张量分析
- 格式:ppt
- 大小:573.50 KB
- 文档页数:22
张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。
在数学中,张量是一种广义的向量概念。
它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。
例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。
张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。
对于二阶张量,可以用一个矩阵来表示。
张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。
张量的运算包括加法、数乘、内积和外积等。
这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。
在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。
例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。
在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。
在计算机科学中,张量分析可以用于图像处理、模式识别等领域。
张量分析的发展离不开数学家们的努力。
早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。
20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。
随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。
虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。
要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。
此外,也需要具备一定的物理学和工程学的基础知识。
对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。
总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量张量是用来描述矢量、标量和其他张量之间线性关系的几何对象。
这种关系最基本的例子就是点积、叉积和线性映射。
矢量和标量本身也是张量。
张量可以用多维数值阵列来表示。
张量的阶(也称度或秩)表示阵列的维度,也表示标记阵列元素的指标值。
例如,线性映射可以用二位阵列--矩阵来表示,因此该阵列是一个二阶张量。
矢量可以通过一维阵列表示,所以其是一阶张量。
标量是单一数值,它是0阶张量。
张量可以描述几何向量集合之间的对应关系。
例如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。
因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。
取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。
张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。
这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。
张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。
张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。
张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。
历史现今张量分析的概念源于卡尔•弗里德里希•高斯在微分几何的工作,概念的制定更受到19世纪中叶代数形式和不变量理论的发展[2]。
“tensor ”这个单词在1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。
[注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。
“张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。
第2章 张量分析§2.1矢量空间、基、基矢1.线性矢量空间设有n 个矢量,1,2,,i i n =a ,它们构成一个集合R ,其中每个矢量i a 称为R 的一个元素。
如()i j i j +≠a a 唯一地确定R 的另一个元素,及i k a (k 为标量)也给定R 内唯一确定的元素,则称R 为线性(矢量)空间。
