摩擦阻力,使车轮转速减慢;另一个是车轮与地面产生摩擦阻力使汽车减速。
前者称制动器制动力,后者称地面制动力,也就是我们车在检测站检测的制动力。
如果制动器产生的摩擦力偶大于轮胎与路面之间的最大摩擦力偶时,车轮即完全停止滚动,也就是车轮被抱死。
在车轮未抱死前,地面制动力始终等于制动器制动力,此时制动器制摩擦力消耗一部份动能(发热),地面制动力消耗一部份动能。
在车轮抱死后,地面制动力等于地面附着力,它不再随制动器制动力的增加而增加,制动器制不再消耗动能(W=FS,∵S=0,∴W=0),只有轮胎与地面摩擦消耗动能。
由于车轮抱死后,纵向附着系数(摩擦力)下降,制动器制也不消耗动能,侧向附着系数趋于0,所以刹车距离也就变长,易产生则滑。
2.前后轴载荷重心变动的因素车辆在静止时,其前后轴的垂直载荷之比仅决定于汽车重心的纵向位置。
但在车辆行驶中制动时,由于作用在重心上的向前的惯性力使汽车俯冲前倾,因而前后轴的垂直载荷比值变大,即前轴载荷加大,而后轴载荷减少;而且制动力越强,惯性力越大,前后轴垂直载荷的比值也越大。
即刹车时前轴荷随加速度变大而增大,后轴荷减少。
年后生产的国产及进口车轿车,前后轴制动力分配按欧共体的ECE R13标准制定,即按“前后轴附着糸数利用曲线”分配比例,不允许有车轮抱死现象,前轴所占总制动力通常为80%,上限为85%。
各种轿车都是按自身的悬挂糸统的动态重心分配特性去设计前后轴制动力分配,原车的前后轴制动力分配是经过各种实验优化定案,提供良好的制动平衡。
根椐北京理工大学做的路试,国产及进口轿车前轴刹车力在800kg-1100kg 以上,后轴最低173kg,最高290kg(满载车重1684kg),路试刹车减速度、距离都符合要求。
实试正实,后轮刹车即使一轮失效,30km/h刹车距离变化很小,不跑偏。