R 中的零元素记为O ,且具有i ⋅=O a O .2.空间的维数设i α为m 个标量,若能选取i α,使得10mi ii =α=∑a且i α不合为零,则称此m 个矢量线性相关,否则,称为线性无关。
例1 位于同一平面内的两个矢量1a 和2a (如图)是线性无关的,即11220α+α≠a a 若1α和2α为任意值,且不全为零。
例2 位于同一平面内的三个矢量1a ,2a ,3a 是线性相关的,则恒可找到1α,2α,3α(不全为零)使1122330α+α+α=a a a 如图: 21133''=α+αa a a集合R 内线性无关元素的最大个数称为集合或空间的维数。
设R 的维数为n ,则记为n R ,欧氏空间为3R 。
3.空间的基和基元素n R 中任意n 个线性无关元素的全体称为n R 的一个基。
基的每个元素称为基元素,由于n R 的n 确良基元素是线性无关的。
于是n R 内任一个元素r 可表示成基元素的线性组合。
设(1,2,,)i i n =a 为n R 的任选的基,则有:10ni ii ='α≠∑a,i α'为任意的不全为零的标量但总可选取00≠α及i α不全等于零,使得010ni i i =α=α=∑r a或者2a1a21x2x3xi i x =r e110()nnii i i i i ==α=-=ξα∑∑r a a①i αα,00≠ 不全等于零,所以i ξ不全等于零,且为有限值。
② n R 内有无限个基,但只有一个基是独立的,因为n R 内至少只有n 个元素是线性无关的。
张量分析研一 熊焕君 2017.9.281.引论:我们对标量和矢量都非常熟悉。
标量是在空间中没有方向的量,其基本特征是只需要一个数就可以表示,且当坐标系发生转动时这个数保持不变,因此也称其为不变量。
而矢量是个有方向的量,三维空间中矢量需要一组三个数(分量)来表示,其基本特征是当坐标系发生转动时,这三个数按一定规律而变化。
然而在数学物理问题中,还常出现一些更为复杂的量,如描述连续体中一点的应力状态或一个微元体的变形特征等,仅用标量和矢量不足以刻画出他们的性质。
要描述这些量则有必要将标量和矢量的概念加以引申和扩充,即引入新的量——张量。
在概念上,张量和矢量有许多类同之处。
一方面张量也表示某一客观存在的几何量或物理量,显然张量作为一个整体是与描述它所选取的坐标系无关,可像矢量代数那样,用抽象法进行描述;另一方面也可像矢量一样采用坐标法进行描述,此时张量包含有若干个分量元素,各个分量的取值与具体的坐标系相关联。
张量的主要特征是,在坐标系发生变化时,其分量取值遵守着一定的转化定律。
张量方法的核心内容是研究一个复杂的量集坐标转换规律。
我们知道,一个物理定律如果是正确的,就必须不依赖于用来描述它的任何坐标系,张量方法就是既采用坐标系,而又摆脱具体坐标系的影响的不变方法。
于是我们可以在简单的直角坐标系中建立描述某一运动法则的支配方程,如果需要可以用张量方法将其转换到任意一个曲线坐标系中去。
例如对于很大一类边值问题,若选用恰当的曲线坐标系,其边界条件可以简化的表达,那么我们就可以将支配方程用张量方法转化到所采用的坐标系中来,从而使问题的求解容易处理。
2.记号与约定张量是包含有大量分量元素的复杂量集,必须使用适当的记号和约定,才能使其表达形式简化紧凑,从而使分析和讨论有序地进行。
从某种意义上讲,可以说张量是对记号的研究。
所以我们必须熟悉各种约定记号,才能对张量这个工具运用自如。
在张量方法中对一个量的标记采用字母标号法。
数学中的张量分析方法在数学中,张量分析是一种用于描述多维空间中变量关系的数学工具。
它在许多领域中被广泛应用,包括物理学、工程学、计算机科学和经济学等。
本文将介绍张量的基本概念和常见的应用方法。
一、张量的定义和性质1. 张量的定义张量是一个多维数组,可以表示为多个分量的组合。
在欧几里德空间中,一阶张量是向量,二阶张量是矩阵。
高阶张量可以看做是多个矩阵的组合。
2. 张量的性质张量具有坐标系无关性,即其分量在不同坐标系下具有相同的转换法则。
这使得张量在描述物理量时具有普适性和通用性。
二、张量的运算法则1. 张量的加法和减法张量的加法和减法都是对应分量相加或相减。
要求参与运算的张量具有相同的维度。
2. 张量的数乘张量的数乘是将每个分量都乘以一个标量。
数乘并不改变张量的维度。
3. 张量的张量积张量的张量积是两个张量的分量进行乘积并按照一定规则相加得到的新张量。
它在向量叉乘、矩阵乘法等问题中有广泛应用。
4. 张量的缩并运算张量的缩并是对张量的某些分量进行求和,并将结果保留在一个新的张量中。
它常用于求解线性方程组、协方差矩阵等问题。
三、张量的应用举例1. 物理学中的应用张量在物理学中有广泛的应用,如流体力学中的应力张量、电动力学中的麦克斯韦张量等。
它们描述了物质在空间中的运动和相互作用。
2. 工程学中的应用张量在工程学中用于描述物体的形变、应力分布等。
它在结构力学、弹性力学、热传导等领域中有着重要的作用。
3. 计算机科学中的应用张量在图像处理、模式识别、机器学习等领域中被广泛应用。
例如,卷积神经网络中的卷积操作就可以用张量运算进行描述。
4. 经济学中的应用张量在经济学中用于描述多个经济变量之间的关系。
它可以用来分析供求关系、生产函数等经济现象。
结语:张量分析作为一种重要的数学工具,为我们研究和解决各种问题提供了强有力的帮助。
通过对张量的定义、性质和运算法则的了解,我们可以更好地理解和应用张量,进而推动科学的发展和进步。
引言张量是一个数学概念。
我们知道,可以由一个实数值完全确定的物理量(如长度、温度、密度等)称为标量;可以用一个实数值(模值)和空间一定方向来表征的物理量(如力、速度、加速度等)称为矢量。
有许多物理量既不是标量,也不是矢量,它们具有更复杂的性质,需要用更复杂的数学实体—张量来描述。
例如,连续体内一点的应力状态和一点的应变状态需要更分别用应力张量σ和应变张量∈来描述,xx xy xz yx yyyz zx yxzz σττστστττσ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭ 112211221122xxxy xz yxyyyz zx yx zz εγγγεγγγε⎧⎫⎪⎪⎪⎪⎪⎪∈=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭又如,质点对于某定点的转动惯量需要用惯性张量来描述⋅⋅⋅。
事实上,标量和矢量都是张量的特例,它们分别为零阶张量和一阶张量。
这是两种最简单的张量。
在处理物理学和力学问题中,张量理论是一种有效的数学工具。
它有许多突出的优点,例如:(1)张量方程的一个重要特性是与坐标系的选择无关。
这一特性使它能够很好地反映物理定律和各物理量之间的关系。
张量方程对于任何坐标系都具有统一的形式,因此,当坐标系不确定时,照样可以将物理现象用数学方程表达出来。
(2)张量方程的上述特性使我们能够从某种特殊坐标系中建立起适用于一切坐标系的方程。
(3)属于某阶张量的某种物理量所具有的张量特性,对于所有这类张量(不管它们表达何种物理现象)来说,必定也都具有这些特性。
(例如应力张量是二阶对称张量,倘若我们掌握了应力的张量特性,便可以断定所有二阶对称张量,如应变张量、惯性张量以及平板曲率张量等,也都具有这些特性。
) (4)张量表述和张量算法具有十分清晰、简捷的特点。
张量理论是数学中的一个分支。
张量的普遍概念是十九世纪中叶对连续介质力学有了深入研究之后建立起来的。
(在法文中,张量tension 一词具有“应力”的意思;也就是说,张量是像应力那样具有某些特定性质的量。
张量分析及其在机器学习中的应用引言:机器学习作为人工智能领域的重要分支,已经在各个领域展现出巨大的潜力和应用价值。
而张量分析作为一种数学工具,被广泛应用于机器学习中,为模式识别、数据分析和深度学习等任务提供了强大的支持。
本文将介绍张量分析的基本概念和原理,并探讨其在机器学习中的应用。
一、张量分析的基本概念1. 张量的定义张量是一种多维数组,可以用来表示多个变量之间的关系。
在数学中,张量可以是任意维度的矩阵,它的元素可以是实数、复数或其他数学对象。
在机器学习中,我们通常使用高阶张量来表示多个特征之间的关联。
2. 张量的运算张量具有一系列的运算规则,包括加法、乘法、转置等。
通过这些运算,我们可以对张量进行各种操作,从而得到我们需要的结果。
在机器学习中,我们常常使用张量来表示输入数据和模型参数,并通过张量运算来进行模型的训练和预测。
3. 张量的性质张量具有一些特殊的性质,如对称性、正定性、奇异性等。
这些性质为我们理解和分析数据提供了便利。
在机器学习中,我们可以利用张量的性质来进行特征选择、数据降维等操作,从而提高模型的性能。
二、张量分析在机器学习中的应用1. 张量分解张量分解是将一个高阶张量分解为多个低阶张量的过程。
通过张量分解,我们可以提取出数据中的关键特征,并减少数据的维度。
这对于大规模数据的处理和模型的训练非常重要。
在机器学习中,张量分解被广泛应用于图像处理、推荐系统等任务中。
2. 张量网络张量网络是一种基于张量分析的模型结构,它可以有效地处理高维数据,并提取出数据中的重要特征。
张量网络具有较强的非线性建模能力,可以用于解决复杂的模式识别和数据分析问题。
在机器学习中,张量网络被广泛应用于图像识别、语音识别等领域。
3. 张量回归张量回归是一种基于张量分析的回归模型,它可以处理多个输入变量和多个输出变量之间的关系。
张量回归具有较强的建模能力,可以用于解决多变量回归和多任务学习等问题。
在机器学习中,张量回归被广泛应用于金融预测、医学诊断等任务中。
补充知识:张量分析1. 指标符号
2.矢量的基本运算
3.坐标变换与张量定义
4.张量的代数运算(1).加减法
(2).矢量与张量的点积(点乘)
(3).矢量与张量的叉积
(4).两个张量的点积
(5).张量的双点积
(6).张量的双叉乘
(7).张量的缩并
(8).指标置换
和(9).对称化和反对称化
5.二阶张量(仿射量)概述
(1).张量的转置B T
(2).张量的逆B-1
(3).对称仿射量的主向和主值
(4).各向同性张量
6.张量分析
概述
(1).哈密尔顿算子(梯度算子)
(2).张量场的微分
(3).散度定理
7.曲线坐标系下的张量分析(1).曲线坐标
(2).局部基矢量
(3).张量对曲线坐标的导数
END。